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Abstract

For a contraction C0-semigroup on a separable Hilbert space, the decay rate is es-
timated by using the weak Poincaré inequalities for the symmetric and anti-symmetric
part of the generator. As applications, non-exponential convergence rate is character-
ized for a class of degenerate diffusion processes, so that the study of hypocoercivity is
extended. Concrete examples are presented.
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1 Introduction

Let (E,F , µ) be a probability space and let (E ,D(E )) be the quadratic form associated
with a Markov semigroup Pt on L2(µ). The weak Poincaré inequality

(1.1) Varµ(f) := µ(f 2)− µ(f)2 ≤ α(r)E (f, f) + α(r)‖f‖2osc, r > 0, f ∈ D(E )

with rate function α : (0,∞) → (0,∞) was introduced in [20] to describe the following
convergence rate of Pt to µ:

ξ(t) := sup
‖f‖osc≤1

Varµ(Ptf), t > 0.

∗Supported in part by NNSFC (11431014,11626245,11626250).
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Explicit correspondence between α and ξ has been presented in [20]. In particular, the
weak Poincaré inequality (1.1) is always available for elliptic diffusion processes. However,
it does not hold when the Dirichlet form is reducible. A typical example is the stochastic
Hamiltonian system on R

d × R
d:

(1.2)

{

dXt = Ytdt,

dYt =
√
2 dBt −

(

∇(1)V (Xt) + Yt

)

dt,

where Bt is the Brownian motion on R
d, ∇(1) is the gradient operator in the first component

x ∈ R
d, and V ∈ C2(Rd) satisfies

(1.3) ‖∇2V ‖ ≤ M(1 + |∇V |)

for some constant M > 0 and Z(V ) :=
∫

Rd e
−V (x)dx < ∞. In this case the invariant

probability measure of the diffusion process is µ = µ1×µ2, where µ1(dx) = Z(V )−1e−V (x)dx
and µ2 is the standard Gaussian measure on R

d. Let ∇(2) be the gradient operator in the
second component y ∈ R

d. Then the associated energy form satisfies E (f, f) = µ(|∇(2)f |2),
and is thus reducible.

On the other hand, according to C. Villani [24], if the Poincaré inequality

(1.4) Varµ1(f) := µ1(f
2)− µ1(f)

2 ≤ c1µ1(|∇f |2), f ∈ C1
b (R

d)

holds for some constant c1 > 0, then the Markov semigroup Pt associated with (1.2) converges
exponentially to µ in the sense that

µ
(

|Ptf − µ(f)|2 + |∇Ptf |2
)

≤ c2e
−λtµ

(

|f − µ(f)|2 + |∇f |2
)

, t ≥ 0, f ∈ C1
b (R

d)

holds for some constants c2, λ > 0, where and in the following, µ(f) :=
∫

fdµ for f ∈ L1(µ).
If the gradient estimate |∇Ptf |2 ≤ K(t)Ptf

2 holds for some function K : (0,∞) → (0,∞),
see [15, 26] for concrete estimates, we obtain the L2-exponential convergence

(1.5) Varµ(Ptf) ≤ ce−λtVarµ(f), t ≥ 0, f ∈ L2(µ)

for some constants c, λ > 0, which has been derived in [12] using the idea of [8]. See
e.g. [1, 8, 10, 11, 12, 15, 25, 26] and references within for further results on exponential
convergence and regularity estimates of Pt.

Recently, Hu and Wang [16] prove the sub-exponential convergence by using the weak
Poincaré inequality

(1.6) Varµ1(f) ≤ α(r)µ1(|∇f |2) + r‖f‖2osc, f ∈ C1
b (R

d)

for some decreasing function α : (0,∞) → (0,∞), where ‖f‖osc := essµ sup f − essµ inf f.
According to [16, Theorem 3.6], (1.6) implies

(1.7) µ
(

|Ptf − µ(f)|2 + |∇Ptf |2
)

≤ c1 ξ(t)
(

‖f‖2∞ + µ(|∇f |2)
)

, t ≥ 0, f ∈ C1
b (R

d)
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for some constant c2 > 0 and

ξ(t) := inf
{

s > 0 : t ≥ −α(s) log s
}

, t ≥ 0.

Again, if the gradient estimate |∇Ptf |2 ≤ K(t)Ptf
2 holds then this implies

(1.8) Varµ(Ptf) ≤ c1 ξ(t)‖f‖2osc, t ≥ 0, f ∈ L∞(µ)

for some constant c1 > 0. In particular, if α is bounded so that (1.6) reduces to (1.4) with
c1 = ‖α‖∞, we obtain the exponential convergence as in the previous case.

In this paper we aim to introduce weak Poincaré inequalities to estimate the convergence
rate for more general degenerate diffusion semigroups where µ2 is not necessarily a Gaussian
measure. Consider the following degenerate SDE for (Xt, Yt) on R

d1+d2 = R
d1 × R

d2 , where
d1, d2 ≥ 1 may be different:

(1.9)

{

dXt = Q(∇(2)V2)(Yt)dt,

dYt =
√
2 dBt −

(

Q∗(∇(1)V1)(Xt) + (∇(2)V2)(Yt)
)

dt,

where Q is a d1 × d2-matrix, Vi ∈ C2(Rdi) such that Z(Vi) < ∞, i = 1, 2, and ∇(1),∇(2)

are the gradient operators in components x ∈ R
d1 and y ∈ R

d2 respectively. It is easy to
see that the generator of solutions to (1.9) is dissipative in L2(µ), where µ := µ1 × µ2 for
probability measures µi(dx) := Z(Vi)

−1e−Vi(x)dx on R
di , i = 1, 2; see the beginning of Section

3 for details.
Since the coefficients of the SDE (1.9) are locally Lipschitz continuous, for any initial

point z = (x, y) ∈ R
d1+d2 , the SDE has a unique solution (Xz

t , Y
z
t ) up to life time ζz. Let Pt

be the associated (sub-) Markov semigroup, i.e.

Ptf(z) = E
[

f(Xz
t , Y

z
t )1{t<ζz}

]

, f ∈ Bb(R
d1+d2), z ∈ R

d1+d2 , t ≥ 0.

To ensure the non-explosion of the solution and the convergence of the L2-Markov semi-
group Pt to µ, we make the following assumption.

(H) QQ∗ is invertible, there exists a constant M > 0 such that

(1.10) |(∇(i))2Vi| ≤ M(1 + |∇(i)Vi|τi), i = 1, 2,

for τ1 = 1 and some 1 ≤ τ2 < 2. Moreover, µ2(|∇(2)V2|4) < ∞ and V2(y) = Φ(|σy−b|2)
for some invertible d2 × d2-matrix σ, b ∈ R

d2 and increasing function Φ ∈ C3([0,∞))
such that

(1.11) sup
r≥0

∣

∣

∣
Φ′(r) + 2rΦ′′(r)− 2rΦ′′′(r) + (d2 + 2)Φ′′(r)

Φ′(r)

∣

∣

∣
< ∞.

