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Abstract

Convolutional Neural Networks (CNNs) are getting deeper and wider to improve their performance

and thus increase their computational complexity. We apply channel pruning methods to accelerate

CNNs and reduce its computational consumption. A new pruning criterion is proposed based on the

mean gradient for convolutional kernels. To significantly reduce Float Point Operations (FLOPs)

of CNNs, a hierarchical global pruning strategy is introduced. In each pruning step, the importance

of convolutional kernels is evaluated by the mean gradient criterion. Hierarchical global pruning

strategy is adopted to remove less important kernels, and get a smaller CNN model. Finally

we fine-tune the model to restore network performance. Experimental results show that VGG-

16 network pruned by channel pruning on CIFAR-10 achieves 5.64× reduction in FLOPs with less

than 1% decrease in accuracy. Meanwhile ResNet-110 network pruned on CIFAR-10 achieves 2.48×

reduction in FLOPs and parameters with only 0.08% decrease in accuracy.

Keywords: channel pruning, Convolutional Neural Networks, mean gradient, hierarchical global

pruning, acceleration

1. Introduction

Convolution neural networks (CNNs) have achieved remarkable success in various recognition

tasks [1][2][3], especially in computer vision [4][5][6]. CNNs have achieved state-of-the-art perfor-

mance in these fields compared with traditional methods based on manually designed visual features

[7]. However, these deep neural networks have a huge number of parameters. For example, AlexNet5

[4] network contains about 6 × 106 parameters, while a better performance network such as VGG
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[6] network contains about 1.44× 108 parameters, which causes higher memory and computational

costs. For instance, VGG-16 model takes up more than 500MB storage space and needs 1.56×1010

Float Point Operations (FLOPs) to classify a single image. The huge memory and high compu-

tational costs of CNNs restrict the application of deep learning on mobile devices with limited10

resources [8]. What’s more, deep learning models are known to be over-parameterized [9]. Denil

et al. [10] pointed out that deep neural networks can be reconstructed by a subset of network

parameters without affecting network performance, which means that there are a huge number of

redundant connections in neural network models and we can reduce the memory and computational

costs by pruning and compressing such connections [11][12].15

The huge memory consumption and high computational complexity of deep neural networks

drive the research of compression [13][14] and acceleration algorithms [15][16], and pruning [17] is

one of effective methods. In the 1990s, LeCun et al. [18] introduced the Optimal Brain Damage

pruning strategy, they had observed that several unimportant weight connections could be safely

removed from a well-trained network with negligible impact on network performance. Hassibi et al.20

[19] proposed a similar Optimal Brain Surgeon pruning strategy and pointed out that the importance

of weight was determined by the second derivative. However, these two methods needed to calculate

Hessian matrix, which increased the memory consumption and computational complexity of network

model. Recently, Han et al. [20][21] reported impressive compression rates and effective decrease of

the number of parameters on AlexNet network and VGG Network by pruning weight connections25

with small magnitudes and then retraining without hurting overall accuracy. The decrease of

parameters was mainly concentrated in full connection layers, which achieved 3 ∼ 4× speedup

in full connection layers during inference time. However, this pruning operation had generated

an unstructured [22] sparse model, which additionally required sparse BLAS libraries [23] or even

specialized hardware to achieve its acceleration [16]. Similar to our study, Li et al. [24] measured30

the relative importance of a convolution kernel in each layer by calculating the sum of its absolute

weights, i.e., its l1 norm. Compared to the minimum weight criterion[24], our criterion is based

on mean gradient of feature maps in each layer, which more intuitively reflects the importance of

feature extracted from convolutional kernels. Another pruning criterion obtained the sparsity of

activations after a non-linear ReLU [25] mapping. Hu et al. [26] believed that if most outputs after35

these non-linear neurons are zero, the probability of neuronal redundancy should be bigger. This

criterion measured importance score of a neuron by calculating its Average Percentage of Zeros
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(APoZ). However, APoZ pruning criterion requires the introduction of threshold parameters, which

will vary from layer to layer. These two criteria simply and intuitively reflect the importance of

channels for convolutional kernels or feature maps, but do not directly consider the final loss after40

pruning. In this paper, pruning algorithm was based on the importance of feature maps in each

channel, and considered the effect on network performance after pruning a channel. Meanwhile

hierarchical global pruning strategy and FLOPs constraint were introduced to significantly reduce

the network FLOPs.

