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Abstract

By investigating path-distribution dependent stochastic differential equations, the
following type of nonlinear Fokker–Planck equations for probability measures (µt)t≥0

on the path space C := C([−r0, 0];R
d), is analyzed:

∂tµ(t) = L∗
t,µt

µt, t ≥ 0,

where µ(t) is the image of µt under the projection C ∋ ξ 7→ ξ(0) ∈ R
d, and

Lt,µ(ξ) :=
1

2

d
∑

i,j=1

aij(t, ξ, µ)
∂2

∂ξ(0)i∂ξ(0)j
+

d
∑

i=1

bi(t, ξ, µ)
∂

∂ξ(0)i
, t ≥ 0, ξ ∈ C , µ ∈ P

C .

Under reasonable conditions on the coefficients aij and bi, the existence, uniqueness,
Lipschitz continuity in Wasserstein distance, total variational norm and entropy, as
well as derivative estimates are derived for the martingale solutions.
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1 Introduction

In this paper, we investigate nonlinear PDEs for probability measures on the path space
using path-distribution dependent SDEs. To explain the motivation of the study, let us
start from the following classical PDE on P(Rd), the set of probability measures on R

d

equipped with the weak topology:

(1.1) ∂tµ(t) = L∗µ(t). t ≥ 0,

for a second-order differential operator

L :=
1

2

d
∑

i,j=1

aij∂i∂j +
d

∑

i=1

bi∂i,

where a = (aij) : R
d → R

d ⊗ R
d and b = (bi) : R

d → R
d are locally integrable. (1.1) is just

the (linear) Fokker–Planck–Kolmogorov equation (FRKE) associated to the operator L in
the sense of [2]. We call µ ∈ C(R+;P(Rd)) a solution of (1.1), if

∫

Rd

fdµ(t) =

∫

Rd

fdµ(0) +

∫ t

0

ds

∫

Rd

(Lf)dµ(s), t ≥ 0, f ∈ C∞
0 (Rd).

To construct and analyze solutions of (1.1) using the time marginal distributions of Markov
processes as proposed by A. N. Kolmogorov [10], K. Itô developed the theory of stochastic
differential equations (SDEs), see e.g.[9]. Let σ be a matrix-valued function such that a =
σσ∗, and let W (t) be a d-dimensional Brownian motion. Consider the following Itô SDE

(1.2) dX(t) = b(X(t))dt+ σ(X(t))dW (t).

By Itô’s formula, the time marginals µ(t) := LX(t) = the law of X(t) for t ≥ 0, solve the
equation (1.1). This enables one to investigate FPKEs using a probabilistic approach.

Obviously, (1.1) is a linear equation. In applications, many important PDEs for probabil-
ity measures (or probability densities) are nonlinear, see, for instance, [4, 5, 6, 7, 8, 15] and
references within for the study of Landau type equations. Such PDEs are also of Fokker–
Planck type, but are non-linear (see Sections 6.7 and 9.8 (v) in [2]). To analyze non-linear
FPKEs for probability measures, the following distribution-dependent version of (1.2) has
been studied in the recent paper [23] by the third named author:

(1.3) dX(t) = b(t, X(t),LX(t))dt+ σ(t, X(t),LX(t))dW (t),

where
b : R+ × R

d × P(Rd) → R
d, σ : R+ × R

d × P(Rd) → R
d ⊗ R

d

are measurable. For any t ≥ 0 and µ ∈ P(Rd), consider the second order differential
operator

Lt,µ :=
1

2

d
∑

i,j=1

(σσ∗)ij(t, ·, µ)∂i∂j +

d
∑

i=1

bi(t, ·, µ)∂i.
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Under reasonable integrability conditions on σ and b, by Itô’s formula we see that for a
solution X(t) of (1.3), µ(t) := LX(t) solves the nonlinear FPKE

(1.4) dµ(t) = L∗
t,µ(t)µ(t)

in the sense that
∫

Rd

fdµ(t) =

∫

Rd

fdµ(0) +

∫ t

0

ds

∫

Rd

(Ls,µ(s)f)dµ(s), t ≥ 0, f ∈ C∞
0 (Rd).

In [23], by investigating existence, uniqueness, exponential convergence, and gradient-Harnack
type inequalities for the distribution dependent SDE (1.3), the existence of a class of regular
solutions to the nonlinear FPKE (1.4) is proved.

In the above two situations, the stochastic systems are Markovian (or memory-free); i.e.
the evolution of the system does not depend on its past. However, many real-world models,
in particular those arising from mathematical finance and biology, are with memory, so that
the associated evolution equations are path dependent. In this case, the distributions of the
solution solve non-linear FPKEs for probability measures on path space. In this paper, we
investigate such a class of FPKEs by using path-distribution dependent SDEs.

In Section 2, we introduce the framework of the study and the main results on nonlin-
ear FPKEs for probability measures on path space. To prove these results, we investigate
the corresponding path-distribution dependent SDEs in Sections 3-5, where strong/weak
existence and uniqueness of solutions as well as Harnack type inequalities are derived re-
spectively. We will mainly follow the ideas of [23], but substantial additional efforts have to
be made in order to generalize the results in there to the case, where the coefficients do not
only depend on the time marginals, but are also on the distribution of the path.

2 Nonlinear PDEs for measures on path space

Throughout the paper, we fix r0 > 0 and consider the path space C := C([−r0, 0];R
d)

equipped with the uniform norm ‖ξ‖∞ := supθ∈[−r0.0] |ξ(θ)|. Let PC
2 be the class of proba-

bility measures on C of finite second-order moment, i.e. µ(‖ · ‖2∞) :=
∫

C
‖ξ‖2∞µ(dξ) < ∞.

Then PC
2 is a Polish space under the Wasserstein distance

W2(µ, ν) := inf
π∈C (µ,ν)

(
∫

C×C

‖ξ − η‖2∞π(dξ, dη)

)
1
2

,

where C (µ, ν) denotes the class of couplings for µ and ν. It is well known that (PC
2 ,W2)

is a Polish space and the W2-metric is consistent with the weak topology. We will study
non-linear FPKEs on PC

2 .
Let

(2.1) b : R+ × C × P
C

2 → R
d; σ : R+ × C × P

C

2 → R
d ⊗ R

d

3



be measurable. For any t ≥ 0, µ ∈ PC
2 , consider the following differential operator Lt,µ from

C∞
0 (Rd) to the set of all B(C )-measurable functions: for f ∈ C∞

0 (Rd),

(Lt,µf)(ξ) :=
1

2

d
∑

i,j=1

(σσ∗)ij(t, ξ, µ)(∂i∂jf)(ξ(0)) +

d
∑

i=1

bi(t, ξ, µ)(∂if)(ξ(0)), ξ ∈ C .

Then the associated nonlinear FPKE for probability measures (µt)t≥0 on the path space C

is

(2.2) ∂tµ(t) = L∗
t,µt
µt,

where µ(t) is the marginal distribution of µt at θ = 0; i.e.

{µ(t)}(dx) := µt({ξ ∈ C : ξ(0) ∈ dx}).