According to [20, Theorem 3.1], there exist two decreasing functions α1, α2 : (0,∞) →
[1,∞) such that the weak Poincaré inequality

(1.12) Varµi
(f) ≤ αi(r)µi(|∇(i)f |2) + r‖f‖2osc, f ∈ C1

b (R
di), r > 0,

holds for i = 1, 2. We have the following result on the convergence rate of Pt to µ.
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Theorem 1.1. Let V1 and V2 satisfy (H). Then the solution to (1.9) is non-explosive and µ

is an invariant probability measure of the associated Markov semigroup Pt. Moreover, there
exist constants c1, c2 > 0 such that (1.8) holds for

(1.13) ξ(t) := c1 inf
{

r > 0 : c2t ≥ α1(r)
2α2

( r

α1(r)2

)

log
1

r

}

,

which goes to 0 as t → ∞.

Remark 1.1. (1) When V2(y) =
1
2
|y|2 the measure µ2 reduces to the standard Gaussian

measure as in [16]. In this case, we may repeat the argument in the proof of [16, Theorem
3.6] to prove (1.7) for

(1.14) ξ(t) = inf
{

r > 0 : c2t ≥ α1(r) log
1

r

}

, t > 0,

and thus extend the main result in [16] to the case that d1 6= d2. Since in this case we have
α2 ≡ 1, the convergence rate in Theorem 1.1 becomes

ξ(t) = inf
{

r > 0 : c2t ≥ α1(r)
2 log

1

r

}

, t > 0,

which is in general worse than that in (1.14). However, the argument in [16] heavily depends
on the specific V2(y) = 1

2
|y|2 (or by linear change of variables V2(y) = |σy − b|2 for some

invertible d2 × d2-matrix σ and b ∈ R
d2), and is hard to extend to a general setting as in

(H). Nevertheless, we would hope to improve the convergence rate in Theorem 1.1 such that
(1.14) is covered for bounded α2.

(2) Theorem 1.1 also applies to the following SDE for (Xt, Ȳt) on R
d1+d2 for some invertible

d2 × d2-matrix σ and invertible d1 × d1-matrix Q̄Q̄∗:

(1.15)

{

dXt = Q̄(∇(2)V2)(Ȳt)dt,

dȲt =
√
2σdBt −

(

Q̄∗(∇(1)V1)(Xt) + σσ∗(∇(2)V2)(Ȳt)
)

dt.

Indeed, let (Xt, Yt) solve (1.9) and let Ȳt = σYt, V̄2(y) = V2(σ
−1y). We have

(∇(2)V̄2)(y) = (σ−1)∗(∇(2)V2)(σ
−1y), y ∈ R

d2 ,

so that
dXt = Q(∇(2)V2)(Yt)dt = Qσ∗(∇(2)V̄2)(Ȳt),

and
dȲt =

√
2σdBt −

(

σQ∗(∇(1)V1)(Xt) + σσ∗(∇(2)V̄2)(Ȳt)
)

dt.

Letting Q̄ = Qσ∗, we see that the SDE (1.9) is equivalent to (1.15).

To illustrate Theorem 1.1, we consider the following example with some concrete conver-
gence rates of Pt.
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Example 1.1. We write f ∼ g for real functions f and g on R
d if f − g ∈ C2

b (R
d).

(A) Let V1(x) ∼ k(1 + |x|2) δ
2 for some constants k, δ > 0.

(A1) When V2(y) = κ(1 + |y|2) ε
2 for some constants κ, ε > 0, (1.8) holds with

ξ(t) = c1 exp
(

− c2t
εδ

εδ+8ε(1−δ)++4δ(1−ε)+

)

, t ≥ 0,

for some constants c1, c2 > 0. If, in particular, δ, ε ≥ 1 then Pt converges to µ expo-
nentially fast.

(A2) When V2(y) =
d+p
2

log(1 + |y|2) for some constant p > 0, (1.8) holds with

ξ(t) = c(1 + t)−
1

θ(p)
(

log(e + t)
)

8(θ(p)+1)(1−δ)++δ

θ(p)δ

for some constant c > 0 and

θ(p) :=
d+ p+ 2

p
∧ 4p+ 4 + 2d

(p2 − 4− 2d− 2p)+
.

(A3) When V2(y) =
d
2
log(1 + |y|2) + p log log(e + |y|2) for some constants p > 1, (1.8) holds

with

ξ(t) = c1
(

log(e + t)
)1−p ·

(

log log(e2 + t)
)

8(1−δ)+

δ

for some constants c > 0.

(B) Let V1(x) ∼ d+q
2

log(1 + |x|2) for some q > 0.

(B1) When V2(y) = k(1 + |y|2) ε
2 for some constants k, ε > 0, (1.8) holds with

ξ(t) = c(1 + t)−
1

2θ(q)
(

log(e + t)
)

4(1−ε)++ε

2εθ(q)

for some constant c > 0.

(B2) When V2(y) =
p+d
2

log(1 + |y|2) for some constant p > 0, (1.8) holds with

ξ(t) = c(1 + t)−
1

2θ(q)+θ(p)+2θ(p)θ(q)
(

log(e + t)
)

1
2θ(q)+θ(p)+2θ(p)θ(q)

for some constant c > 0.

(B3) When V2(y) =
d
2
log(1 + |y|2) + p log log(e + |y|2) for some constant p > 1, (1.8) holds

with

ξ(t) = c
(

log(e + t)
)− p−1

1+2θ(q)

for some constant c > 0.
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(C) Let V1(x) ∼ d
2
log(1 + |x|2) + q log log(e + |x|2) for some q > 0.

(C1) When V2(y) = k(1 + |y|2) ε
2 for some constant k > 0 and ε > 0, or

V2(y) =
p+d
2

log(1 + |y|2) for some constant p > 0, (1.8) holds with

ξ(t) = c
(

log(e + t)
)−(q−1)

for some constant c > 0.

(C2) When V2(y) =
d
2
log(1 + |y|2) + p log log(e + |y|2) for some constant p > 1, (1.8) holds

with
ξ(t) = c

(

log log(e2 + t)
)−(q−1)

for some constant c > 0.

In the next section we present a general result on the weak hypocoercivity for C0-
semigroups on Hilbert spaces, which is then used in Section 3 to prove Theorem 1.1 and
Example 1.1.

2 A general framework

Let (H, 〈·, ·〉, ‖ · ‖) be a separable Hilbert space, let (L,D(L)) be a densely defined linear
operator generating a C0- contraction semigroup Pt = etL. We aim to investigate the decay
rate of Pt of type

(2.1) ‖Ptf‖2 ≤ ξ(t)
(

‖f‖2 +Ψ(f)
)

, t ≥ 0, f ∈ D(L),

where ξ is a decreasing function with ξ(∞) := limt→∞ ξ(t) = 0, and Ψ : H → [0,∞] is a
functional such that the set {f ∈ H : Ψ(f) < ∞} is dense in H.