Firstly, channel pruning for CNNs with different structures will be achieved in Section 2. Sec-45

ondly pruning criterion based on the mean gradient and hierarchical global pruning strategy will be

proposed in Section 3. Effectiveness of the algorithm will be presented by experimental comparisons

in Section 4. Finally, the paper will be concluded in Section 5.

2. Pruning channels and corresponding feature maps

The paper mainly studies the effect of channel pruning on reducing network FLOPs. Convo-50

lutional layers accounts for more than 90% [27] FLOPs of common CNNs. Therefore, we only

prune convolutional layers, Section 2.1 and 2.2 implement specific pruning on channels and their

corresponding feature maps for different networks, respectively.

2.1. Channel pruning for networks without shortcut connections

For a CNN structure without shortcut connections [6], such as VGG network or AlexNet net-55

work, the process of channel pruning is shown in Fig.1. Input feature maps xl ∈ Rcl×hl×wl are

transformed to output feature maps xl+1 ∈ Rcl+1×hl+1×wl+1 by convolution operation, where xl+1

are used as input feature maps for next convolutional layer, cl and cl+1 represent the number of

channels for feature maps xl and xl+1, respectively, hl and wl represent height and width of fea-

ture maps xl, respectively. Convolution operation is implemented by convolution kernel matrix60

Wl+1 ∈ Rcl+1×cl×k×k, where k is size of convolutional kernel, such as k = 3 for VGG network.

Wl+1 is composed by cl+1 3D kernel W
(i)
l+1 ∈ Rcl×k×k, i ∈ (1, 2, · · ·, cl+1), each kernel W

(i)
l+1 is con-

volved with input feature maps xl to generate one output feature map. Therefore, when the ith

output channel for the convolutional kernel matrix Wl+1 is removed, the ith output feature map

(marked as green in the output feature maps xl+1 in Fig.1(a)) will be removed, and the ith input65
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channel for the next convolutional kernel Wl+2 (marked as green in Wl+2 in Fig.1(a)) will also be

removed.

Furthermore, there are batch normalization (BN) layers in CNNs shown in Fig.1(b), similar to

the process of pruning between convolutional layers, when the ith output channel for convolutional

kernel matrix Wl+1 is removed, the ith channel for the subsequent BN layer and its corresponding70

output feature map (marked as green in WBN and xBN ) will be removed.

(a) Channel pruning between convolutional layers [24]

(b) Channel pruning with batch normalization layers

Figure 1: Channel pruning for networks without shortcut connections. (a) Channel pruning between convolutional

layers. Pruning a channel and its corresponding feature maps between convolutional layers. (b) Channel pruning

with batch normalization layers. Pruning a channel and its corresponding batch normalization layer.

Channel pruning for non-tensor BN layers cannot reduce the computational complexity of CNNs,

the reduction in network FLOPs by channel pruning only needs to consider the change of FOLPs

for convolutional layers. Tab.1 shows the change of FLOPs on the l + 1th and l + 2th convolutional

layers when m output channels are removed for the l + 1th convolutional kernel matrix. It can be75

observed that FLOPs on the l + 1th and l + 2th convolutional layers are both reduced by m/cl+1.
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Table 1: The change of FLOPs on convolutional layers.

convolutional layer FLOPs FLOPs pruned rate

l + 1 cl+1clk
2hlwl mclk

2hlwl m/cl+1

l + 2 cl+2cl+1k
2hl+1wl+1 cl+2mk

2hl+1wl+1 m/cl+1

2.2. Channel pruning for residual networks

The architectures of Residual Networks (ResNets) [6] are more complex than plain CNNs[6].

