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Abstract

In this paper, we consider the penalized estimation procedure for Poisson
autoregressive model with sparse parameter structure. We study the theo-
retical properties of penalized conditional maximum likelihood (PCML) with
several different penalties. We show that the penalized estimators perform
as well as the true model was known. We establish the oracle properties of
PCML estimators. Some simulation studies are conducted to verify the pro-
posed procedure. A real data example is also provided.
Keywords: Integer-valued time series ; Penalty function; Poisson autoregres-
sive ; Oracle properties.

1 Introduction

In recent years, integer-valued time series is playing an important role because this
kind of data is very popular in practice. For example, the number of patients in a
hospital, the daily number of transaction in stock market, the monthly number of
insurance claim , and so on. Generally speaking, integer-valued time series includes
two groups: (A) ‘thinning’ models which are based on the thinning operator (Steutel
and van Harn, 1979). Al-Osh and Alzaid (1987) proposed the first-order integer-
valued autoregressive (INAR) process; Zheng et al. (2006) proposed the random
coefficient integer-valued autoregressive (RCINAR) process; Zhang et al. (2010)
considered a series of integer-valued autoregressive processes based on the signed
generalized power series thinning operator. (B) state-space models. Davis et al.
(2003) introduced a general class of observation-driven models for Poisson counts
process and derived some important properties; Ferland et al. (2006) proposed
an integer-valued GARCH model and studied its maximum likelihood estimation;
Fokianos et al. (2009) studied the likelihood-based inference and geometric ergod-
icity for linear and nonlinear Poisson autoregressive model; Zhu and Wang (2011)
studied statistical inference for the Poisson autoregressive model.
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There are very limited literatures concerning with penalized estimation proce-
dure for integer-valued time series. In practice, some parameters are exactly zero
when the order of integer-valued time series model is large. However, many tradi-
tional estimation methods (e.g. conditional maximum likelihood) fail to accurately
estimate these parameters. To deal with this problem, we use the PCML method to
estimate the parameters in Poisson autoregressive model with sparse structure. In
time series analysis, Wang et al. (2007a) proposed the modified LASSO to select the
significant parameters of linear regression with autoregressive errors model. Nardi
and Rinaldo (2011) studied the LASSO procedure for autoregressive model with
double asymptotic framework. Yoon et al. (2013) investigated the properties of
LASSO estimator in autoregressive regression model. Based on the previous results
about penalized estimation for autoregressive model, it is feasible to apply penalized
estimation method to model sparse Poisson autoregressive data.

The rest of the paper is organized as follows: In Section 2, we introduce the
Poisson autoregressive model and the PCML estimator. We also review some basic
properties of the Poisson autoregressive model. In Section 3, we define some no-
tations and give the theoretical properties of PCML estimator. Simulation studies
are given in Section 4 and a real data example is presented in Section 5. Some
concluding remarks are given in Section 6. All proof details are reported in the
Appendix.

2 Penalized conditional maximum likelihood

First, we review the Poisson autoregressive model, which is defined as follows
Xt

∣∣Ft−1 : P(γt), ∀t ∈ Z,

γt = α0 +

p∑
i=1

αiXt−i,
(1)

where Ft−1 is the σ-field generated by {Xt−1, Xt−2, . . .} and α0 > 0, αi ≥ 0, i =
1, . . . p. For convenience, let θ = (α0, αp, . . . , α1)

T, where ‘T’ denotes the transpose.
Following Zhu and Wang (2011), the conditional log-likelihood function for model
(1) is

Ln(θ) =
n∑

t=1

ln(θ) =
n∑

t=1

(
Xt ln γt − γt − ln(Xt!)