2.1 Main result

Following the line of e.g. [8, 12], we assume that L decomposes into symmetric and anti-
symmetric part:

L = S − A on D ,

where D is a core of (L,D(L)), S is symmetric and A is antisymmetric. Then both (S,D) and
(A,D) are closable in H. Let (S,D(S)) and (A,D(A)) be their closures. These two operators
are linked to the orthogonal decomposition H = H1⊕H2 in the following assumptions, where

πi : H → Hi, i = 1, 2,

are the orthogonal projections.

(H1) H1 ⊂ N (S) := {f ∈ D(S) : Sf = 0}; that is, H1 ⊂ D(S) (hence, π2D ⊂ D(S) due to
D ⊂ D(S)) and Sπ1 = 0.
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(H2) π1D ⊂ D(A) (hence, also π2D ⊂ D(A) due to D ⊂ D(A)) and π1Aπ1|D = 0.

Since (A,D(A)) is closed, antisymmetric and π1D ⊂ D(A), (π1A,D(A)) is closable.
Denote the closure by (π1A,D(π1A)). By (H2), Aπ1 is well defined on D , and by the
antisymmetry of A,

(Aπ1)
∗ = π1A

∗ = −π1A holds on D .

Then Aπ1 with domain D(Aπ1) := {f ∈ H : π1f ∈ D(A)} is a densely defined closed
operator with adjoint (−π1A,D(π1A)). By von Neumann’s theorem, see e.g. [18, Theorem
5.1.9], the operators G := (Aπ1)

∗Aπ1 and I + (Aπ1)
∗Aπ1 with domain

D(G) := D((Aπ1)
∗(Aπ1)) =

{

f ∈ D(Aπ1) : Aπ1f ∈ D((Aπ1)
∗)
}

are are self-adjoint. Furthermore, the latter one is injective and surjective (with range
equal to H) and admits a bounded linear inverse. We define the operator B with domain
D(B) = D((Aπ1)

∗) via

B := (I + (Aπ1)
∗Aπ1)

−1(Aπ1)
∗.(2.2)

Then B∗ = Aπ1(I + (Aπ1)
∗Aπ1)

−1 defined on D(B∗) = H is closed and bounded. Con-
sequently, (B,D((Aπ1)

∗)) is also bounded and has a unique extension to a bounded linear
operator (B,H). By e.g. [18, Theorem 5.1.9], we have

B = (Aπ1)
∗(I + Aπ1(Aπ1)

∗)−1.

Consequently, ‖B‖ ≤ 1 and π1B = B.
We shall need the following two more assumptions.

(H3) We assume D ⊂ D(G). Furthermore, there exists a constant N ≥ 1 such that

〈

BSπ2f, π1f
〉

≤ N

2
‖π1f‖ · ‖π2f‖, −

〈

BAπ2f, π1f
〉

≤ N

2
‖π1f‖ · ‖π2f‖, f ∈ D .

(H4) For any f ∈ D(L) there exists a sequence {fn}n≥1 ⊂ D such that fn → f in H and

lim sup
n→∞

〈−Lfn, fn〉 ≤ 〈−Lf, f〉, lim sup
n→∞

Ψ(fn) ≤ Ψ(f).

Theorem 2.1. Assume (H1)-(H4) and let Ψ satisfy

(2.3) Ψ(Ptf) ≤ Ψ(f), Ψ(e−tGf) ≤ Ψ(f), Ψ(π1f) ≤ Ψ(f), f ∈ H.

If the weak Poincaré inequalities

(2.4) ‖π1f‖2 ≤ α1(r)‖Aπ1f‖2 + rΨ(π1f), r > 0, f ∈ D(Aπ1),

and

(2.5) ‖π2f‖2 ≤ α2(r)〈−Sf, f〉+ rΨ(f), r > 0, f ∈ D

hold for some decreasing functions αi : (0,∞) → [1,∞), i = 1, 2, then there exist constants
c1, c2 > 0 such that (2.1) holds for

(2.6) ξ(t) := c1 inf
{

r > 0 : c2t ≥ α1(r)
2α2

( r

α1(r)2

)

log
1

r

}

,

which goes to 0 as t → ∞.
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2.2 Preparations

Lemma 2.2. Under (H1)-(H3), we have

(2.7) ‖Bf‖ ≤ 1

2
‖π2f‖, f ∈ H,

(2.8) ‖ABf‖ ≤ ‖π2f‖, f ∈ D ,

(2.9) |〈Bf, Lf〉| ≤ ‖π2f‖ · ‖f‖, f ∈ D(L),

(2.10) 〈BLf, f〉 ≤ N‖π1f‖ · ‖π2f‖ −
〈

(1 +G)−1Gπ1f, π1f
〉

, f ∈ D(L).

Proof. Let f ∈ D and g = Bf. By (2.2), π1A
∗π1f = −π1Aπ1f = 0 and π2f ∈ D(A) (see

(H2)), we have

‖g‖2 + ‖Aπ1g‖2 = 〈g + (Aπ1)
∗Aπ1g, g〉 = 〈(Aπ1)

∗f, g〉
= 〈(Aπ1)

∗π2f, g〉 = 〈π2f, Aπ1g〉 ≤ ‖π2f‖ · ‖Aπ1g‖.
(2.11)

Combining this with

‖π2f‖ · ‖Aπ1g‖ ≤ 1

4
‖π2f‖2 + ‖Aπ1g‖2,

we obtain (2.7) for f ∈ D , and hence for all f ∈ H since D is dense in H and the operators
B, π2 are bounded.

Next, combining (2.11) with π1B = B and

‖π2f‖ · ‖Aπ1g‖ ≤ 1

2
‖π2f‖2 +

1

2
‖Aπ1g‖2,

we obtain
‖ABf‖2 = ‖Aπ1Bf‖2 = ‖Aπ1g‖2 ≤ ‖π2f‖2, f ∈ D ,

which is equivalent to (2.8).
Moreover, by the symmetry of S, antisymmetry of A, Sπ1 = 0, and B = π1B, we obtain

from (2.8) that for any f ∈ D ,

|〈Bf, Lf〉| = |〈Bf,−Af〉| = |〈ABf, f〉| ≤ ‖π2f‖ · ‖f‖.

Since D is dense in D(L) and B is bounded, this implies (2.9).
Finally, by π1B = B, Sπ1 = 0, the definition of B and (H3), for f ∈ D we have

〈BLf, f〉 = 〈BLf, π1f〉 = 〈BSf, π1f〉 − 〈BAf, π1f〉
= 〈BSπ2f, π1f〉

−〈BAπ1f, π1f〉 − 〈BAπ2f, π1f〉
≤ N‖π1f‖ · ‖π2f‖ −

〈

(1 +G)−1Gπ1f, π1f
〉

.