Shortcut connections are inserted in the ResNets, which makes channel pruning more complicated.

When channels are pruned in a residual block, we should consider whether the corresponding80

channels need to be pruned in down-sample layers or not. Fig.2 illustrates the channel pruning

process for ResNets.

Figure 2: Channel pruning for ResNets [24]. The channels to be pruned for down-sample layer (marked as orange in

Wdown−sample) are determined by the pruned channels of the last convolutional layer of residual block.

It can be seen that channel pruning inside a residual block is the same as channel pruning for

networks in Section 2.1. Since the last feature maps xl+2 in residual block and feature maps gener-

ated by shortcut connection are of the same dimension, we should remove same output channels of85

convolution kernel matrix Wl+2 and Wdown−sample simultaneously. The channels to be pruned for

down-sample layer(marked as orange in shortcut connection) are determined by the corresponding
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channels pruned for the last convolutional layer of residual block, which ensures that the dimension

of feature maps P(xl) is consistent with the dimension of feature maps xl+2.

FLOPs for ResNets is the same as that of corresponding plain networks. Shortcut connections90

introduce neither extra parameter nor computation complexity. Therefore reduction in FLOPs for

ResNets by channel pruning is the same as Tab.1. When m output channels are removed for the

l + 1th convolutional layer in ResNets, FLOPs on the convolutional layer and the next convolutional

layer are both reduced by m/cl+1.

3. Channel pruning strategy95

The proposed strategy for channel pruning consists of the following steps: (1) Given a pre-trained

network model; (2) Evaluating the importance of feature map on each channel by mean gradient

criterion; (3) Adopting a hierarchical global pruning strategy to prune less important channels

and corresponding feature maps; (4) Alternate iterations of pruning and further fine-tuning; (5)

Stopping pruning until the desired pruning target is achieved. The flow chart is depicted in Fig.3.100

Our desired pruning target is to reduce FLOPs for network models as much as possible without

compromising original accuracy.

Figure 3: The flow chart of channel pruning
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3.1. Mean gradient criterion for pruning

Channel pruning for convolutional layers reduces the number of network parameters, which

inevitably leads to a decrease in network performance, therefore the choice of channels to be pruned

is especially important. As shown in Fig.4, pruning channels for the lth convolutional layer reduces

the number of output channels from cl to desired number c̃l, where 0 < c̃l 6 cl, and the lth

convolutional kernel matrix Wl is transformed to W̃l. For the l + 1th convolutional layer, the

number of input channels is also reduced from cl to c̃l, and the l + 1th convolutional kernel matrix

Wl+1 is transformed to W̃l+1. The set of network parameters is denoted by

W =
{
W1,W2, · · · ,Wl,Wl+1, · · · ,WL

}
,

where L represents the depth of convolutional layers in the network. For simplicity, bias terms are

ignored. Fig.4 illustrates that channel pruning will lead to changes in the set of network parameters,

which is transformed to

W̃ =
{
W1,W2, · · · ,W̃l,W̃l+1, · · · ,WL

}
.

Figure 4: Transformation for network parameters. Output channels for lth convolutional layer are pruned (marked
as green in Wl), its corresponding feature maps and input channels for the next convolutional layer are also pruned
(marked as green in xl and Wl+1).
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Consider the set of network parameters converted fromW to W̃, which is optimized to minimize

the loss function C
(
·
)

of the network. A set of training examples is represented as

D =
{
X =

{
x0, x1, · · · · · · , xN

}
,Y =

{
y0, y1, · · · · · · , yN

}}
,

where X and Y represent an input and a target output of the neural network, respectively; N

is the number of training examples. A good channel pruning method should maintain network

performance when the set of network parameters changes, i.e.,

C
(
D|W̃

)
≈ C

(
D|W

)
. (1)

According to Eq.(1), the problem of channels selection can be converted into a combinatorial opti-

mization:

min
W′

∣∣∣C(D|W̃)− C(D|W)∣∣∣, s.t.