)
. (2)

Motivated by (3.14) in Fan and Lv (2010), we propose the PCML function as

Qn(θ) = Ln(θ)− n

p+1∑
i=1

Pλ(|θi|), (3)

where Ln(θ) is defined in (2), and Pλ(·) is a penalty function. Here we pay attention
to the following four penalty functions, which have the oracle property (Fan and Li,
2001):
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(P.1) The SCAD penalty function (Fan and Li, 2001) is defined by

Pλ,a(|θi|) =


λ|θi|, |θi| ≤ λ,

− (θ2i − 2aλ|θi|+ λ2)/[2(a− 1)], λ < |θi| ≤ aλ,

(a+ 1)λ2/2, |θi| > aλ.

where λ > 0 is the tuning parameter, and a > 2 is the shape parameter.

(P.2) The adaptive LASSO (Zou, 2006) is defined as Pλ(|θi|) = λwi|θi|, where λ > 0
is the tuning parameter. Of note that the weight wi is defined as wi = 1/|θ̄i|,
where θ̄i is the CML estimator.

(P.3) The MCP (Zhang, 2010) is defined as follows,

Pλ,δ(|θi|) = λ
{
|θi| −

|θi|2

2δλ

}
I(0 ≤ |θi| < δλ) +

λ2δ

2
I(|θi| ≥ δλ),

where λ > 0 is the tuning parameter, and δ > 0 is the shape parameter.

(P.4) Dicker et al. (2013) gave the definition of SELO function,

Pλ,τ (|θi|) =
λ

log(2)
log
( |θi|
|θi|+ τ

+ 1
)
,

where λ > 0 is the tuning parameter, and τ > 0 is the shape parameter.

The PCML estimator is obtain by maximizing Qn(θ), which is defined as

θ̂ = argmax
θ

Qn(θ),

where Qn(θ) is defined in (3). In the next section, we will study some theoret-
ical properties of the PCML estimator, which include the consistence and oracle
properties.

3 Consistence and oracle property

Without loss of generality, we assume that θ0 = (θ10, θ20)
T with θ20 = 0, where

θ0 = (α0
0, α

0
p, . . . , α

0
1)

T is the true value for the parameter of interest in model (1).

Define b = (Ṗλn(|θ01|)sgn(θ01), . . . , Ṗλn(|θ0s |)sgn(θ0s))T, andΛ = diag{P̈λn(|θ01|), . . . P̈λn(|θ0s |)},
where s is the number of components in θ10, Ṗ (·) and P̈ (·) denote the first and second
derivative of the penalty function P (·), respectively. Furthermore, we introduce some
notations as an = max1≤i≤p+1{Ṗλn(|θ0i |), θ0i ̸= 0} and bn = max1≤i≤p+1{P̈λn(|θ0i |), θ0i ̸=
0}. To study the theoretical properties of θ̂, we need the following regularity condi-
tions:

(C.1) 0 <
∑p

i=1 αi < 1; (C.2) an = O(n−1/2); (C.3) bn = o(1).
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Here (C.1) ensures that {Xt} is strictly stationary and ergodic (Doukhan et al.
2012), which is used for the asymptotic properties of θ̂. Zhu and Wang (2011)
proved that for any positive integer m, E(Xm

t ) < ∞ if and only if (C.1) hold-
s. (C.2) is to ensure that the estimator is

√
n-consistent. (C.3) is used to make

sure that the influence of penalty function does not exceed that of CML criterion
function on the resulting estimator. To check the rationality of (C.2) and (C.3)
with SCAD penalty (other penalties are similar), by some calculation we can de-

rive that an = max1≤i≤p+1{λnI(|θi| ≤ λn) +
(aλn−|θi|)+

a−1
I(|θi| > λn), θi ̸= 0} and

bn = max1≤i≤p+1 {−(a− 1)−1I(λn < |θi| < aλn), θi ̸= 0}. Then, the classical condi-
tion for penalty-based procedure (Fan and Li, 2001) with λn = O(n−1/2) can ensure
the (C.2) and (C.3) hold. Of note the notation λn is used to indicate that the
tuning parameter λ depends on the sample size n. The performance of the tuning
parameter λn will be studied via simulation in the Section 4. Now we focus on the
properties of PCML estimator, which are given below.