By the boundedness of (1 +G)−1G and that D is dense in D(L), this implies (2.10).
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Next, we need the following result on weak Poincaré inequality for subordinated opera-
tors. Let ν be a Lévy measure on [0,∞) such that

∫∞

0
(r ∧ 1)ν(dr) < ∞, then

φν(s) :=

∫ ∞

0

(

1− e−sr
)

ν(dr), s ≥ 0

is a Bernstein function. Let (S0,D(S0)) be a non-negative definite self-adjoint operator. We
intend to establish the weak Poincaré inequality for the form 〈φν(S0)f, f〉 in terms of that
for 〈S0f, f〉. The Nash type and super Poincaré inequalities have already been investigated
in [2, 21]. Recently, sub-exponential decay for subordinated semigroups was studied in [6],
where φν is assumed to satisfy

lim inf
s→∞

φν(s)

log s
> 0.

However, this condition excludes φν(s) :=
s

1+s
which is indeed what we need in the proof of

Theorem 2.1.

Lemma 2.3. Let (A0,D(A0)) be a densely defined closed linear operator on a separable
Hilbert space H0. Let P 0

t be the C0-contraction semigroup generated by the self-adjoint op-
erator −A∗

0A0 with domain D(A∗
0A0) := {f ∈ D(A0) : A0f ∈ D(A∗

0)}. If the weak Poincaré
inequality

(2.12) ‖f‖2 ≤ α(r)‖A0f‖2 + rΨ0(f), r > 0, f ∈ D(A0)

holds for some decreasing α : (0,∞) → (0,∞), where Ψ0 : H0 → [0,∞] satisfies

(2.13) Ψ0(P
0
t f) ≤ Ψ0(f), t ≥ 0, f ∈ D(A0),

then

‖f‖2 ≤
(
∫ ∞

0

(

1− e−
s

α(r)
)

ν(ds)

)−1
∥

∥(φν(A
∗
0A0))

1/2f
∥

∥

2
+ rΨ(f), r > 0, f ∈ D(A0).

In particular, for ν(ds) = e−sds such that φν(s) =
s

1+s
, we have

‖f‖2 ≤
(

1 + α(r)
)〈

(1 + A∗
0A0)

−1A∗
0A0f, f

〉

+ rΨ(f), r > 0, f ∈ D(A0).

Proof. Since D((A∗
0A0)

1/2) = D(A0), we have D({φν(A
∗
0A0)}1/2) ⊃ D(A0). By (2.12) and

(2.13), for any f ∈ D(A0),

d

dt
‖P 0

t f‖2 = −2‖A0P
0
t f‖2 ≤ − 2

α(r)
‖P 0

t f‖2 +
2r

α(r)
Ψ(f), t ≥ 0, r > 0,

because P 0
t leaves D(A0) invariant. Then Gronwall’s lemma gives

(2.14) ‖P 0
t f‖2 ≤ e−

2t
α(r)‖f‖2 + rΨ(f)(1− e−

2t
α(r) ), r > 0, t ≥ 0.

Therefore,

∥

∥

∥

(

φν(A
∗
0A0)

)1/2
f
∥

∥

∥

2

=

∫ ∞

0

〈f − P 0
s f, f〉ν(ds) =

∫ ∞

0

(

‖f‖2 − ‖P 0
s/2f‖2

)

ν(ds)
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≥
∫ ∞

0

(

‖f‖2 − e−
s

α(r)‖f‖2 − rΨ(f)(1− e−
s

α(r) )
)

ν(ds)

=
(

‖f‖2 − rΨ(r)
)

∫ ∞

0

(

1− e−
s

α(r)
)

ν(ds), r > 0.

This implies the desired inequality.

In the proof of Theorem 1.1 (see Section 3 below), to verify (H3) we check the following
two inequalities:

〈

BSπ2f, π1f
〉

≤ N‖π1f‖ · ‖π2f‖,
〈

BAπ2f, π1f
〉

≤ N‖π1f‖ · ‖π2f‖, f ∈ D .
(2.15)

The first inequality is easy to check there, see Section 3, the first part in the proof of (H3).
To verify the second, we present below a sufficient condition provided in [12, Prop. 2.15].

Proposition 2.4. Assume that (−G,D) is essentially m-dissipative (equivalently, essentially
self-adjoint). If there exists constant N ∈ (0,∞) such that

(2.16) ‖(BA)∗g‖ ≤ N ‖g‖ for all g = (I +G)f, f ∈ D ,

then
∣

∣

〈

BAπ2f, π1f
〉
∣

∣ ≤ N‖π1f‖ · ‖π2f‖, f ∈ D .

2.3 Proof of Theorem 2.1

Proof. For any ε ∈ [0, 1), let

Iε(f) =
1

2
‖f‖2 + ε〈Bf, f〉, f ∈ H.

By (2.7), we have

(2.17)
1− ε

2
‖f‖2 ≤ Iε(f) ≤

1 + ε

2
‖f‖2, f ∈ H.

Now, let f ∈ D and ft = Ptf for t ≥ 0. We have

(2.18)
d

dt
Iε(ft) = 〈Lft, ft〉+ ε〈BLft, ft〉+ ε〈Bft, Lft〉.

By (2.5) and 〈−Lg, g〉 = 〈−Sg, g〉 for g ∈ D , we obtain

〈Lg, g〉 ≤ −‖π2g‖2
α2(r2)

+
r2Ψ(g)

α2(r2)
, g ∈ D , r2 > 0.

Since ft ∈ D(L), combining this with (H4) and (2.3), we arrive at

(2.19) 〈Lft, ft〉 ≤ −‖π2ft‖2
α2(r2)

+
r2Ψ(ft)

α2(r2)
≤ −‖π2ft‖2

α2(r2)
+

r2Ψ(f)

α2(r2)
, t, r2 > 0.
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Next, applying Lemma 2.3 with H0 = H1, A0 = ((Aπ1)
∗(Aπ1))

1/2|H1 and Ψ0 = Ψ|H1 such
that condition (2.13) follows from (2.3), we see that (2.4) implies

−
〈

(I + (Aπ1)
∗(Aπ1))

−1(Aπ1)
∗Aπ1f, π1f

〉

≤ − ‖π1f‖2
α1(r1) + 1

+
r1Ψ(π1f)

α1(r1) + 1
, r > 0, f ∈ D(Aπ1).

Since the operator (I + (Aπ1)
∗(Aπ1))

−1(Aπ1)
∗Aπ1 is bounded, D(Aπ1) ⊃ D due to (H2),

and by (H4) for any g ∈ D(L) we may find a sequence gn ∈ D such that gn → g in H and
lim supn→∞Ψ(gn) ≤ Ψ(g), this inequality holds for all g ∈ D(L). Combining this with (2.10)
and (2.3), we obtain

〈BLft, ft〉 ≤ N‖π1ft‖ · ‖π2ft‖ −
〈

(I + (Aπ1)
∗(Aπ1))

−1(Aπ1)
∗Aπ1ft, π1ft

〉

≤ N‖π1ft‖ · ‖π2ft‖ −
‖π1ft‖2

α1(r1) + 1
+

r1Ψ(f)

α1(r1) + 1
, t, r1 > 0.