{∥∥W̃l

∥∥
0

= c̃l∥∥W̃j

∥∥
0

= cj , j 6= l
(2)

where the l0 norm in
∥∥W̃l

∥∥
0

represents the number of non-zero parameters for the lth element W̃l

in W̃, which means that the number of output channels for convolutional kernel matrix W̃l changes

to c̃l, and the number of output channels of other convolution kernel matrix remains unchanged.105

A new pruning criterion based on mean gradient of feature maps is introduced, this criterion

prunes a particular channel that has an almost flat gradient of loss function C
(
·
)

with respect to

feature maps xl, i.e. it prunes the channel and its corresponding feature map with the minimum

mean gradient. Let the lth feature maps be denoted as:

xl =
{
x
(1)
l ,x

(2)
l , · · · · ··,x(cl)

l

}
,

mean gradient ΘMG of the kth channel for feature maps xl is calculated as follows:

ΘMG

(
x
(k)
l

)
=

∣∣∣∣∣ 1

M

∑
m

∂C
∂x

(k)
l,m

∣∣∣∣∣, (3)

where M is the length of vectorized feature map, x
(k)
l,m denotes any element of x

(k)
l . The gradient
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terms in Eq.(3) are easily computed from the same computations for back-propagation, ΘMG gives

an expectation of the change magnitude on loss function with respect to output feature map on

each channel. For training examples N > 1, ΘMG is computed for each example separately, and

then the final result is obtained by averaging all examples.110

3.2. Hierarchical global pruning strategy

Combining with the mean gradient criterion, this section proposes hierarchical global pruning

strategy: according to each convolutional layer’s sensitivity to pruning, the global pruning strategy

is adopted between the layers with similar sensitivity. For networks without shortcut connection,

such as VGG-16 network on CIFAR-10 dataset [28], network architecture and various parameters115

information are shown in Tab.2. And the pruned model is named as VGG16-pruned-A, which is

described in Tab.3.

Table 2: VGG-16 and the pruned model on CIFAR-10.

Layer hl × wl Channels FLOPs FLOPs/channels channels pruned%

Conv1 224× 224 64 8.67× 107 1.35× 106 5 92.2%

Conv2 224× 224 64 1.85× 109 2.89× 107 6 90.6%

Conv3 112× 112 128 9.25× 108 7.23× 106 7 94.5%

Conv4 112× 112 128 1.85× 109 1.45× 107 2 98.4%

Conv5 56× 56 256 9.25× 108 3.61× 106 72 71.9%

Conv6 56× 56 256 1.85× 109 7.23× 106 68 73.4%

Conv7 56× 56 256 1.85× 109 7.23× 106 61 76.2%

Conv8 28× 28 512 9.25× 108 1.81× 106 328 35.9%

Conv9 28× 28 512 1.85× 109 3.61× 106 348 32.0%

Conv10 28× 28 512 1.85× 109 3.61× 106 345 32.6%

Conv11 14× 14 512 4.62× 108 9.03× 105 329 35.7%

Conv12 14× 14 512 4.62× 108 9.03× 105 335 34.6%

Conv13 14× 14 512 4.62× 108 9.03× 105 318 37.9%

Linear1 1 4096 1.03× 108 2.50× 104 4096 0%

Linear2 1 4096 1.68× 107 4.10× 103 4096 0%

Linear3 1 10 4.60× 104 4.10× 103 10 0%

Total — — 1.55× 1010 — — 48%

The CIFAR-10 dataset consists of 60, 000 images, whose size is 32× 32, and the number of
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images in each category is 6, 000, with 10 categories. During training, images are converted to