Theorem 1. Under the conditions (C.1)-(C.3), there exists a local maximizer θ̂ of
Qn(θ) such that ∥θ̂ − θ0∥ = Op(n

−1/2 + an).

The above Theorem 1 implies that there exists a
√
n-consistent estimator for θ0.

To establish the sparsity of PCML estimator, we need the following lemma.

Lemma 1. We assume that lim infn→∞ lim infθ→0+ λ−1
n Ṗλn(|θj|) > 0 and the condi-

tions (C.1)-(C.3) hold, so with probability tending to 1, for any given θ1 satisfying
∥θ1 − θ10∥ = Op(n

−1/2) and any constant η > 0, we have

Qn

{(
θ1

0

)}
= max

∥θ2∥≤ηn−1/2
Qn

{(
θ1

θ2

)}
.

Note that the assumption lim infn→∞ lim infθ→0+ λ−1
n Ṗλn(|θj|) > 0 is mild, since

lim infn→∞ lim infθ→0+ λ−1
n Ṗλn(|θj|) = 1 (SCAD penalty; other cases are similar).

We discuss the oracle property of PCML estimator. The oracle property, proposed
by Fan and Li (2001), means that the penalized estimation method performs as
well as if the true model was known in advance. Specifically, it can identify the
right subset model and has the optimal estimation rate (Zou, 2006), which has been
argued (Fan and Li 2001; Fan and Peng, 2004; Zhang, 2010) that a good procedure
should have this oracle property. The following theoretical result provides the oracle
property of PCML estimator θ̂.

Theorem 2. (Oracle Property) Under the conditions (C.1)-(C.3), with probability
tending to 1, the root-n consistent estimate in Theorem 1 satisfies:

(i) Sparsity : θ̂2 = 0 ;

(ii) Asymptotic normality :

√
n (Σs(θ0) +Λ)

{(
θ̂1 − θ10

)
+
(
Σs(θ0) +Λ)−1b

)} D−→N(0,Σs(θ0)),

where ‘
D−→’ denotes convergence in distribution, Σs(θ0) represents the Fisher infor-

mation (Σ(θ0) is defined in Lemma A.1) with θ20 = 0.
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Note that {Xt} is a strictly stationary and ergodic process, then by ergod-

ic theorem, we have that Σ̂
s
(θ0) = 1

n

∑n
t=1

1
γt
Y s

tY
s
t
T a.s.−→Σs(θ0), where Y s

t =

(1, Xt−p, . . . , Xt−p+s−2)
T. Therefore, the consistent covariance estimate for θ̂1 is

1
n
(Σ̂

s
(θ0) +Λ)−1Σ̂

s
(θ0)(Σ̂

s
(θ0) +Λ)−1.

4 Simulation studies

In this section, we report some numerical results to check the performance of PCML
estimator for the Poisson autoregressive model with the help of R software. In our
simulation, we use the local quadratic approximation (Fan and Li, 2001) to derive
the PCML estimator. Because the penalty functions are singular at the origin and
non-differentiable at the origin respect to θ. Suppose that a given initial θ(0) is
close to the true value θ0 (e.g. the CML estimator), Fan and Li (2001) proposed
that the first order derivative of the penalty function can be locally approximated
by Ṗλ(|θi|) = Ṗλ(|θi|)sgn(θi) ≈ {Ṗλ(|θ(0)i |)/|θ(0)i |}θi. In other words,

Pλ(|θi|) ≈ Pλ(|θ(0)i |) + 1

2

{
Ṗλ(|θ(0)i |)/|θ(0)i |

}(
θ2i − (θ

(0)
i )2

)
, for θi ≈ θ

(0)
i .