A continuous functional µ· : R+ → PC
2 is called a solution to (2.2), if

∫ t

0
ds

∫

C
|Ls,µs

f |dµs <

∞ for f ∈ C∞
0 (Rd) and

(2.3)

∫

Rd

fdµ(t) =

∫

Rd

fdµ(0) +

∫ t

0

ds

∫

C

(Ls,µs
f)dµs, t ≥ 0, f ∈ C∞

0 (Rd).

We will investigate martingale solutions of (2.2) which are realized by marginals of prob-
ability measures on the infinite-time path space C∞ := C([−r0,∞);Rd). For a probability
measure µ∞ on C∞, consider its marginal distributions

µ∞(t) := µ∞ ◦ {π(t)}−1 ∈ P(Rd), µ∞
t := µ∞ ◦ π−1

t ∈ P(C ), t ≥ 0,

where π(t) : C([−r0,∞);Rd) → R
d and πt : C([−r0,∞);Rd) → C are projection operators

defined by

π(t)ξ = ξ(t) ∈ R
d, πtξ = ξt ∈ C with ξt(θ) := ξ(t+ θ) for θ ∈ [−r0, 0].

Definition 2.1. A solution (µt)t≥0 of (2.2) is called a martingale solution, if there exists a
probability measure µ∞ on C∞ such that

(1) µt = µ∞
t for all t ≥ 0.

(2) For any f ∈ C∞
0 (Rd), the family of functionals

Mf (t) := f(π(t)·)−

∫ t

0

(Ls,µs
f)(πs·)ds, t ≥ 0

on C∞ is a µ∞-martingale; that is,
∫

A

Mf (t2)dµ
∞ =

∫

A

Mf (t1)dµ
∞, t2 > t1 ≥ 0, A ∈ σ(π(s) : s ≤ t1),

where σ(π(s) : s ≤ t1) is the σ-field on C∞ induced by the projections π(s) for s ∈
[−r0, t1].
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To construct the martingale solutions of (2.2) using path-distribution dependent SDEs,
we need the following assumptions.

(H1) (Continuity) For every t ≥ 0, b(t, ·, ·) is continuous on C ×PC
2 , and there exist locally

bounded functions α1, α2 : R+ → R+ such that

‖σ(t, ξ, µ)−σ(t, η, ν)‖2 ≤ α1(t)‖ξ−η‖
2
∞+α2(t)W2(µ, ν)

2, t ≥ 0; ξ, η ∈ C ;µ, ν ∈ P
C

2 .

(H2) (Monotonicity) There exist a constant κ ≥ 0 and locally bounded functions β1, β2 :
R+ → R+ such that

2〈b(t, ξ, µ)− b(t, η, ν), ξ(0)− η(0)〉+ ‖σ(t, ξ, µ)− σ(t, η, ν)‖2HS

≤ β1(t)‖ξ − η‖2∞ + β2(t)W2(µ, ν)
2 − κ|ξ(0)− η(0)|2, t ≥ 0; ξ, η ∈ C ;µ, ν ∈ P

C

2 .

(H3) (Growth) b is bounded on bounded sets in [0,∞)×C ×PC
2 , and there exists a locally

bounded function K : R+ → R+ such that

|b(t, 0, µ)|2 + ‖σ(t, 0, µ)‖2 ≤ K(t)
{

1 + µ(‖ · ‖2∞)
}

, t ≥ 0, µ ∈ P
C

2 .

The following result characterizes the martingale solutions of (2.2) with W2-Lipschitz
estimate.

Theorem 2.1. Assume (H1)-(H3). Then for any µ0 ∈ PC
2 , there exists a unique martingale

solution (µt)t≥0 of (2.2). Moreover,

(1) µt(‖ · ‖
2
∞) is locally bounded in t.

(2) For any two martingale solutions (µt)t≥0 and (νt)t≥0 of (2.2),

W2(µt, νt)
2 ≤ inf

ε∈[0,1]

{

W2(µ0, ν0)
2

1− ε

× inf
δ∈[0,κ]

exp

[

(r0 − t)δ +
eδr0

1− ε

∫ t

0

{4(α1(r) + α2(r))

ε
+ β1(r) + β2(r)

}

dr

]}

holds for all t ≥ 0 and ε ∈ (0, 1).

From now on, for any ν0, µ0 ∈ PC
2 , we denote µt and νt the martingale solutions of (2.2)

staring at µ0 and ν0 respectively.
To estimate the continuity of µt in µ0 with respect to entropy and total variational norm,

we make the following stronger assumption.

(A) σ(t, x) is invertible, and there exist increasing functions κ0, κ1, κ2, λ : R+ → R+ such
that for any t ≥ 0, x, y ∈ R

d, ξ, η ∈ C and µ, ν ∈ PC
2 ,

|b(t, 0, µ)|2 + ‖σ(t, x)‖2 ≤ κ0(t)(1 + |x|2 + µ(‖ · ‖2∞)),

‖σ(t, ·)−1‖∞ ≤ λ(t), ‖σ(t, x)− σ(t, y)‖2HS ≤ κ1(t)|x− y|2,

|b(t, ξ, µ)− b(t, η, ν)| ≤ κ2(t)(‖ξ − η‖∞ +W2(µ, ν)).
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Recall that for any two probability measures µ, ν on some measurable space (E,F ), the
entropy and variational norm are defined as follows:

Ent(ν|µ) :=

{

∫

(log dν
dµ
)dν, if ν is absolutely continuous with respect to µ,

∞, otherwise;

and
‖µ− ν‖var := sup

A∈F

|µ(A)− ν(A)|.

By Pinsker’s inequality (see [3, 11]),

(2.4) ‖µ− ν‖2var ≤
1

2
Ent(ν|µ), µ, ν ∈ P(E).

Then (2.6) below implies

(2.5) ‖µt − νt‖
2
var ≤

ψ(t)

2(t− r0)
W2(µ0, ν0)

2, t > r0, µ0, ν0 ∈ P
C

2 ,

for some ψ ∈ C(R+;R+). There are a lot of examples where W2(µn, µ0) → 0 but µn is
singular with respect to µ0 such that Ent(µn|µ0) = ∞ and ‖µn − µ0‖var = 1. So, both (2.5)
and (2.6) are non-trivial. Indeed, these estimates correspond to the log-Harnack inequality
for the associated semigroups, see Theorem 4.1 below for details.

Theorem 2.2. Assume (A).

(1) There exists ψ ∈ C(R+;R+) such that

(2.6) Ent(νt|µt) ≤
ψ(t)

t− r0
W2(µ0, ν0)

2, t > r0, µ0, ν0 ∈ P
C

2 .