256× 256 and then randomly cropped to 224× 224 for network input, flip horizontal is applied to120

implement data augmentation. During testing, images are converted to 256× 256 and then scaled

to 224 × 224 using a center crop for network input. Since layers with the same size of feature

maps have similar sensitivities to pruning [24], global pruning strategy is applied to the layers with

similar sensitivities. For VGG-16 network, the strategy is applied to the first four convolutional

layers: Conv1, Conv2, Conv3, Conv4, the three middle convolutional layers: Conv5, Conv6, Conv7,125

and the last six convolutional layers: Conv8, Conv9, Conv10, Conv11, Conv12, Conv13. Pruning

ratio for each hierarchy is determined by the total number of output channels for convolutional

layers.

Compared with layer-by-layer pruning and retraining, the pruning ratio of each convolutional

layer does not need to be determined in advance according to the hierarchical global pruning s-130

trategy. Channel and its corresponding feature map with small ΘMG are removed in Eq.(3), the

sensitivity of convolutional layers is studied actively during each pruning process, and a reason-

able ratio for each convolutional layer can be reached. What’s more, pruning on layer-by-layer is

extremely time-consuming and does not give a holistic view of network robustness resulting in a

smaller network model. On the other hand, compared with global pruning strategy, our strategy135

makes pruning ratio for each convolutional layer closer to the ratio for the whole network, and it

is impossible to obtain a significant reduction in network FLOPs in the case that there is a large

difference in pruning ratio for convolutional layers.

FLOPs constraint on CNNs is introduced to further reduce computational complexity of net-

works. FLOPs for different layers require different amounts of computation due to the channles140

and sizes of input feature maps and convolution kernels. The pruning ratio of each hierarchy is de-

termined by the FLOPs ratio of all convolutional layers within the hierarchy to the whole network.

The pruning ratio varies with the number of channels for convolutional layers during each pruning.

3.3. Fine-tuning of the pruned networks

After each pruning, performance degradation would be compensated by fine-tuning the networks.

Pruning and fine-tuning iteratively strategy is adopted, channel pruning is firstly performed, then

the network is fine-tuned to enhance performance, and a smaller network model is obtained by

updating parameters before next pruning. In addition, the mean gradient ΘMG of each channel is
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standardized to get Θ̂MG during pruning. Its formula is shown as follows:

Θ̂MG

(
x
(k)
l

)
=

ΘMG

(
x
(k)
l

)√∑
j

(
ΘMG

(
x
(j)
l

))2 , (4)

l2-normalization can avoid the influence of the depth of convolutional layers on ΘMG, which ensures145

the reasonability of sorting mean gradient across multiple layers. In conclusion, our channel pruning

algorithm is described in Algorithm 1.

Algorithm 1 Channel pruning algorithm based on mean gradient

Input: A pre-trained Model: M

Given the number of channels for each pruning: n

Given a desired pruning ratio: R

Training set: D

Testing set: T

Output: A pruned model: Mpruned

1: Compute performance PM of M on T

2: Calculate the number of pruning iterations I using R and n

3: for i in range(I) do

4: Obtain the number of channels nh for each hierarchy in each iteration according to the

corresponding constraint condition

5: Calculate mean gradient ΘMG of each channel using Eq.(3)

6: Apply l2-normalization that rescale ΘMG to Θ̂MG by Eq.(4)

7: Adopt global pruning strategy in each hierarchy

8: Update the set of network parameters to get new model Mnew, update M by Mnew

9: Fine-tune M on D using SGD algorithm

10: end for

11: Fine-tune the network until the model converges and M is saved as Mpruned

4. Experiments

To verify the validity of our algorithm, the following experiments are conducted. Effect of

removing channels with different order for mean gradient on network accuracy is considered in150
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Section 4.1, which indicates that channels with larger mean gradient are more important in network

performance. The comparison results of our strategy and global pruning strategy are shown in