Then, for k = 1, 2, . . . , we can repeatedly solve

θ(k+1) = argmax
θ

{
Ln(θ)− n

p+1∑
i=1

Ṗλ(|θ(k)i |)
2|θ(k)i |

θ2i

}
(4)

until the sequence of {θ(k)} converges. We use BIC to determine the optimal tuning
parameter λ in our procedure. The BIC criterion (Wang et al. 2007b) is

BIC(λ) = log

(∑n
t=1 S(θ̂λ)

2

n− d̂f

)
+

log(n)

n
d̂f, (5)

where S(θ) = Xt −
∑p

i=1 αiXt−i − α0, d̂f is the number of non-zero components

of θ̂λ. Then we choose the tuning parameter λ̂ which minimizes BIC(λ) and the
PCML estimator is θ̂ = θ̂λ̂.

To investigate the performance of the PCML estimator, as suggested by one
referee, we consider two simulation studies:

Case I: θ0 = (0.5, 0.2, 0, 0, 0.2, 0, 0, 0, 0.2)T.
Case II: θ0 = (0.5, 0.3, 0, 0, 0.3, 0, 0, 0, 0.3)T.

Here Case I has parameter values putting the process well inside the stationarity
region, and Case II covers situation where the stationarity condition is nearly not
satisfied. We consider the adaptive LASSO (ALASSO), SCAD, MCP and SELO in
our procedure, the Bias and mean squared errors (MSE) of the PCML estimators
are reported in Tables 1 and 2, respectively. Set Ψ = {i;α0

i ̸= 0, i = 0, . . . , p}, the
performances of each penalty functions are presented in Tables 3 and 4, which include
the estimated average model size (MS) Ψ̂ = {i; α̂i ̸= 0, i = 1, . . . , p}; the proportion
of selecting the correct model I{Ψ̂ = Ψ} (CMR); the false positive rate |Ψ̂\Ψ|/|Ψ̂|
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(F+), where ‘|Ψ|’ denotes cardinality of the set and ‘\’ denotes the difference of
set; and the false negative rate |Ψ\Ψ̂|/(p− |Ψ̂|) (F−). Figure 1 reports the optimal
tuning parameter λ with n = 500 in Case I (other cases are similar and omitted
here). All the results are based on 1000 replications, with sample size n = 150, 300
and 500, respectively.

It can be seen from the results that the PCML performs well in both studies.
Specifically, the Bias and MSE become smaller as the increasing of sample size.
Although all the penalty functions select a larger model, the results of average
model size tend to the true value as the sample size increases. The results based
on SELO have highest accuracy and smallest model size, which indicate that SELO
procedure performs better than the other three penalty functions in practice.

5 An application

In this section, we will apply the proposed methodology to the monthly counts of
burglaries in the 25 police car beat in Pittsburgh from January 1990 to December
2001 (http://www.forecastingprinciples.com). The data set totally consists of 144
monthly observations with ACF and PACF are presented in Figure 2. It is easy to
see that we may fit the data with Poisson autoregressive model with order p = 9
(BIC = 634.547). In Table 5, we report the estimate, standard errors (SE) and
p-value, which indicate that the Poisson autoregressive is{

Xt

∣∣Ft−1 : P(γt);

γt = α0 + α2Xt−2 + α3Xt−3 + α9Xt−9

(6)

with BIC = 614.588, which shows that it is more appropriate to use the Poisson
autoregressive model with sparse structure for this data. In Figure 3, we present the
predicted value X̂t = γt(θ̂) (Fokianos, 2009) with the SELO procedure (other cases
are similar), which can reasonably approximates the tendency of the observations.

To check the adequacy of model (6), we consider the Pearson residuals which
is defined by et = (Xt − γt)/

√
γt. The cumulative periodogram plot (Brockwell et

al. 2001) of {et} is reported in Figure 4, which indicates the sequence {et} is white
noise sequence. Thus, by Kedem et al. (2005), it is suitable to fit the real data using
model (6).