(2.20)

Substituting (2.9), (2.19) and (2.20) into (2.18), we arrive at

d

dt
Iε(ft) ≤−

(‖π2ft‖2
α2(r2)

+
ε‖π1ft‖2
α1(r1) + 1

)

+ ε
(

N‖π1ft‖ · ‖π2ft‖+ ‖π2ft‖ · ‖ft‖
)

+Ψ(f)
( r2

α2(r2)
+

εr1

α1(r1) + 1

)

, t ≥ 0, f ∈ D .

Combining this with

εN‖π1ft‖ · ‖π2ft‖ ≤ ε‖π1ft‖2
2(α1(r1) + 1)

+
εN2(α1(r1) + 1)‖π2ft‖2

2
,

ε‖π2ft‖ · ‖ft‖ ≤ ‖π2ft‖2
2α2(r2)

+
ε2α2(r2)‖ft‖2

2
,

we obtain

d

dt
Iε(ft) ≤ −

( 1

2α2(r2)
− εN2(α1(r1) + 1)

2

)

‖π2ft‖2 −
ε‖π1ft‖2

2(α1(r1) + 1)

+
ε2α2(r2)‖ft‖2

2
+ Ψ(f)

( r2

α2(r2)
+

εr1

α1(r1) + 1

)

, t ≥ 0, f ∈ D .

(2.21)

Taking

(2.22) ε =
1

2N2(α1(r1) + 1)α2(r2)
≤ 1

2

since N,α2 ≥ 1, we have

1

2α2(r2)
− εN2(α1(r1) + 1)

2
≥ 1

4α2(r2)
,

1

4α2(r2)
∧ ε

2(α1(r1) + 1)
≥ ε2α2(r2).
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Then (2.21) implies

d

dt
Iε(ft) ≤ − ‖ft‖2

8N4α2(r2)(α1(r1) + 1)2
+Ψ(f)

( r2

α2(r2)
+

r1

2N2α2(r2)(α1(r1) + 1)2

)

.

Since ε ≤ 1
2
, by (2.17) we have ‖ft‖2 ≥ 4

3
Iε(ft), so that

d

dt
Iε(ft) ≤ − Iε(ft)

6N4α2(r2)(α1(r1) + 1)2
+Ψ(f)

( r2

α2(r2)
+

r1

2N2α2(r2)(α1(r1) + 1)2

)

.

By Gronwall’s lemma and (2.22), we arrive at

Iε(ft) ≤ exp
[

− t

6N4α2(r2)(α1(r1) + 1)2

]

Iε(f) + Ψ(f)
(

3N2r1 + 6N4r2(α1(r1) + 1)2
)

.

Taking r1 = r, r2 =
r

α1(r)2
, using (2.17) for ε ∈ (0, 1

2
) and that α1(r) ≥ 1, obtain

‖ft‖2 ≤ c1 exp
[

− c2t

α1(r)2α2(
r

α1(r)2
)

]

‖f‖2 + c1rΨ(f), r > 0, f ∈ D , t ≥ 0.

Consequently, for any r > 0 such that c2t ≥ α1(r)
2α2(

r
α1(r)2

) log 1
r
, we have

‖ft‖2 ≤ c1r
(

‖f‖2 +Ψ(f)
)

.

Therefore, (2.1) with ξ(t) in (2.6) holds for f ∈ D . By (H4), it holds for all f ∈ D(L). Then
the proof is finished.

3 Proof of Theorem 1.1

We first embed Pt in the framework of Section 2. By shifting the second variable y, in (H) we
may and do take b = 0, i.e. V2(y) = Φ(|σy|2), for some invertible d2× d2-matrix σ. Since we
may move σ from the potential V2 to the symmetric part of the generator L corresponding
to the solution of (1.9) and the matrix Q as described in Remark 1.1(2), we only have to
consider the case V2(y) = Φ(|y|2). Thus

(3.1) ∇(2)V2(y) = 2Φ′(|y|2) y.

Let

(3.2) µ = µ1 × µ2, where µi(dxi) := Z(Vi)
−1e−Vi(xi)dxi on R

d1 , i = 1, 2.

By Itô’s formula, the generator L for the solution to (1.9) has the decomposition

L = S −A,

where

S :=∆(2) − 〈(∇(2)V2),∇(2) ·
〉

=

d2
∑

i=1

(

∂2
yi
− (∂yiV2)∂yi

)

,
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A :=
〈

Q∗(∇(1)V1),∇(2) ·
〉

−
〈

Q(∇(2)V2),∇(1) ·
〉

=

d1
∑

i=1

d2
∑

j=1

Qij

(

(∂xi
V1)∂yj − (∂yjV2)∂xi

)

.

Since above we moved σ from the potential V2 to the symmetric part of L and to the matrix
Q, instead of S and Q we should consider

d2
∑

i,j=1

(σσ∗)ij
(

∂yi∂yj − (∂yiV2)∂yj
)

and Qσ∗,

respectively. But, because σσ∗ is a constant, symmetric, invertible matrix, without loss of
generality we may take σ equal to the identity matrix. The considerations below easily
generalize to general σ, but are easier to follow for σ being the identity matrix.

Let ∇ = (∇(1),∇(2)) be the gradient operator on R
d1+d2 , and denote

C∞
c (Rd1+d2) =

{

f ∈ C∞(Rd1+d2) : ∇f has compact support
}

.

The integration by parts formula implies that (S, C∞
c (Rd1+d2)) is symmetric and non-positive

definite in L2(µ) while (A,C∞
c (Rd1+d2)) is antisymmetric in L2(µ). Consequently, L∗ :=

L+ 2A = S + A satisfies

µ(fLg) = µ(gL∗f), f, g ∈ C∞
c (Rd1+d2).

Therefore, (L,C∞
c (Rd1+d2) is dissipative and, in particular, closable in L2(µ). Let (L,D(L))

denote the closure. Then the first assertion of Theorem 1.1 is implied by the following
proposition.

Proposition 3.1. Under assumption (H), the operator (L,C∞
c (Rd1+d2)) is essentially m-

dissipative in L2(µ), and the C0-contraction semigroup Tt generated by the closure coincides
with Pt in L2(µ). Consequently, the solution to (1.9) is non-explosive and µ is an invariant
probability measure of Pt.