Section 4.2. Comparisons of different pruning criteria are given in Section 4.3, which shows that

our algorithm can reduce FLOPs for networks effectively. Finally, the pruned models for VGG-16

and ResNet-110 are given in Section 4.4 and 4.5 respectively.155

4.1. Effect of mean gradient on network performance

We compare the sensitivity of pruning channels for VGG-16 on CIFAR-10 with minimum mean

gradient, maximum mean gradient and random channels. We show reduction in accuracy of several

convolution layers, there are big differences between the three methods. This section mainly con-

siders the effect of mean gradient on network performance, and thus, there is no fine-tuning using160

SGD algorithm.
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Figure 5: Comparison of three pruning methods for VGG-16 on CIFAR-10. The importance of channels is evaluated

by its mean gradient. And pruning channels randomly is compared with our pruning criterion.

As shown in Fig.5, the accuracy of pruning channels with the maximum mean gradient drops

quickly as pruning ratio increases, which indicates the importance of channels with larger mean

gradient. What’s more, from the comparison between pruning with minimum mean gradient and

random channels, we can see that accuracy of pruned network with minimum gradient maintains165
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better when pruning ratio of convolutional layers is less than 40%, while accuracy of pruning network

randomly drops quickly when pruning ratio is low to 20%.

4.2. Comparison with global pruning strategy

According to Algorithm 1, the parameters of VGG-16 on CIFAR-10 are set as follows: we

remove 100 channels at each pruning iteration, i.e. n = 100, subsequently, we perform 5 epochs170

SGD updates with batch-size 32, momentum 0.9, learning rate 10−4, and weight decay 10−4. Fig.6

shows the curve of model FOLPs changing with different pruning ratios, while our strategy and

global pruning strategy are applied for VGG-16 on CIFRA-10 respectively, and neither of these

strategies introduce FLOPs constraint condition. It can be seen that reduction in FLOPs is more

obvious with hierarchical global pruning strategy.175
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Figure 6: Comparison with global pruning strategy.

To further analyze the difference of reduction in network FLOPs with above two strategies,

We compare pruning ratios of convolutional layers with large difference in value FLOPs/Channel,

which is described in Tab.2, e.g. convolutional layers with large FLOPs/Channel: Conv2, Conv4,

Conv6, Conv7; and convolutional layers with small FLOPs/Channel: Conv11, Conv12, Conv13.
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Figure 7: Pruning ratio curves on convolutional layers. (a) Global pruning strategy. (b) Hierarchical global pruning

strategy.

As shown in Fig.7, horizontal axis a represents pruning ratio on whole network and vertical180

axis b represents pruning ratio on each layer, Fig.7(a) illustrates that the relationship between the

horizontal and vertical axis for convolutional layers with small FLOPs/Channel (Conv11, Conv12,

Conv13) is b > a, which means pruning ratios of these layers are all bigger than the ratio of whole

network, in contrast, pruning ratio of convolutional layers with large FLOPs/Channel (Conv2,

Conv4, Conv6, Conv7) is less than the ratio of whole network. That is main reason that global185

pruning strategy cannot implement a significant reduction in network FLOPs. In Fig.7(b), the

curves are all concentrated near the diagonal line b = a, which means that pruning ratio of each

layer is similar to the ratio of the whole network.

Fig.7 further explains the experimental result in Fig.6 that reduction in FLOPs is more obvious

with the hierarchical global pruning strategy when the pruning ratio of the whole network is equal190

to these two strategies. The hierarchical global pruning strategy can maintain a similar pruning

ratio on each convolutional layer and achieve a more significant reduction in network FLOPs.

4.3. Comparison with other pruning criteria

There are many pruning criteria which evaluate the importance of a feature map or convolutional

kernel. Common criteria include:195
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1. Minimum weight [24]:

ΘMW

(
W

(k)
l

)
=

1

N

∑
j

∣∣W(k)
l,j

∣∣, (5)

where N is the dimensionality of convolutional kernel W
(k)
l after vectorization, and W

(k)
l,j

denotes any element of W
(k)
l .