6 Conclusion

We consider the penalized approach to modeling the Poisson autoregressive process.
The oracle properties of the PCML estimator are established. To illustrate the
effectiveness of the proposed procedure, some simulation results and a real data
example are also provided. The PCML method can also be extended to other
kinds of state-space models, such as INGARCH (Ferland et al. 2006) and nonlinear
Poisson autoregressive model (Fokianos et al. 2009), which will be studied in the
future of our research.
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Appendix

To prove Theorem 1, we need the following lemma.
Lemma A.1. Under condition (C.1), as n → ∞ we have

1√
n
B(θ0)

D−→N(0,Σ(θ0)),

where B(θ0) =
∑n

t=1
∂ln(θ0)

∂θ
; the Fisher information matrix Σ(θ0) = E(YtYT

t

γt
) with

Yt = (1, Xt−p, . . . , Xt−1)
T.

Proof of Lemma A.1. Let

Tn1 =
n∑

t=1

(
Xt

γt
− 1

)
,

Tni =
n∑

t=1

(
Xt

γt
− 1

)
Xt−(p+2−i), 2 ≤ i ≤ p+ 1,

Through some calculation, we can derive that

E

((
Xn

γn
− 1

) ∣∣∣Fn−1

)
= 0 ,

E
(
Tn1|Fn−1

)
= E

(
T(n−1)1 +

(
Xn

γn
− 1

) ∣∣∣Fn−1

)
= T(n−1)1,

which implies that {Tn1,Fn, n ≥ 1} is a martingale with Fn = σ (Xn, Xn−1, . . . , X0).
By E|Xt|4 < ∞, the strict stationarity of {Xt}, and the ergodic theorem, we obtain
that

E

(
Xn

γn
− 1

)2

< ∞,

1

n

n∑
t=1

(
Xt

γt
− 1

)2
a.s.−→E

(
Xn

γn
− 1

)2

= E(
1

γn
) = σ11.
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Using the martingale central limit theorem, we get that

1√
n
Tn1

D−→N(0, σ11).

Similarly, we can prove {Tni,Fn, n ≥ 1}, i = 2, . . . , p+ 1 is a martingale and

1√
n
Tni

D−→N(0, σii).

For any c = (c1, . . . , cp+1)
T ∈ Rp+1\(0, . . . , 0)T, we get

1√
n
cT


Tn1

Tn2
...

Tn(p+1)

 =
1√
n

n∑
t=1

(c1 + c2Xt−p + · · ·+ cp+1Xt−1)

(
Xt

γt
− 1

)

D−→N

(
0, E (c1 + c2X0 + · · ·+ cp+1Xp−1)

2

(
Xp

γp
− 1

)2
)
.

Thus, by the Cramer-Wold device,

1√
n


Tn1

Tn2
...

Tn(p+1)

 =
1√
n
B(θ0)

D−→N(0,Σ(θ0)).

This end this proof.

Proof of Theorem 1. Let βn = (n−1/2 + an), following Fan and Li (2001), we need
to show that for any ε > 0, there exists a constant d, such that

P

[
sup
∥u∥=d

{Qn(θ0 + βnu)} < Qn(θ0)

]
≥ 1− ε, (7)

which implies that there exists a local maximum in the ball {θ0+βnu : ∥u∥ ≤ d} with
probability at least 1−ε, then there exists a local maximizer with ∥θ̂−θ0∥ = Op(βn).
Note that

Dn(u) = Qn(θ0 + βnu)−Qn(θ0)

= Ln(θ0 + βnu)− Ln(θ0)− n

p+1∑
i

(
Pλn(|θ0i + βnui|)− Pλn(|θ0i |)

)
≤ Ln(θ0 + βnu)− Ln(θ0)− n

s∑
i

(
Pλn(|θ0i + βnui|)− Pλn(|θ0i |)

)
. (8)
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By Taylor series expansion, we obtain

βnu
TB(θ0) +

1

2
β2
nu

T∂
2Ln(θ0)

∂θ∂θT
u
{
1 + o(1)