(2) If there exists an increasing function κ3 : R+ → R+ such that

(2.7) ‖σ(t, x)− σ(t, y)‖ ≤ κ3(t)(1 ∧ |x− y|), t ≥ 0, x, y ∈ R
d,

then there exists a positive continuous function H defined on the domain

D := {(p, t) : t ≥ 0, p > (1 + κ3(t)λ(t))
2},

such that

∫

C

(dνt
dµt

)
1
p

dνt ≤ inf
π∈C (µ0,ν0)

∫

C×C

e
H(p,t)

(

1+
|ξ(0)−η(0)|2

t−r0
+‖ξ−η‖2∞

)

dπ

holds for all t > r0 and p > (1 + κ3(t)λ(t))
2.
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Remark 2.1. According to Theorem 2.1(2), if there exists a constant ε ∈ (0, 1) such that

(2.8) lim sup
t→∞

1

t

∫ t

0

(4(α1(s) + α2(s))

εt(1− εt)
+
β1(s) + β2(s)

1− εt

)

ds < sup
δ∈[0,κ]

δe−δr0 ,

then

(2.9) W2(µt, νt)
2 ≤ ce−λt

W2(µ0, ν0)
2, t ≥ 0,

holds for some constants c, λ > 0; i.e. the solution to (2.2) has exponential contraction in
W2. If σ(t, ·, ·) and b(t, ·, ·) do not depend on t, i.e. the equation is time-homogenous, we
µt = P ∗

t µ0. By the uniqueness we see that P ∗
t is a semigroup, i.e.P ∗

t+s = P ∗
t P

∗
s , s, t ≥ 0.

Then (2.8) implies that P ∗
t has a unique invariant probability measure µ ∈ PC

2 . Combining
(2.9) with the semigroup property of P ∗

t and (2.5)-(2.6), we conclude that (2.8) also implies
the exponential convergence in entropy and total variational norm:

max{Ent(νt|µ), ‖µ− νt‖
2
var} ≤ c1W2(µ, νt−1)

2 ≤ c2e
−λt

W2(µ, ν0)
2, t ≥ 1, ν0 ∈ P

C

2

for some constants c1, c2 > 0.

Finally, we investigate the shift quasi-invariance and differentiability of µt along Cameron–
Martin vectors in H

1 := {ξ ∈ C :
∫ 0

−r0
|ξ′(s)|2ds <∞}. For η ∈ C and a probability measure

µ on C , we say that µ is differentiable along ξ if for any A ∈ B(C ), ∂ξµ(A) :=
d
dε
µ(A+εξ)

∣

∣

ε=0
exists and ∂ξµ(·) is a signed measure on C .

Theorem 2.3. Assume (A) and let b(t, ·, µ) be differentiable on C , σ(t, x) = σ(t) be inde-

pendent of x. Then for any t > r0, η ∈ H
1 and µ0 ∈ PC

2 , µt is differentiable along η, both

∂ηµt and µt(·+ η) are absolutely continuous with respect to µt, and for some Ψ ∈ C(R+;R+)

∫

C

(

log
dµt(·+ η)

dµt

)

dµt(·+ η) ≤ Ψ(t)
( |η(−r0)|

2

t− r0
+ ‖η‖2

H1

)

,

∫

C

(dµt(·+ η)

dµt

)
1
p

dµt(·+ η) ≤ exp

[

Ψ(t)
( |η(−r0)|

2

t− r0
+ ‖η‖2

H1

)

]

, p > 1,

∫

C

∣

∣

∣

d∂ηµt

dµt

∣

∣

∣

2

dµt ≤ Ψ(t)
( |η(−r0)|

2

t− r0
+ ‖η‖2

H1

)

.

Proof of Theorems 2.1-2.3. For µ0 ∈ PC
2 , take a F0-measurable random variable X0 on C

such that LX0 = µ0. According to Theorem 3.1, Corollary 4.2, Corollary 5.2 and (2.4),
µt := LXt

satisfies the estimates in Theorems 2.1-2.3 under the corresponding assumptions.
So, it suffices to show that (LXt

)t≥0 is the unique martingale solution of (2.2).
Let µ∞ = L{X(s)}s∈[−r0.∞)

. We have LXt
= µ∞

t . By (3.1) and Itô’s formula, for any

f ∈ C∞
0 (Rd), (Mf (t))t≥0 is a µ∞-martingale such that µt := LXt

satisfies

∫

Rd

fdµ(t) = Ef(X(t)) = Ef(X(0)) +

∫ t

0

E(Ls,µs
f)(Xs)ds

7



=

∫

Rd

fdµ(0) +

∫ t

0

ds

∫

C

(Ls,µs
f)dµs, t ≥ 0, f ∈ C∞

0 (Rd).

Therefore, L{X(s)}s∈[−r0.∞)
is a martingale solution of (2.2). When the coefficients are distribution-

free, it is well known that the weak solution of (3.1) is equivalent to the martingale solution,
so that the uniqueness of the martingale solutions of (2.2) follows from Theorem 3.1(3) be-
low. In the following, we explain that the same is true for the present distribution dependent
case.

Let µt = µ∞
t , for some probability measure µ∞ on C∞, be a martingale solution of (2.2).

We intend to prove µ∞ = L{X(s)}s∈[−r0.∞)
, so that the martingale solution is unique. Let

Ω̄ := C∞, F̄t for t ≥ 0 be the completion of σ(π(s) : s ≤ t) with respect to µ∞, and P̄ := µ∞.
By Theorem 3.1(3) below, it suffices to prove that the coordinate process

X̄(t)(ω) := ω(t), t ≥ 0, ω ∈ Ω̄

is a weak solution to (3.1). To this end, for the given (µt)t≥0, define

σ̄(t, ξ) := σ(t, ξ, µt), b̄(t, ξ) = b(t, ξ, µt), t ≥ 0, ξ ∈ C ,

and consider the corresponding operator

(L̄tf)(ξ) :=
1

2

d
∑

i,j=1

(σ̄σ̄∗)ij(t, ξ)(∂i∂jf)(ξ(0)) +

d
∑

i=1

b̄i(t, ξ)(∂if)(ξ(0)), t ≥ 0, ξ ∈ C

for f ∈ C∞
0 (Rd). Since (µt)t≥0 is a martingale solution of (2.2), for any f ∈ C∞

0 (Rd), the
process

Mf (t) := f(X̄(t))− f(X̄(0))−

∫ t

0

(L̄sf)(X̄s)ds, t ≥ 0

is a martingale on the probability space (Ω̄, (F̄t)t≥0, P̄). By (H1)-(H3), the martingale prop-
erty also holds for f being polynomials of order 2. In particular, by taking f(x) = x we see
that

(2.10) M(t) :=Mf (t) = X̄(t)− X̄(0)−

∫ t

0

b̄(s, X̄s)ds

is a R
d-valued martingale, and with f(x) := xixj we conclude that

〈Mi,Mj〉(t) =

∫ t

0

(σ̄σ̄∗)ij(s, X̄s)ds, 1 ≤ i, j ≤ d.

Then according to Stroock–Varadhan (see, for example, Theorems 4.5.1 and 4.5.2 in [13]),
we may construct a d-dimensional Brownian motion W̃ (t) on a product probability space
of (Ω̃, F̃t, P̃) with (Ω̄, F̄t, P̄) as a marginal space, and when σ is invertible these two spaces
coincide, such that

M(t) =

∫ t

0

σ̄(s, X̄s)dW̃ (s), t ≥ 0.