2. Mean Activation [29]:

ΘMA

(
x
(k)
l

)
=

1

M

∑
m
x
(k)
l,m, (6)

where M is the length of vectorized feature map x
(k)
l .

3. Std Activation [29]:

Θstd

(
x
(k)
l

)
=

√
1

M

∑
m

(
x
(k)
l,m − µx

(k)
l

)2
, (7)

where µ
x
(k)
l

is the mean of feature map x
(k)
l . This criterion is similar to the Mean Activation

criterion, calculating feature maps generated after convolution operations.200

4. APoZ [26]:

APoZ(o
(k)
l ) =

1

M

∑
m
f(o

(k)
l,m = 0), (8)

where ol is the lth layer activation neurons produced by nonlinear ReLU neurons, o
(k)
l,m denotes

any element of o
(k)
l , f(·) is indicator function, i.e.

f(condition) =

{
1, if condition is true

0, else
(9)

activation neurons ol are different from feature maps x
(k)
l in Eq.(3).

Fig.8 shows comparison results of pruned VGG-16 models on CIFAR-10 with different pruning

criteria, and its parameters setting is consistent with Section 4.2. Fig.8(a) illustrates that the

accuracy of the pruned model with mean gradient criterion is relatively stable as model FLOPs

reduces, especially when the floating point calculation is reduced to over 70%, our pruning criterion205

achieves the highest network accuracy. On the other hand, mean gradient criterion obtains an

effective reduction in network FLOPs with the same pruning ratio in Fig.8(b), and our algorithm

achieves the best result in reducing FLOPs after adding FLOPs constraint.
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Figure 8: Comparison of pruning criteria. (a) The curve between model FLOPs and network accuracy for VGG-16

on CIFAR-10. (b) The curve between pruning ratio and model FLOPs for VGG-16 on CIFAR-10.

4.4. Pruning VGG-16 on CIFAR-10

The pruned models for VGG-16 on CIFAR-10 are shown in Tab.3, VGG16-pruned-A indicates210

that network pruning ratio is 48%, which means the number of pruning iterations I = 20 in Al-

gorithm 1, and the number of output channels for VGG16-pruned-A is shown in the last two

columns of Tab.2. VGG16-pruned-B indicates that network pruning ratio is 34%, i.e. the number

of pruning iterations I = 14. Inference time is not only affected by network FLOPs but also by

specific convolution operations, parallel algorithms, hardware and other factors, therefore inference215

time for these two pruned models is measured to compare the actual acceleration with VGG-16

network.

Table 3: The pruned model for VGG-16 on CIFAR-10. Inference time in the last column is tested on Intel(R)

Xeon(R) CPU E5-2660 v3 @ 2.60GHz with batch size 32.

Model Error FLOPs Pruned Params Pruned Time(speed up)

VGG16 7.53% 1.55× 1010 — 1.34× 108 — 26.0

VGG16-pruned-A 8.25% 2.74× 109 82.3% 8.60× 107 36.0% 5.4(4.8×)

VGG16-pruned-B 7.49% 4.59× 109 70.3% 1.03× 108 23.3% 9.0(2.9×)

We compare above pruned models with model VGG16-MW [24] and its pruning ratio is 37.1%.

It notes that the architecture of VGG16-MW and the size of the input image for VGG16-MW
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are different from those described in Section 2.2, which affect the accuracy of pruned models. We220

can see that pruning ratio of VGG16-pruned-B is smaller than VGG16-MW from Tab.4, but its

FLOPs has achieved a sharper drop. Moreover, VGG16-pruned-A obtains the best results in FLOPs

reduction and actual speed up with less than 1% decrease in accuracy.