Proof. In [17, Theorem 3.10] under even weaker assumptions as in (H), essential m-dissipati-
vity of (L,C∞

c (Rd1+d2)) in L2(µ) is shown. In the proof condition (1.10) for i = 2 is used.
Hence the closure (L,D(L)) generates a C0-contraction semigroup Tt. Then µ(Lf) = 0 for
f ∈ D(L) implies that

∂tµ(Ttf) = µ(LTtf) = 0, t ≥ 0, f ∈ D(L),

so that µ is an invariant probability measure of Tt. On the other hand, according to [3,
Theorem 1.1 and Proposition 1.4] (see also [5, Theorem 3.17 and Remark 3.18]), for µ-
a.e. starting point z = (x, y) ∈ R

d1+d2 there is a law P
z on the space of R

d1+d2-valued
continuous functions such that (Xt, Yt)t≥0 is a weak solution to (1.9) and for any distribution
ν(dz) = ρ(z)µ(dz) with a probability density ρ,

µ(ρTtf) =

∫

Rd1+d2

E
z
[

f(Xt, Yt)] ν(dz), t ≥ 0, f ∈ Bb(R
d1+d2).
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By the uniqueness of the SDE (1.9), we have for µ-a.e. z ∈ R
d1+d2 :

Ptf(x, y) = E
z
[

f(Xt, Yt)], t ≥ 0, f ∈ Bb(R
d1+d2).

Therefore, µ(ρPtf) = µ(ρTtf) holds for any ρ ∈ L1(µ), t ≥ 0 and f ∈ Bb(R
d1+d2), and

hence, Pt is a µ-version of Tt. Consequently, µ is an invariant probability measure of Pt.
Since Pt1 ≤ 1, this implies that Pt1 = 1, µ-a.e. Since the coefficients of the SDE is at least
C1-smooth, the semigroup Pt is Feller so that Pt1 is continuous. Therefore, Pt1(z) = 1 holds
for all z ∈ R

d1+d2 , i.e. the solution to (1.9) is non-explosive.

Now, to prove the second assertion in Theorem 1.1 using Theorem 2.1, we take

H = {f ∈ L2(µ) : µ(f) = 0}, H1 = {f ∈ H : f(x, y) does not depend on y}.

Then

(3.3) (π1f)(x, y) = π1f(x) :=

∫

Rd2

f(x, y)µ2(dy), f ∈ H.

Let
D = H ∩ C∞

c (Rd1+d2) =
{

f ∈ C∞
c (Rd1+d2) : µ(f) = 0

}

.

Let (L,D(L)), (S,D(S)) and (A,D(A)) be the closures in H of (L,D), (S,D) and (A,D)
respectively. Since the closure of (L,C∞

c (Rd1+d2)) in L2(µ) generates a strongly continuous
contraction semigroup, see Proposition 3.1, we have L2(µ) = R(L)⊕N (L), see [14, Theorem
8.20]. Hence, because the constant functions are in N (L), the operator (L,D) is essentially
m-dissipative in H.

We verify assumptions (H1)-(H4) as follows.

Proof of (H1): Let f ∈ H. Then π1f ∈ L2(µ1) with µ1(π1f) = 0. Let {gn}n≥0 ⊂
C∞

c (Rd1) such that µ1(gn) = 0 and µ1(|gn − π1f |2) → 0. Let g̃n(x, y) = gn(x). Then g̃n ∈ D ,
µ(|g̃n − π1f |2) = µ1(|gn − π1f |2) → 0 and

lim
n,m→∞

µ(|g̃n − g̃m|2 + |Sg̃n − Sg̃m|2) = lim
n,m→∞

µ(|g̃n − g̃m|2) = 0.

Thus, {g̃n}n≥1 is a Cauchy sequence in D(S) with Sgn = 0, and converges to π1f in L2(µ).
Therefore, π1f ∈ D(S) and Sπ1f = 0 since the operator is closed.

Proof of (H2): For any f ∈ D , we have π1f ∈ D depending only on the first component.
So, π1D ⊂ D ⊂ D(A). Since (π1f)(x, y) = π1f(x) only depends on x, by the definitions of
A and π1, we have

−(π1Aπ1)f(x, y) =

∫

Rd2

〈Q∇(2)V2(y
′),∇(1)π1f(x)〉µ2(dy

′) = 〈µ2(Q∇(2)V2),∇(1)π1f(x)〉 = 0,

where the last step is due to V2(y) = Φ(|y|2) and |∇V2| ∈ L1(µ2) according to (H). Then
(H2) holds.
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Proof of (H3): It suffices to prove (2.15). For the first inequality, we only need to find
out a bounded measurable function K such that

(3.4) SAπ1f = KAπ1f, f ∈ D ,

since this implies

BS = (I + (Aπ1)
∗Aπ1)

−1(Aπ1)
∗S = (I + (Aπ1)

∗Aπ1)
−1(SAπ1)

∗

= (I + (Aπ1)
∗Aπ1)

−1(KAπ1)
∗ = BK,

so that by ‖B‖ ≤ 1 we have

|〈BSπ2f, π1f〉| = |〈BKπ2f, π1f〉| ≤ ‖K‖∞‖π2f‖ · ‖π1f‖.

Now for any f ∈ D , (3.1) implies

(SAπ1f)(x, y) = S〈Q∇(2)V2,∇(1)π1f〉(x, y)

= (∆(2) − 〈∇(2)V2,∇(2)·〉)
d1
∑

i=1

(

2Φ′(|y|2)(Qy)i∂xi
π1f(x)

)

= 2

d1
∑

i=1

(

Φ′′(|y|2)(2d2 − 4Φ′(|y|2)|y|2 + 4)− 2Φ′(|y|2)2 + 4Φ′′′(|y|2)|y|2
)

(Qy)i∂xi
π1f(x)

= 2H(|y|2)〈Q∇(2)V2(y),∇(1)π1f(x)〉 = 2H(|y|2)(Aπ1f)(x, y),

where

H(r) :=
2rΦ′′′(r) + (d2 + 2)Φ′′(r)

Φ′(r)
− Φ′(r)− 2rΦ′′(r), r > 0,

is bounded according to (H). Then (3.4) holds for some bounded function K.
To prove the second inequality in (2.15), we consider the operator G := −π1A

2π1 =
(Aπ1)

∗Aπ1 on D . By the definitions of A and π1, we have

(Gf)(x, y) = (Gf)(x) =

∫

Rd2

−Hessπ1f

(

Q∇(2)V2(y
′), Q∇(2)V2(y

′)
)

(x)

HessV2

(

Q∗∇(1)V1(x), Q
∗∇(1)π1f(x)

)

(y′)µ2(dy
′).

(3.5)

Then (3.1) implies

∫

Rd2

Hessπ1f

(

Q∇(2)V2(y), Q∇(2)V2(y)
)

(x)µ2(dy)

= 4

d1
∑

i,j=1

∫

Rd2

(

∂xi
∂xj

π1f
)

(x)Φ′(|y|2)2(Qy)i(Qy)jµ2(dy)

= 4

d1
∑

i,j=1

d2
∑

k=1

∫

Rd2

(

∂xi
∂xj

π1f
)

(x)Φ′(|y|2)2QikQiky
2
kµ2(dy)
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=
4

d2

d1
∑

i,j=1

∫

Rd2

(QQ∗)ij
(

∂xi
∂xj

π1f
)

(x)Φ′(|y|2)2|y|2µ2(dy)

=
µ2(|∇V2|2)

d2

d1
∑

i,j=1

(QQ∗)ij
(

∂xi
∂xj

π1f
)

(x).