8



Combining this with (2.10), we see that X̄(t) solves the stochastic functional differential
equation

(2.11) dX̄(t) = b̄(t, X̄t)dt+ σ̄(t, X̄t)dW̃ (t)

with LX̄0
|
P̃
= LX̄0

|P̄ = µ0. Since, by definition, µt = LX̄t
|P̄ = LX̄t

|
P̃
, X̄(t) solves the

path-distribution dependent SDE

dX̄(t) = b(t, X̄t,LX̄t
|
P̃
)dt+ σ(t, X̄t,LX̄t

|
P̃
)dW̃ (t),

i.e. (X̄, W̃ ) is a weak solution of (3.1). Noting that µ∞ := LX̄|P̄ = LX̄|P̃, by the weak
uniqueness of (3.1) due to Theorem 3.1(3) below, we obtain µ∞ = L{X(s)}s∈[−r0,∞)

as desired.

3 Path-distribution dependent SDEs

Recall that for γ(·) ∈ C([−r0,∞);Rd), the segment functional γ· ∈ C(R+;C ) is defined by

γt(θ) := γ(t + θ), θ ∈ [−r0, 0], t ≥ 0.

For σ, b in (2.1), consider the following path-distribution dependent SDE on R
d:

(3.1) dX(t) = b(t, Xt,LXt
) dt+ σ(t, Xt,LXt

) dW (t),

where W = (W (t))t≥0 is a d-dimensional standard Brownian motion with respect to a
complete filtered probability space (Ω,F , {Ft}t≥0,P), LXt

is the distribution of Xt. We
investigate the strong solutions of (3.1) and determine properties, of their distributions.

We first recall the definition of the strong and weak solutions, see for instance [23, Def-
inition 1.1] in the path independent setting. For simplicity, we will only consider square
integrable solutions.

Definition 3.1. (1) For any s ≥ 0, a continuous adapted process (Xs,t)t≥s on C is called a
(strong) solution of (3.1) from time s, if

E‖Xs,t‖
2
∞ +

∫ t

s

E
{

|b(r,Xs,r,LXs,r
)|+ ‖σ(r,Xs,r,LXs,r

)‖2
}

dr <∞, t ≥ s,

and (Xs, (t) := Xs,t(0))t≥s satisfies P-a.s.

Xs, (t) = Xs(s) +

∫ t

s

b(r,Xs,r,LXs,r
)dr +

∫ t

s

σ(r,Xs,r,LXs,r
)dW (r), t ≥ s.

We say that (3.1) has (strong or pathwise) existence and uniqueness, if for any s ≥ 0 and
Fs-measurable random variable Xs,s with E‖Xs,s‖

2
∞ < ∞, the equation from time s has a

unique solution (Xs,t)t≥s. When s = 0 we simply denote X0, = X ; i.e.X0,(t) = X(t), X0,t =
Xt, t ≥ 0.
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(2) A couple (X̃s,t, W̃ (t))t≥s is called a weak solution to (3.1) from time s, if W̃ (t) is a

d-dimensional Brownian motion a complete filtered probability space (Ω̃, {F̃t}t≥s, P̃), and
X̃s,t solves

(3.2) dX̃s,(t) = b(t, X̃s,t,LX̃s,t
|
P̃
)dt+ σ(t, X̃s,t,LX̃s,t

|
P̃
)dW̃ (t), t ≥ s.

(3) (3.1) is said to satisfy weak uniqueness, if for any s ≥ 0, the distribution of a weak
solution (Xs,t)t≥s to (3.1) from s ≥ 0 is uniquely determined by LXs,s

.

When (3.1) has strong existence and uniqueness, the solution (Xt)t≥0 is a Markov process
in the sense that for any s ≥ 0, (Xt)t≥s is determined by solving the equation from time s
with initial state Xs. More precisely, letting {Xξ

s,t}t≥s denote the solution of the equation
from time s with initial state Xs,s = ξ, the existence and uniqueness imply

(3.3) X
ξ
s,t = X

X
ξ
s,u

u,t , t ≥ u ≥ s ≥ 0, ξ is Fs-measurable with E‖ξ‖2∞ <∞.

When (3.1) also has weak uniqueness, we may define a semigroup (P ∗
s,t)t≥s on PC

2 by
letting P ∗

s,tµ = LXs,t
for LXs,s

= µ ∈ PC
2 . Indeed, by (3.3) we have

(3.4) P ∗
s,t = P ∗

u,tP
∗
s,u, t ≥ u ≥ s ≥ 0.

For simplicity we set P ∗
t = P ∗

0,t, t ≥ 0.

Theorem 3.1. Assume (H1)-(H3).

(1) For any s ≥ 0 and Xs,s ∈ L2(Ω → C ;Fs), (3.1) has a unique strong solution (Xs,t)t≥s

with

(3.5) E sup
t∈[s,T ]

‖Xs,t‖
2
∞ ≤ H(T )(1 + E‖Xs,s‖

2
∞), T ≥ t ≥ s ≥ 0

for some increasing function H : R+ → R+.

(2) For any two solutions Xs,t and Ys,t of (3.1) with LXs,s
,LYs,s

∈ PC
2 ,

E‖Xs,t − Ys,t‖
2
∞ ≤ inf

ε∈(0,1)

{

E‖Xs,s − Ys,s‖
2
∞

1− ε

× inf
δ∈[0,κ],ε∈(0,1)

exp

[

(r0 + s− t)δ +
eδr0

1− ε

∫ t

s

{4(α1(r) + α2(r))

ε
+ β1(r) + β2(r)

}

dr

]}

.

(3) (3.1) satisfies weak uniqueness, and for any t ≥ 0,

W2(P
∗
t µ0, P

∗
t ν0)

2 ≤ inf
ε∈(0,1)

{

W2(µ0, ν0)
2

1− ε

× inf
δ∈[0,κ],ε∈(0,1)

exp

[

(r0 − t)δ +
eδr0

1− ε

∫ t

0

{4(α1(r) + α2(r))

ε
+ β1(r) + β2(r)

}

dr

]

.
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We will prove this result by using the argument of [23]. For fixed s ≥ 0 and Fs-measurable
C -valued random variable Xs,s with E‖Xs,s‖

2
∞ < ∞, we construct the solution of (3.1) by

iterating in distribution as follows. Firstly, let

X
(0)
s,t (θ) = Xs,s

(

0 ∧ (t− s+ θ)
)

for θ ∈ [−r0, 0], µ
(0)
s,t = L

X
(0)
s,t

, t ≥ s.

For any n ≥ 1, let (X
(n)
s,t )t≥s solve the classical path-dependent SDE

(3.6) dX(n)
s, (t) = b(t, X

(n)
s,t , µ

(n−1)
s,t )dt+ σ(t, X

(n)
s,t , µ

(n−1)
s,t ) dW (t), X(n)

s,s = Xs,s, t ≥ s,

where µ
(n−1)
s,t := L

X
(n−1)
s,t

and X
(n)
s,t (θ) := X

(n)
s, (t− s+ θ) for θ ∈ [−r0, 0].

Lemma 3.2. Assume (H1)-(H3). For every n ≥ 1, the path-dependent SDE (3.6) has a

unique strong solution X
(n)
s,t with

(3.7) E sup
t∈[s−r0,T ]

|X(n)
s, (t)|2 <∞, T > s, n ≥ 1.