Table 4: Comparison of pruned models for VGG-16 on CIFAR-10.

Model Accuracy Params Flops

VGG16-MW[24] +0.93% 2.78× 1.52×

VGG16-pruned-A -0.72% 1.56× 5.64×

VGG16-pruned-B +0.04% 1.30× 3.37×

4.5. Pruning ResNet-110 on CIFAR-10

ResNet-110 is divided into three hierarchies by residual blocks, the size of its corresponding225

feature maps are 32× 32, 16× 16, 8× 8, respectively. According to the process of pruning for

ResNets in Section 2.2, we obtain the pruned model for ResNet-110 on CIFAR-10. During training,

images are randomly cropped to 32× 32 with padding 4 for network input, flip horizontal is applied

to implement data augmentation. And images are not cropped and flipped horizontally during

testing. The number of pruning iteration is I = 15 in Algorithm 1 for ResNet110-pruned-A, and230

I = 23 for ResNet110-pruned-B. 1/64 of output channels for the last convolutional layer will be

removed during each pruning in each residual block. At the same time, hierarchical global pruning

strategy is applied in pruning the first two convolutional layers in each residual block. We prune

1/64 of output channels for the first two convolutional layers in each hierarchy during each pruning.

We firstly perform 5 epochs SGD updates with batch-size 128, momentum 0.9, learning rate 10−2,235

and we continue fine-tuning 5 epochs with learning rate 10−3. FLOPs for ResNets is so low that

the FLOPs constraint does not apply for ResNets.

Table 5: The pruned model for ResNet-110 on CIFAR-10. Inference time in the last column is tested on Intel(R)

Xeon(R) CPU E5-2660 v3 @ 2.60GHz with batch size 128.

Model Error FLOPs Pruned Params Pruned Time(speed up)

ResNet110 6.47% 2.53× 108 — 1.72× 106 — 2.71

ResNet110-pruned-A 6.56% 1.46× 108 42.3% 1.02× 106 40.7% 2.02(1.34×)

ResNet110-pruned-B 6.55% 1.02× 108 59.7% 0.72× 106 58.1% 1.66(1.63×)
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For Residual Networks with low FLOPs, Tab.5 shows that pruning ratios of FLOPs and pa-

rameters maintain high ratios, and the decrease of network accuracy is less than 0.1% with half

of the parameters are pruned for ResNet-110. The comparison of our pruned models with model240

ResNet110-MW [24] is shown in Tab.6. Convolutional layers in residual blocks are all pruned with

our pruning strategy, so parameters are reduced more significantly than ResNet110-MW [24], which

only prune the first layer of residual blocks. The best pruned model achieves 2.48× reduction in

FLOPs and parameters with 0.08% decrease in accuracy.

Table 6: Comparison of pruned models for ResNet-110 on CIFAR-10.

Model Accuracy Params FLOPs

ResNet110-MW [24] -0.23% 1.47× 1.63×

ResNet110-pruned-A -0.09% 1.69× 1.72×

ResNet110-pruned-B -0.08% 2.39× 2.48×

5. Conclusion245

In this paper, we apply channel pruning to accelerate CNNs and introduce a new criterion based

on the mean gradient of feature maps, we propose hierarchical global pruning strategy to effectively

reduce network FLOPs. During each pruning, we measure the importance of feature maps on

each channel by its mean gradient and use hierarchical global pruning strategy to remove lower

important feature maps, and then we obtain a smaller network model. We focus on the effect of250

removing feature maps on reduction in network FLOPs. In order to accelerate CNNs effectively, we

apply FLOPs constraint condition to determine pruning ratio of each hierarchy. Channel pruning

for VGG-16 and ResNet-110 are implemented respectively with less than 1% decrease in accuracy.

In the future, we would like to combine our pruning strategy with other pruning criteria, channel

pruning for both convolutional layers and full connection layers will be achieved to simultaneously255

accelerate and compress CNNs.
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