}
−

s∑
i

{
nβnṖλn(|θ0i |)sgn(θ0i )ui + nβ2

nP̈λn(|θ0i |)u2
i [1 + o(1)]

}
= A1 + A2 + A3,

where

A1 = βnu
TB(θ0),

A2 =
1

2
β2
nu

T∂
2Ln(θ0)

∂θ∂θT
u
{
1 + o(1)

}
,

A3 = −
s∑
i

{
nβnṖλn(|θ0i |)sgn(θ0i )ui + nβ2

nP̈λn(|θ0i |)u2
j [1 + o(1)]

}
.

From Lemma A.1, we know that n−1/2B(θ0) = Op(1), then A1 = Op(n
1/2βn) =

Op(nβ
2
n). By ergodicity, we get A2 = −nβ2

nu
TΣ(θ0)u, as n → ∞. From conditions

(C.2) and (C.3), we have A3 is bounded by
√
sβnan∥u∥+nβ2

nbn∥u∥2. By choosing a
sufficient large d, both A1 and A3 are dominated by A2. The proof is completed.

Proof of Lemma 1. We need to prove that with probability tending to one, as n → ∞
for any θ1 satisfying ∥θ1 − θ10∥ = Op(n

−1/2) and for some small ϵn = ηn−1/2 and
j = s+ 1, . . . , p+ 1

∂Qn(θ)

∂θj
< 0, for 0 < θj < ϵn, (9)

∂Qn(θ)

∂θj
> 0, for − ϵn < θj < 0. (10)

To show (9), by Taylor’s expansion,

∂Qn(θ)

∂θj
=
∂Ln(θ)

∂θj
− nṖλn(|θj|)sgn(θj)

=
∂Ln(θ0)

∂θj
+

p+1∑
i=1

∂2Ln(θ0)

∂θi∂θj
(θi − θ0i ) {1 + o(1)}

− nṖλn(|θj|)sgn(θj). (11)

From Lemma A.1, we know that ∂Ln(θ0)
∂θj

= Op(n
1/2). By law of large numbers,

strict stationarity and ∥θ1 − θ10∥ = Op(n
−1/2), we have

p+1∑
i=1

∂2Ln(θ0)

∂θi∂θj
(θi − θi0) {1 + o(1)} = Op(n

1/2).
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Thus, ∂Qn(θ)
∂θj

= nλn

{
Op(n

−1/2/λn)− λ−1
n Ṗλn(|θj|)sgn(θj)

}
. Since n−1/2/λn → 0 and

λ−1
n Ṗλn(|θj|) > 0 as n → ∞. The sign of (11) is dominated by that of θj. Hence,

(10) follows. This completes the proof.

Proof of Theorem 2. Part (i) holds by Lemma 1. We only need to prove (ii). From
part (i), we know that θ̂2 = 0 with probability tending to 1. Thus, there exists a
root-n consistent local maximum estimator θ̂1 satisfies the following equation

∂Qn(θ)

∂θj

∣∣∣∣∣
θ=

θ̂1

0

 = 0, for j = 1, . . . , s.

By the Taylor expansion, we have

0 =
∂Ln(θ0)

∂θj
− nṖλn(|θ̂j|)sgn(θ̂j)

=
∂Ln(θ0)

∂θj
+

s∑
l=1

{
∂2Ln(θ0)

∂θl∂θj
+ op(1)

}
(θ̂l − θ0l )

− n
{
Ṗλn(|θ0j |)sgn(θ0j ) +

(
P̈λn(|θ0j |) + op(1)

)
(θ̂j − θ0j )

}
.

This indicates

√
n(Σs(θ0) +Λ){(θ̂1 − θ10) + (Σs(θ0) +Λ)−1b)} =

1√
n
Bs(θ0) + op(1),

where Bs(θ0) =
∑n

t=1
1
γt
(Xt − γt)Y

s
t and Y s

t = (1, Xt−p, . . . , Xt−p+s−2)
T. From

the Slutskys theorem and the martingale central limit theorem, we complete the
proof.