Similarly,

∫

Rd2

HessV2

(

Q∗∇(1)V1(x), Q
∗∇(1)π1f(x)

)

(y)µ2(dy)

= 〈Q∗∇(1)V1(x), Q
∗∇(1)π1f(x)〉

∫

Rd2

2Φ′(|y|2) + 4Φ′′(|y|2)|y|2
d2

µ2(dy)

=
〈Q∗∇(1)V1(x), Q

∗∇(1)π1f(x)〉
d2

∫

Rd2

∆(2)V2(y)µ2(dy)

=
µ2(|∇(2)V2|2)

d2
〈Q∗∇(1)V1(x), Q

∗∇(1)π1f(x)〉.

Therefore, letting N(V2) = µ2(|∇(2)V2|2)
d2

which is a positive constant according to (H), we
obtain

(3.6) (Gf)(x, y) = (Gf)(x) = −N(V2)

d1
∑

i,j=1

(QQ∗)ij
{

∂xi
∂xj

− (∂xj
V1)(x)∂xi

}

π1f(x).

This enables us to provide the following assertion.

Lemma 3.2. (I +G)(D) is dense in H, so that (−G,D) is essentially m-dissipative (equiv-
alently, essentially self-adjoint) on H.

Proof. First recall that for densely defined, symmetric and dissipative linear operators on
a Hilbert space, the property of being essential m-dissipative is equivalent to essential self-
adjointness. Consider the operator (T, C∞

c (Rd1)) on the Hilbert space L2(µ1) defined by

(3.7) T :=

d1
∑

i,j=1

(QQ∗)ij
{

∂xi
∂xj

− (∂xj
V1)(x)∂xi

}

.

Using integration by parts formula we have

〈Th, g〉L2(µ1) = −µ1(〈QQ∗∇(1)h,∇(1)g〉), f ∈ C∞
c (Rd1), g ∈ C∞(Rd1).

By [4, Theorem 7] or [27, Theorem 3.1] our assumptions in (H) imply that (T, C∞
c (Rd1))

is essentially self-adjoint (hence, essentially m-dissipative) on L2(µ1). Therefore, L2(µ1) =
R(T )⊕N (T ). By (1.12) the null space N (T ) consists of the constant functions only. Hence
(T, C∞

c (Rd1)) restricted to H1 = {g ∈ L2(µ1) : µ1(g) = 0} is also essentially self-adjoint.
Thus, (I +G)(D) is dense in H, because H = H1 ⊕H2 and G acts trivial on H2.
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Now we continue to prove the second inequality in (2.15). Let f ∈ D and g = (I +G)f .
As in (3.5), by the definitions of A and π1 we have

(A2π1f)(x, y)

=Hessπ1f(Q∇(2)V2(y
′), Q∇(2)V2(y))(x)−HessV2(Q

∗∇(1)V1(x), Q
∗∇(1)π1f(x))(y).

So,

‖A2π1f‖ ≤
∥

∥Q∇(2)V2

∥

∥

2

L4(µ2)

∥

∥(∇(1))2π1f
∥

∥

L2(µ1)

+
∥

∥(∇(2))2V2

∥

∥

L2(µ2)

∥

∥|Q∗∇(1)V1| · |Q∗∇(1)π1f |
∥

∥

L2(µ1)
.

(3.8)

Due to (3.6) and (3.7) we see that π1f solves the elliptic equation

π1f −N(V2)Tπ1f = π1g in L2(µ1).

By applying the elliptic a priori estimates from [9, (2.2) and Lemma 8] (or see [12, Section
5.1] for corresponding proofs including domain issues) to the right hand side of (3.8) we
conclude

(3.9) ‖(BA)∗g‖L2(µ) ≤ c ‖π1g‖L2(µ1) ≤ c ‖g‖L2(µ)

for some constant c ∈ (0,∞) only depending on V1 and V2. According to Proposition 2.4
and Lemma 3.2, this implies the second inequality in (2.15). In conclusion, assumption (H3)
holds.

Proof of (H4): Let f ∈ D(L). Since µ(f) = 0, we have

γ1 := essµ inf f ≤ 0, γ2 := essµ sup f ≥ 0.

Since D is a core of (L,D(L)), we may take {gn}n≥1 ⊂ D such that gn → f and Lgn → Lf

in L2(µ). To control ‖gn‖osc, for any n ≥ 1 we take hn ∈ C∞(R) such that 0 ≤ h′
n ≤ 1 and

hn(r) =











r for r ∈ [γ1, γ2],

γ1 − 1
2n

for r ≤ γ1 − 1
n
,

γ2 +
1
2n
, for r ≤ γ2 +

1
n
.

Then fn := hn(gn) → f in L2(µ),

lim sup
n→∞

〈−Lfn, fn〉 = lim sup
n→∞

µ(h′
n(gn)

2|∇(2)gn|2)

≤ lim sup
n→∞

µ(|∇(2)gn|2) = lim sup
n→∞

〈−Lgn, gn〉 = 〈−Lf, f〉,

and

lim sup
n→∞

‖fn‖osc ≤ lim sup
n→∞

(

γ2 − γ1 +
1

n

)

= γ2 − γ1 = ‖f‖osc.

Therefore, we have verified assumption (H4).
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Proof of Theorem 1.1. It remains to prove (1.8) for ξ in (1.13). Let Ψ(f) = ‖f‖2osc. The
condition (2.3) is obvious by the definition of π1 and the L∞(µ)-contraction of the Markov
semigroups Pt and e−tG. Since we have verified assumptions (H1)-(H4), by Theorem 2.1 it
suffices to prove the weak Poincaré inequalities

(3.10) ‖π1f‖2 ≤ cα1(r)‖Aπ1f‖2 + rΨ(π1f), r > 0, f ∈ D(Aπ1),

(3.11) ‖π2f‖2 ≤ cα2(r)〈Sf, f〉+ rΨ(f), r > 0, f ∈ D

for some constant c ∈ (0,∞).
Recall that for any f ∈ D we have

(π1f)(x, y) =

∫

Rd2

f(x, y)µ2(dy).

By V2(y) = Φ(|y|2) we obtain

‖Aπ1f‖2 =
∫

Rd1+d2

〈Q∇(2)V2(y),∇(1)π1f(x)〉2µ(dx, dy)

=
4

Z(V2)

d1
∑

i,j=1

∫

Rd1

(∂xi
π1f(x))(∂xj

π1f(x))µ1(dx)

∫

Rd2

Φ′(|y|2)2(Qy)i(Qy)je
−Φ(|y|2)dy

=
4

Z(V2)

d1
∑

i,j=1

d2
∑

k=1

QikQjk

∫

Rd1

(∂xi
π1f(x))(∂xj

π1f(x))µ1(dx)

∫

Rd2

Φ′(|y|2)y2kµ2(dy)

=
4
∫

Rd |y|2Φ′(|y|2)2µ2(dy)

Z(V2)d2
µ1(|Q∗∇(1)π1f |2).