Moreover, for any T > 0, there exists t0 > 0 such that for all s ∈ [0, T ] and Xs,s ∈ L2(Ω →
C ;Fs),

(3.8) E sup
t∈[s,s+t0]

|X(n+1)
s, (t)−X(n)

s, (t)|2 ≤ 4e−n
E sup

t∈[s,s+t0]

|X(1)
s, (t)|

2, s ∈ [0, T ], n ≥ 1.

Proof. The proof is similar to that of [23, Lemma 2.1]. Without loss of generality, we may
assume that s = 0 and simply denote X0,(t) = X(t), X0,t = Xt, t ≥ 0.

(1) We first prove that the SDE (3.6) has a unique strong solution and (3.7) holds.
For n = 1, let

b̄(t, ξ) = b(t, ξ, µ
(0)
t ), σ̄(t, ξ) = σ(t, ξ, µ

(0)
t ), t ≥ 0, ξ ∈ C .

Then (3.6) reduces to

(3.9) dX(1)(t) = b̄(t, X
(1)
t )dt + σ̄(t, X

(1)
t )dW (t), X

(1)
0 = X0, t ≥ 0.

By (H1)-(H3), the coefficients b̄ and σ̄ satisfy the standard monotonicity condition which
imply strong existence, uniqueness and non-explosion for the stochastic functional differential
equation (3.9), see e.g. [18, Corollary 4.1.2] with D = R

d and un = 1. It is also standard to
prove (3.7) using Itô’s formula

d|X(1)(t)|2 = 2
〈

σ(t, X
(1)
t , µ

(0)
t )dW (t), X(1)(t)

〉

+
{

2
〈

b(t, X
(1)
t , µ

(0)
t ), X(1)(t)

〉

+ ‖σ(t, X
(1)
t , µ

(0)
t )‖2HS

}

dt.

By (H1)-(H3), there exists an increasing function H : R+ → R+ such that

2
〈

b(t, ξ, µ
(0)
t ), ξ(0)

〉

+ ‖σ(t, ξ, µ
(0)
t )‖2HS

11



≤ 2
〈

b(t, ξ, µ
(0)
t )− b(t, 0, µ

(0)
t ), ξ(0)

〉

+ 2|b(t, 0, µ
(0)
t )| · |ξ(0)|

+ 2‖σ(t, ξ, µ
(0)
t )− σ(t, 0, µ

(0)
t )‖2HS + 2‖σ(t, 0, µ

(0)
t )‖2HS

≤ H(t)
{

1 + ‖ξ‖2∞ + µ
(0)
t (‖ · ‖2∞)

}

, t ≥ 0, ξ ∈ C .

Combining this with (H3) and applying the BDG inequality for p = 1, for any N ∈ [1,∞)
and τN := inf{t ≥ 0 : |X(1)(t)| ≥ N}, we have

E sup
s∈[−r0,t∧τN ]

|X(1)(s)|2 ≤ 4E‖X
(1)
0 ‖2∞ + 2H(t)E

∫ t∧τN

0

(

1 + ‖X(1)
s ‖2∞ + µ(0)

s (‖ · ‖2∞)
)

ds

+ 4H(t)E

(
∫ t∧τN

0

|X(1)(s)|2
(

1 + ‖X(1)
s ‖2∞ + µ(0)

s (‖ · ‖2∞)
)

ds

)
1
2

≤ 4E‖X
(1)
0 ‖2∞ +

1

2
E sup

s∈[−r0,t∧τN ]

|X(1)(s)|2

+ {2H(t) + 8H(t)2}E

∫ t∧τN

0

(

1 + ‖X(1)
s ‖2∞ + µ(0)

s (‖ · ‖2∞)
)

ds, t ≥ 0.

This implies

E sup
s∈[−r0,t∧τN ]

|X(1)
s |2 ≤ 8E‖X

(1)
0 ‖2∞

+ {4H(t) + 16H(t)2}

∫ t

0

{

1 + E sup
r∈[−r0,s∧τN ]

|X(1)(r)|2 + µ(0)
s (‖ · ‖2∞)

}

ds, t ≥ 0.

By first applying Gronwall’s Lemma then letting N → ∞, we arrive at

E sup
s∈[−r0,t]

|X(1)(s)|2 <∞, t ≥ 0.

Therefore, (3.7) holds for n = 1.
Now, assuming that the assertion holds for n = k for some k ≥ 1, we intend to prove it

for n = k + 1. This can be done by repeating the above argument with (X
(k+1)
· , µ

(k)
· , X

(k)
· )

replacing (X
(1)
· , µ

(0)
· , X

(0)
· ), so, we omit the proof.

(2) To prove (3.8), let

ξ(n)(t) = X(n+1)(t)−X(n)(t),

Λ
(n)
t = σ(t, X

(n+1)
t , µ

(n)
t )− σ(t, X

(n)
t , µ

(n−1)
t ),

B
(n)
t = b(t, X

(n+1)
t , µ

(n)
t )− b(t, X

(n)
t , µ

(n−1)
t ).

By (H2) and Itô’s formula, there exists an increasing function K1 : R+ → R+ such that

d|ξ(n)(t)|2 ≤ 2〈Λ
(n)
t dW (t), ξ(n)(t)〉+K1(t)

{

‖ξ
(n)
t ‖2∞ +W2(µ

(n)
t , µ

(n−1)
t )2

}

dt.

By the BDG inequality for p = 1 and since W2(µ
(n)
s , µ

(n−1)
s )2 ≤ E‖ξ

(n)
s ‖2∞, we obtain

E sup
s∈[0,t]

|ξ(n)(s)|2 ≤ 2E sup
s∈[0,t]

∫ s

0

〈Λ(n)
r dW (r), ξ(n)(r)〉

12



+K1(t)

∫ t

0

{

E‖ξ(n)s ‖2∞ +W2(µ
(n)
s , µ(n−1)

s )2
}

ds

≤ 4E

(
∫ t

0

{

|ξ(n)(s)|2‖Λ(n)
s ‖2

}

ds

)
1
2

+K1(t)

∫ t

0

{

E‖ξ(n)s ‖2∞ +W2(µ
(n)
s , µ(n−1)

s )2
}

ds

≤
1

2
E sup

s∈[0,t]

|ξ(n)(s)|2 + 8

∫ t

0

E‖Λ(n)
s ‖2ds +K1(t)

∫ t

0

{

E‖ξ(n)s ‖2∞ +W2(µ
(n)
s , µ(n−1)

s )2
}

ds.

Combining this and (H1) we deduce that

E sup
s∈[0,t]

|ξ(n)(s)|2 ≤ K2(t)

∫ t

0

{

E sup
r∈[0,s]

|ξ(n)(r)|2 +W2(µ
(n)
s , µ(n−1)

s )2
}

ds, t ≥ 0

for some increasing function K2 : R+ → R+. By Gronwall’s Lemma, we obtain

E sup
s∈[0,t]

|ξ(n)(s)|2 ≤ tK2(t)e
tK2(t) sup

s∈[0,t]

W2(µ
(n)
s , µ(n−1)

s )2

≤ tK2(t)e
tK2(t)E sup

s∈[0,t]

|ξ(n−1)(s)|2, t ≥ 0.