References

[1] Al-Osh M A, Alzaid A A (1987) First-order integer-valued autoregressive (INAR (1))
process. Journal of Time Series Analysis, 8(3):261-275.

[2] Al-Osh M A, Alzaid A A (1988) Integer-valued moving average (INMA) process.
Statistical Papers, 29(1): 281-300.

[3] Alzaid A A, Al-Osh M A (1990) An integer-valued pth-order autoregressive structure
(INAR (p)) process. Journal of Applied Probability, 314-324.

[4] Brillinger D R (2001) Time series: data analysis and theory. Siam.

[5] Brockwell P J, Davis R A (2013) Time series: theory and methods. Springer Science
& Business Media.

[6] Davis R A, Dunsmuir W T M, Streett S B (2003) Observation-driven models for
Poisson counts. Biometrika, 90(4):777-790.

10



[7] Dicker L, Huang B, Lin X (2013) Variable selection and estimation with the seamless-
L0 penalty. Statistica Sinica, 929-962.

[8] Doukhan P, Fokianos K, Tjøtheim D (2012) On weak dependence conditions for
Poisson autoregressions. Statistics&Probability Letters, 82: 942-48.

[9] Efron B, Hastie T, Johnstone I, et al. (2004) Least angle regression. The Annals of
statistics, 32(2): 407-499.

[10] Engle R F (1982) Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the Econometric
Society, 987-1007.

[11] Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348-1360.

[12] Fan J, Li R (2002) Variable selection for Cox’s proportional hazards model and frailty
model. The Annals of Statistics, 74-99.

[13] Fan J, Lv J (2010). A selective overview of variable selection in high dimensional
feature space. Statistica Sinica, 20: 101-148.

[14] Fan J., Peng H (2004) On nonconcave penalized likelihood with diverging number of
parameters. The Annals of Statistics, 32: 928-961.

[15] Ferland R, Latour A, Oraichi D (2006) Integer-valued GARCH process. Journal of
Time Series Analysis, 27(6): 923-942.

[16] Fokianos K, Rahbek A, Tjøstheim D (2009) Poisson autoregression. Journal of the
American Statistical Association, 104(488):1430-1439.

[17] Franke J, Seligmann T (1993) Conditional maximum likelihood estimates for INAR
(1) processes and their application to modelling epileptic seizure counts. Develop-
ments in time series analysis, 310-330.

[18] Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1.

[19] Hall P, Heyde C C (2014) Martingale limit theory and its application. Academic
press.

[20] Kedem B, Fokianos K (2005) Regression models for time series analysis. John Wiley
& Sons.

[21] Khoo W C, Ong S H, Biswas A (2017) Modeling time series of counts with a new
class of INAR (1) model. Statistical Papers, 58: 393-416.

[22] Klimko L A, Nelson P I (1978) On conditional least squares estimation for stochastic
processes. The Annals of Statistics, 629-642.

[23] Knight K, Fu W (2000) Asymptotics for LASSO-type estimators. The Annals of
Statistics, 1356-1378.

11



[24] Nardi Y, Rinaldo A (2011) Autoregressive process modeling via the LASSO proce-
dure. Journal of Multivariate Analysis, 102(3):528-549.

[25] Steutel F W, Van Harn K (1979) Discrete analogues of self-decomposability and
stability. The Annals of Probability, 893-899.

[26] Tibshirani R (1996) Regression shrinkage and selection via the LASSO. Journal of
the Royal Statistical Society. Series B (Methodological), 267-288.

[27] Tong X., He X., Sun L., and Sun J. (2009). Variable selection for panel count data
via non-concave penalized estimating function. Scandinavian Journal of Statistics, 36:
620 - 635.

[28] Wang H, Li G, Tsai C L (2007a) Regression coefficient and autoregressive order
shrinkage and selection via the LASSO. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 69(1):63-78.