Since QQ∗ is invertible, 0 < Z(V2) < ∞, and

0 < 4

∫

Rd2

|y|2Φ′(|y|2)µ2(dy) = µ2(|∇(2)V2|2) < ∞

by (H), this implies

(3.12)
1

c
µ1(|∇(1)π1f |2) ≤ ‖Aπ1f‖2 ≤ cµ1(|∇(1)π1f |2), f ∈ D

for some constant 1 < c < ∞. So, f ∈ D(Aπ1) implies that π1f ∈ H1,2(µ1), the completion
of C∞

c (Rd1) under the Sobolev norm ‖g‖1,2 :=
√

µ1(g2 + |∇(1)g|2). Combining this with
inequality (1.12) for i = 1 which naturally extends to f ∈ H1,2(µ1), we prove (3.10).

Next, for the above f and x ∈ R
d, we have f̂x := f(x, ·)− π1f(x) ∈ C∞

c (Rd), µ2(f̂x) = 0
and ‖f̂x‖osc ≤ ‖f‖osc. Then (1.12) for i = 2 implies

µ2(|f̂x|2) ≤ α2(r)µ2(|∇(2)f(x, ·)|2) + r‖f‖2osc, r > 0.

Combining this with
∫

Rd1

µ2(|f̂x|2)µ1(dx) = ‖f − π1f‖2 = ‖π2f‖2,
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∫

Rd1

µ2(|∇(2)f(x, ·)|2)µ1(dx) =

∫

Rd1+d2

|∇(2)f |2(x, y)µ(dx, dy) = −〈Lf, f〉,

we prove (3.11) for c = 1.

To prove Example 1.1, we need the following lemma which is implied by the proof of [20,
Example 1.4].

Lemma 3.3. Let µV (dx) = e−V (x)dx be a probability measure on R
d. Then the weak Poincaré

inequality

(3.13) VarµV
(f) ≤ rαV (r)µV (|∇f |2) + r‖f‖2osc, r > 0, f ∈ C1

b (R
d)

holds for some decreasing αV : (0,∞) → [0,∞). In particular:

(1) If V (x) ∼ k|x|δ or V (x) ∼ k(1 + |x|2) δ
2 for some constants k, δ > 0, then (3.13) holds

with

αV (r) = c
(

log(1 + r−1)
)

4(1−δ)+

δ

for some constant c > 0.

(2) If V (x) ∼ d+p
2

log(1 + |x|2) for some constant p > 0, then (3.13) holds with

αV (r) = cr−θ(p)

for some constant c > 0.

(3) If V (x) ∼ d
2
log(1+ |x|2)+p log log(e+ |x|2) for some constant p > 1, then (3.13) holds

with

αV (r) = c1e
c2r

−

1
p−1

for some constant c1, c2 > 0.

Proof of Example 1.1. We only consider case (A) and the assertions in the other two cases
can be verified in the same way.

By Lemma 3.3, (2.4) holds for

(3.14) α1(r) = c
(

log(e + r−1)
)

4(1−δ)+

δ

for some constant c > 0. Moreover, for case (A1), (2.5) holds for

α2(r) = c′
(

log(e + r−1)
)

4(1−ε)+

ε .

Then for a constant c2 > 0, there exists constants κ1, κ2 > 0 such that the inequality

(3.15) c2t ≥ α1(r)
2α2

( r

α1(r)2

)

log
1

r
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implies

r ≤ κ1 exp
(

− κ2t
δε

δε+8ε(1−δ)++4δ(1−ε)+

)

.

Therefore, the desired assertion follows from (1.13).
For case (A2) we may take

α2(r) = c′r−θ(p)

for some constant c′ > 0. Then for a constant c2 > 0, there exists constants κ > 0 such that
the inequality (3.15) implies

r ≤ κt
− 1

θ(p)
(

log(e + t)
)

8(θ(p)+1)(1−δ)++δ

θ(p)δ ,

so that the desired assertion follows from (1.13).
Finally, for case (A3) we may take

α2(r) = c′ exp
(

c′′r
− 1

p−1

)

for some constants c′, c′′ > 0. Then for a constant c2 > 0, there exists constants κ > 0 such
that the inequality (3.15) implies

r ≤ κ
(

log(e + t)
)−(p−1) ·

(

log log(e2 + t)
)

8(1−δ)+

δ ,

so that the desired assertion follows from (1.13).
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[4] V. Bogachev, N. V. Krylov, M. Röckner,Elliptic regularity and essential self-adjointness
of Dirichlet operators on R

n, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1997), 451–
461.

[5] F. Conrad, M. Grothaus, Construction, ergodicity and rate of convergence of N-particle
Langevin dynamics with singular potentials, J. Evolu. Equat. 10(2010), 623–662.

[6] C.-S. Deng, R. Schilling, Y.-H. Song, Sub-geometric rates of convergence for Markov
processes under subordination, arXiv:1511.01264.

20

http://arxiv.org/abs/1308.4938
http://arxiv.org/abs/1511.01264


[7] J. Dolbeault, J. A. Klar, C. Mouhot, C. Schmeiser, Exponential rate of convergence
to equilibrium for a model describing fiber Lay-Down processes, Appl. Math. Research
eXpress 2013(2013), 165–175.

[8] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for kinetic equations with linear
relaxation terms, C. R. Math. Acad. Sci. Paris 347(2009), 511–516.

[9] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for linear kinetic equations
conserving mass, Trans. Amer. Math. Soc. 367(2015), 3807–3828.

[10] R. Duan, Hypocoercivity of linear degenerately dssipative kinetic equations, Nonlinear-
ity 24(2011), 2165–2189.

[11] S. Gadat, L. Miclo, Spectral decompositions and L2-operator norms of toy hypocoercive
semi-groups, Kinetic and related models 6(2013), 317–372.

[12] M. Grothaus, P. Stilgenbauer, Hypocoercivity for kolmogorov backward evolution equa-
tions and applications, J. Funct. Anal. 267(2014), 3515–3556.

[13] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck op-
erators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer-Verlag,
Berlin, 2005.

[14] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathemat-
ical Monographs, Oxford University Press, Oxford, 1985.

[15] A. Guillin, F.-Y. Wang, Degenerate Fokker-Planck equations : Bismut formula, gradi-
ent estimate and Harnack inequality, J. Diff. Equat. 253(2012), 20–40.

[16] S. Hu, X. Wang, Subexponential decay in kinetic Fokker-Planck equation: weak hypoco-
ercivity, preprint.

[17] A. Nonnenmacher, Essential m-dissipativity of the generator of a generalized stochas-
tic Hamiltonian system and applications, Master thesis, University of Kaiserslautern,
2016.

[18] G. K. Pedersen, Analysis Now, Vol. 118 Grad. Texts Math. Springer-Verlag, New York,
1989.
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