Taking t0 > 0 such that t0K2(T )e
t0K2(T ) ≤ e−1, we arrive at

E sup
s∈[0,t0]

|ξ(n)(s)|2 ≤ e−1
E sup

s∈[0,t0]

|ξ(n−1)(s)|2, n ≥ 1.

Since

E sup
s∈[0,t0]

|ξ(0)(s)|2 ≤ 2E
{

|X(0)|2 + sup
s∈[0,t0]

|X(1)(s)|2
}

≤ 4E sup
s∈[0,t0]

|X(1)(s)|2,

we obtain (3.8).

Proof of Theorem 3.1. Without loss of generality, we only consider s = 0 and simply denote
X0, = X ; i.e.X0,(t) = X(t), X0,t = Xt, t ≥ 0.

(1) Since the uniqueness follows from Theorem 3.1(2), which will be proved in the next
step, in this step we only prove existence and estimate (3.5). By Lemma 3.2, there exists a
unique adapted continuous process (Xt)t∈[0,t0] such that

(3.10) lim
n→∞

sup
t∈[0,t0]

W2(µ
(n)
t , µt)

2 ≤ lim
n→∞

E sup
t∈[0,t0]

|X(n)(t)−X(t)|2 = 0,

where µt is the distribution of Xt. By (3.6),

X(n)(t) = X(0) +

∫ t

0

b(s,X(n)
s , µ(n−1)

s )ds+

∫ t

0

σ(s,X(n)
s , µ(n−1)

s )dW (s).

Then (3.10), (H1), (H3) and the dominated convergence theorem imply that P-a.s.

X(t) = X(0) +

∫ t

0

b(s,Xs, µs)ds+

∫ t

0

σ(s,Xs, µs)dW (s), t ∈ [0, t0].
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Therefore, (Xt)t∈[0,t0] solves (3.1) up to time t0, and (3.10) implies E sups∈[0,t0] |X(s)|2 <∞.

The same holds for (Xs,t)t∈[s,(s+t0)∧T ] and s ∈ [0, T ]. So, by solving the equation piecewise
in time, and using the arbitrariness of T > 0, we conclude that (3.1) has a strong solution
(Xt)t≥0 with

(3.11) E sup
s∈[0,t]

|X(s)|2 <∞, t ≥ 0.

(2) By Itô’s formula and (H2), we have

d{eκt|X(t)− Y (t)|2} ≤2eκt
〈

X(t)− Y (t), {σ(t, Xt,LXt
)− σ(t, Yt,LYt

)}dW (t)
〉

+eκt
{

β1(t)‖Xt − Yt‖
2
∞ + β2(t)W2(LXt

,LYt
)2
}

dt.

Noting that W2(LXt
,LYt

)2 ≤ E‖Xt − Yt‖
2
∞, we see that γt := sups∈[−r0,t] e

κs+|X(s)− Y (s)|2

satisfies

Eγt ≤E‖X0 − Y0‖
2
∞ + E

∫ t

0

(β1 + β2)(r)e
κr‖Xr − Yr‖

2
∞ds

+ 2E sup
s∈[0,t]

∫ s

0

eκr
〈

X(r)− Y (r), {σ(r,Xr,LXr
)− σ(r, Yr,LYr

)}dW (r)
〉

.

(3.12)

By (H1), the BDG inequality for p = 1 and since W2(LXr
,LYr

)2 ≤ E‖Xr − Yr‖
2
∞, we have

2E sup
s∈[0,t]

∫ s

0

eκr
〈

X(r)− Y (r), {σ(r,Xr,LXr
)− σ(r, Yr,LYr

)}dW (r)
〉

≤ 4E

(
∫ t

0

e2κs|X(s)− Y (s)|2
(

α1(s)‖Xs − Ys‖
2
∞ + αs(s)W2(LXr

,LYr
)2
)

ds

)
1
2

≤ εEγt +
4

ε

∫ t

0

(α1(s) + α2(s))E[e
κs‖Xs − Ys‖

2
∞]ds

≤ εEγt +
4

ε
eκr0

∫ t

0

(α1(s) + α2(s))Eγsds.

Combining this with (3.12) we obtain

Eγt ≤
E‖X0 − Y0‖

2
∞

1− ε
+

eκr0

1− ε

∫ t

0

{4

ε
(α1(s) + α2(s)) + β1(s) + β2(s)

}

Eγsds, t ≥ s.

So, Gronwall’s Lemma implies

Eγt ≤
E‖X0 − Y0‖

2
∞

1− ε
exp

[

eκr0

1− ε

∫ t

0

{4

ε
(α1(s) + α2(s)) + β1(s) + β2(s)

}

ds

]

.

Noting that Eγt ≥ e(t−r0)κE‖Xt − Yt‖
2
∞, this implies

E‖Xt − Yt‖
2
∞ ≤

E‖X0 − Y0‖
2
∞

1− ε
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× exp

[

(r0 − t)κ+
eκr0

1− ε

∫ t

0

{4

ε
(α1(s) + α2(s)) + β1(s) + β2(s)

}

ds

]

.

Since (H2) remains true if κ is replaced by a smaller constant δ, this estimate also holds for
δ ∈ [0, κ] replacing κ. Therefore, the estimate in Theorem 3.1(2) holds.

(3) Let (Xt)t≥0 solve (3.1) with LX0 = µ0, and let (X̃t, W̃ (t)) on (Ω̃, {F̃t}t≥0, P̃) be a
weak solution of (3.1) such that LX0 |P = LX̃0

|
P̃
= µ0, i.e. X̃t solves

(3.13) dX̃(t) = b(t, X̃t,LX̃t
|
P̃
)dt+ σ(t, X̃t,LX̃t

|
P̃
)dW̃ (t), LX̃0

= µ0.

We aim to prove LX |P = LX̃ |P̃. Let µt = LXt
|P and

b̄(t, ξ) = b(t, ξ, µt), σ̄(t, ξ) = σ(t, ξ, µt), t ≥ 0, ξ ∈ C .

By (H1)-(H3), the stochastic functional differential equation

(3.14) dX̄(t) = b̄(t, X̄t)dt + σ̄(t, X̄t)dW̃ (t), X̄0 = X̃0

has a unique solution. According to Yamada–Watanabe, it also satisfies weak uniqueness.
Noting that

dX(t) = b̄(t, Xt)dt+ σ̄(t, Xt)dW (t), LX0 |P = LX̃0
|
P̃
,

the weak uniqueness of (3.14) implies

(3.15) LX̄ |P̃ = LX |P.

So, (3.14) reduces to

dX̄(t) = b(t, X̄t,LX̄t
|
P̃
)dt+ σ(t, X̄t,LX̄t

|
P̃
)dW̃ (t), X̄0 = X̃0.

Since the strong uniqueness of (3.13) is ensured by Step (1), we obtain X̄ = X̃ . Therefore,
(3.15) implies LX̃ |P̃ = LX |P as wanted.

Finally, since C is a Polish space, for any µ0, ν0 ∈ PC
2 , we can take F0-measurable

random variables X0, Y0 such that LX0 = µ0,LY0 = ν0 and W2(µ0, ν0)
2 = E‖X0 − Y0‖

2
∞.

Combining this with W2(P
∗
t µ0, P

∗
t ν0)

2 ≤ E‖Xt − Yt‖
2
∞, we deduce the estimate in Theorem

3.1(3) from that in Theorem 3.1(2).

4 Harnack inequality and applications

To prove Theorem 2.2, we investigate Harnack inequalities of the operator Pt defined by

(4.1) (Ptf)(µ0) =

∫

C

fd(P ∗
t µ0), f ∈ Bb(C ), t ≥ 0, µ0 ∈ P

C

2 .

We will consider the Harnack inequality with a power p > 1 introduced in [16], and the
log-Harnack inequality developed in [12, 19], where classical SDEs on R

d and manifolds are
considered. To establish these inequalities for the present path-distribution dependent SDEs,
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we will adopt coupling by change of measures introduced in [1, 17]. We refer to [18] for a
general theory on this method and applications.

To construct the desired coupling for the segment solution Xt, we need to assume that
σ(t, ξ, µ) = σ(t, ξ(0)); that is, we consider the following simpler version of (3.1):

(4.2) dX(t) = b(t, Xt,LXt
)dt+ σ(t, X(t))dW (t).

Theorem 4.1. Assume (A). Then there exists H1 ∈ C(R+;R+) such that for any µ0, ν0 ∈
PC

2 , F0-measurable random variables X0, Y0 with LX0 = µ0,LY0 = ν0, and f ∈ B
+
b (C ),

(4.3) (PT log f)(ν0) ≤ log(PTf)(µ0) +H1(T )E

(

|X(0)− Y (0)|2

T − r0
+ ‖X0 − Y0‖

2
∞

)

, T > r0.

If moreover (2.7) holds for some increasing κ3 : R+ → R+, then there exists H2 ∈ C(D;R+),
where D is as in Theorem 2.2, such that

(4.4) (PTf)(ν0) ≤ (PTf
p)

1
p (µ0)E

(

e
H2(p,T )

(

1+ |X(0)−Y (0)|2

T−r0
+‖X0−Y0‖2∞

)

)

, T > r0, (p, T ) ∈ D

holds for µ0, ν0 and X0, Y0 as above.

As a consequence of Theorem 4.1, we have the following result, see, for instance, the
proof of [22, Prposition 3.1].

Corollary 4.2. Assume (A) and let T > r0. For any µ0, ν0 ∈ P2, P
∗
Tµ0 and P ∗

Tν0 are

equivalent and the Radon-Nykodim derivative satisfies the entropy estimate

∫

C

(

log
dP ∗

Tν0

dP ∗
Tµ0

)

dP ∗
Tν0 ≤ inf

LX0
=µ0,LY0

=ν0
E

[

H1(T )

(

|X(0)− Y (0)|2

T − r0
+‖X0−Y0‖

2
∞

)]

, T > r0.

If (2.7) holds, then for any T > r0 and p > (1 + κ3(T )λ(T ))
2,

∫

C

(

dP ∗
Tν0

dP ∗
Tµ0

)
1
p

d(P ∗
Tν0) ≤ inf

LX0
=µ0,LY0

=ν0
E

(

e
H2(p,T )

(

1+
|X(0)−Y (0)|2

T−r0
+‖X0−Y0‖2∞

)

)

.

Proof of Theorem 4.1. For µt := P ∗
t µ0 and νt := P ∗

t ν0, we may rewrite (4.2) as

(4.5) dX(t) = b̄(t, Xt)dt + σ(t, X(t))dW̄ (t), LX0 = µ0,

where

b̄(t, ξ) := b(t, ξ, νt), dW̄ (t) := dW (t) + γ̄(t)dt,

γ̄(t) := σ−1(t, X(t))[b(t, Xt, µt)− b(t, Xt, νt)].

By assumption (A) and Theorem 3.1(3), we have

|γ̄(t)| ≤ λ(t)κ2(t)W2(µt, νt) ≤ K(t)W2(µ0, ν0), t ∈ [0, T ](4.6)
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for some increasing function K : R+ → R+. Let

(4.7) R̄t = exp

{

−

∫ t

0

〈γ̄(s), dW (s)〉 −
1

2

∫ t

0

|γ̄(s)|2ds

}

, t ∈ [0, T ].

By Girsanov’s theorem, {W̄ (t)}t∈[0,T ] is a d-dimensional Brownian motion under the proba-
bility measure P̄T := R̄TP.

Next, according to the proof of [18, Theorem 4.3.1] or [22, Theorem 1.1], we can construct
an adapted process γ̃(t) on R

d such that

(a) Under the probability measure P̄T ,

R̃t := exp

{

−

∫ t

0

〈γ̃(s), dW̄ (s)〉 −
1

2

∫ t

0

|γ̃(s)|2ds

}

, t ∈ [0, T ]

is a martingale, such that P̃T := R̃T P̄T = R̃T R̄TP is a probability measure under which

W̃ (t) := W̄ (t) +

∫ t

0

γ̃(s)ds = W (t) +

∫ t

0

(

γ̄(s) + γ̃(s)
)

ds, t ∈ [0, T ]

is a d-dimensional Brownian motion.

(b) Letting Y (t) solve the following stochastic functional differential equation under the
probability measure P̃T with the given initial value Y0:

dY (t) = b̄(t, Yt)dt + σ(t, Y (t))dW̃ (t),(4.8)

we have LY0|P̃
= LY0 = ν0 and XT = YT P̃T -a.s.

(c) There exists C ∈ C(R+;R+) such that

E
P̃T

∫ T

0

|γ̃(s)|2ds ≤ C(T )E
( |X(0)− Y (0)|2

T − r0
+ ‖X0 − Y0‖

2
∞

)

.

By the definition of b̄ we see that (Yt, W̃ (t)) is a weak solution to the equation (4.5) with
initial distribution ν0, so that by the weak uniqueness, LYt

|
P̃T

= νt, t ∈ [0, T ]. Combining
this with (b) we obtain

(PTf)(ν0) = E
P̃T
[f(YT )] = EP̃T

[f(XT )] = E[R̄T R̃Tf(XT )], f ∈ B
+
b (C ).

Letting RT = R̄T R̃T , by Young’s inequality and Hölder’s inequality respectively, we obtain

(4.9) (PT log f)(ν0) ≤ E[RT logRT ] + logE[f(XT )] = E[RT logRT ] + log(PTf)(µ0),

and

(PTf(ν0))
p ≤ (ER

p

p−1

T )p−1(Ef p(XT )) = (ER
p

p−1

T )p−1PTf
p(µ0), p > 1.(4.10)
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We are now ready to prove assertions (1) and (2) as follows.
By (4.6) , (c) and since W2(µ0, ν0)

2 ≤ E‖X0 − Y0‖
2
∞,

E[RT logRT ] ≤
1

2
E
P̃T

∫ T

0

|γ̄(s) + γ̃(s)|2ds

≤ E
P̃T

∫ T

0

|γ̃(s)|2ds+

∫ T

0

|γ̄(s)|2ds

≤ E
P̃T

∫ T

0

|γ̃(s)|2ds+

∫ T

0

λ(t)2κ2(t)
2
W2(µt, νt)

2dt

≤ H1(T )E

(

|X(0)− Y (0)|2

T − r0
+ ‖X0 − Y0‖

2
∞

)

, T > r0

(4.11)

holds for some H1 ∈ C(R+;R+). Combining this with (4.9) we obtain (4.3).
Finally, according to the proof of [22, Theorem 4.1], there exists C ∈ C(D;R+) such that

(EP̄T
R̃

p

p−1

T )
p−1
p ≤ E

(

e
C(p,T )

(

1+
|X(0−Y (0)|2

T−r0
+‖X0−Y0‖2∞

)

)

, T > r0, (p, T ) ∈ D.

For any p > p(T ) := (1 + κ3(T )λ(T ))
2, by applying this estimate for p1 :=

1
2
(p+ (p(T )) and

combining with RT = R̃T R̄T , (4.6), (4.7) and W2(µ0, ν0)
2 ≤ E‖X0 − Y0‖

2
∞, we arrive at

(

ER
p

p−1

T

)
p−1
p

=
(

EP̄T
R̃

p

p−1

T R̄
1

p−1

T

)
p−1
p

≤
(

EP̄T
R̃

p1
p1−1

T

)

p1−1
p1

(

EP̄T
R̄

p1
p−p1
T

)

p−p1
pp1

≤ E

(

e
C(p1,T )

(

1+ |X(0−Y (0)|2

T−r0
+‖X0−Y0‖2∞

)

)(

ER̄
p

p−p1
T

)

p−p1
pp1

≤ E

(

e
H2(p,T )

(

1+
|X(0−Y (0)|2

T−r0
+‖X0−Y0‖2∞

)

)

, T > r0, (p, T ) ∈ D

for some H2 ∈ C(R+;R+). Therefore, (4.4) follows from (4.10).

5 Shift Harnack inequality and integration by parts

formula

To prove Theorem 2.3, we investigate the shift Harnack inequality and integration by parts
formula introduced in [21]. Assume that σ(t, ξ, µ) = σ(t) is invertible. Then the path-
distribution dependent SDE (3.1) becomes

dX(t) = b(t, Xt,LXt
)dt+ σ(t)dW (t), LX0 = µ0.

To apply the existing shift Harnack inequality and integration by parts formula, we let

b̄(t, ξ) := b(t, ξ, µt), µt := LXt
= P ∗

t µ0, t ≥ 0, ξ ∈ C

and rewrite this equation as

dX(t) = b̄(t, Xt)dt+ σ(t)dW (t), LX0 = µ0.

Then the following result follows from [18, Theorem 4.2.3].
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Theorem 5.1. Let σ : [0,∞) → R
d ⊗ R

d and b : [0,∞)× C × PC
2 → R

d satisfy (A), and
assume that for any (t, µ) ∈ R+ × PC

2 , b(t, ·, µ) is differentiable. Then

Λ(T ) := sup
t∈[0,T ]

‖σ(t)−1‖2 <∞, K(T ) := sup
t∈[0,T ],µ∈PC

2

‖∇b(t, ·, µ)‖2∞ <∞, T ≥ 0.

Moreover:

(1) For any p > 1, T > r0, µ0 ∈ PC
2 , η ∈ H

1 and f ∈ B
+
b (C ),

(PTf)
p(µ0) ≤(PTf

p(η + ·))(µ0)

× exp

[pΛ(T ) (1 + T 2K(T ))
(

|η(−r0)|2

T−r0
+ ‖η‖2

H1

)

(p− 1)2

]

, p > 1,

and

(PT log f)(µ0) ≤ log(PTf(η + ·))(µ0) + Λ(T )
(

1 + T 2K(T )
)

(

|η(−r0)|
2

T − r0
+ ‖η‖2

H1

)

.

(2) For any T > r0, let

Φ(t) = 1[0,T−r0](t)
η(−r0)

T − r0
+ 1(T−r0,T ](t)η

′

(t− T ),

Θ(t) =

∫ t+

0

Φ(s)ds, t ∈ [−r0, T ].

Then for any f ∈ C1(C ), η ∈ H
1 and µ0 ∈ PC

2 ,

E(∇ηf)(XT ) = E

[

f(XT )

∫ T

0

〈

σ(t)−1(Φ(t)−∇Θt
b(t, ·, P ∗

t µ0)(Xt)), dW (t)
〉

]

.

As consequence of Theorem 5.1 we have the following result.

Corollary 5.2. In the situation of Theorem 5.1. For any µ0 ∈ PC
2 , η ∈ H

1 and T > r0,

µT := P ∗
Tµ0 satisfies

∫

C

(

log
dµT (·+ η)

dµT

)

dµT (·+ η) ≤ Λ(T )(1 + T 2K(T ))
( |η(−r0)|

2

T − r0
+ ‖η‖2

H1

)

,

∫

C

(dµT (·+ η)

dµT

)
1
p

dµT (·+ η) ≤ exp

[

Λ(T )(1 + T 2K(T ))

(p− 1)2

( |η(−r0)|
2

T − r0
+ ‖η‖2

H1

)

]

, p > 1,

∫

C

∣

∣

∣

d∂ηµT

dµT

∣

∣

∣

2

dµT ≤ Λ(T )
(

1 +K(T )T 2
)

( |η(−r0)|
2

T − r0
+ ‖η‖2

H1

)

.

Proof. The first two estimates follow from Theorem 5.1(1), see [21] or [18, §1.4]. As the last
estimate is not explicitly given in these references, we present a brief proof below. It is easy
to see that

M(T ) :=

∫ T

0

〈

σ(t)−1(Φ(t)−∇Θt
b(t, ·, P ∗

t µ0)(Xt)), dW (t)
〉
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satisfies

EM(T )2 ≤ C(T ) := Λ(T )
(

1 +K(T )T 2
)

( |η(−r0)|
2

T − r0
+ ‖η‖2

H1

)

.

Then, Theorem 5.1(2) implies that

C1(C ) ∋ f 7→ (∂ηµT )(f) :=

(

d

dε

∫

C

fdµT (·+ εη)

)
∣

∣

∣

∣

ε=0

is a densely defined bounded linear functional on L2(µT ) with

∣

∣(∂ηµT )(f)
∣

∣

2
≤ µT (f

2)EM(T )2 ≤ C(T )µT (f
2).

By the Riesz Representation Theorem, it uniquely extends to a bounded linear functional

(∂ηµT )(f) :=

∫

C

fgdµT , f ∈ L2(µT )

for some g ∈ L2(µT ) with µT (g
2) ≤ C(T ). Consequently, µT is differentiable along η with

(∂ηµT )(A) =
∫

A
gdµT , A ∈ B(C ), and ∂ηµT is absolutely continuous with respect to µT such

that
∫

C

(d∂ηµT

dµT

)2

dµT =

∫

C

g2dµT ≤ C(T ).
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