[29] Wang H, Li R, Tsai C L (2007b) Tuning parameter selectors for the smoothly clipped
absolute deviation method. Biometrika, 94(3): 553-568.

[30] Yang K, Wang D, Jia B, Li H. (2016) An integer-valued threshold autoregressive
process based on negative binomial thinning. Statistical Papers, DOI: 10.1007/s00362-
016-0808-1.

[31] Yoon Y J, Park C, Lee T (2013) Penalized regression models with autoregressive error
terms. Journal of Statistical Computation and Simulation, 83(9):1756-1772.

[32] Zhang H H, Lu W (2007) Adaptive Lasso for Cox’s proportional hazards model.
Biometrika, 4(3): 691-703.

[33] Zhang C H (2010) Nearly unbiased variable selection under minimax concave penalty.
The Annals of statistics, 894-942.

[34] Zhang H, Wang D, Zhu F (2010) Inference for INAR (p) processes with signed gener-
alized power series thinning operator. Journal of Statistical Planning and Inference,
140(3):667-683.

[35] Zhang H, Sun J, Wang D (2013) Variable selection and estimation for multivariate
panel count data via the seamless-L0 penalty. The Canadian Journal of Statistics, 41:
368 - 385.

[36] Zheng H, Basawa I V, Datta S (2006) Inference for pth-order random coefficient
integer-valued autoregressive processes. Journal of Time Series Analysis, 27(3):411-
440.

[37] Zhu F, Wang D (2011) Estimation and testing for a Poisson autoregressive model.
Metrika, 73(2):211-230.

[38] Zou H (2006) The adaptive LASSO and its oracle properties. Journal of the American
statistical association, 101(476):1418-1429.

12



Table 1: Bias and MSE (in parentheses) of the estimators in Case I.

Sample size ALASSO SCAD MCP SELO

α̂0 −0.0552(0.0486) −0.0576(0.0501) −0.0571(0.0493) −0.0570(0.0491)
α̂1 −0.0316(0.0071) −0.0339(0.0081) −0.0328(0.0076) −0.0321(0.0073)
α̂2 0.0151(0.0007) 0.0216(0.0013) 0.0221(0.0013) 0.0146(0.0008)
α̂3 0.0093(0.0009) 0.0109(0.0012) 0.0102(0.0014) 0.0109(0.0008)

n = 150 α̂4 −0.0271(0.0083) −0.0296(0.0092) −0.0295(0.0089) −0.0283(0.0086)
α̂5 0.0189(0.0011) 0.0226(0.0012) 0.0218(0.0008) 0.0175(0.0010)
α̂6 0.0101(0.0005) 0.0173(0.0013) 0.0176(0.0010) 0.0108(0.0008)
α̂7 0.0123(0.0010) 0.0187(0.0015) 0.0183(0.0012) 0.0128(0.0009)
α̂8 −0.0293(0.0067) −0.0306(0.0086) −0.0310(0.0079) −0.0296(0.0072)

α̂0 −0.0311(0.0136) −0.0329(0.0148) −0.0325(0.0142) −0.0320(0.0139)
α̂1 −0.0182(0.0034) −0.0194(0.0041) −0.0186(0.0036) −0.0179(0.0034)
α̂2 0.0116(0.0004) 0.0126(0.0007) 0.0120(0.0006) 0.0114(0.0003)
α̂3 0.0082(0.0005) 0.0108(0.0009) 0.0106(0.0009) 0.0078(0.0005)

n = 300 α̂4 −0.0162(0.0037) −0.0189(0.0045) 0.0176(0.0042) −0.0165(0.0040)
α̂5 0.0110(0.0004) 0.0139(0.0009) 0.0146(0.0007) 0.0107(0.0003)
α̂6 0.0083(0.0003) 0.0093(0.0006) 0.0086(0.0006) 0.0081(0.0005)
α̂7 0.0103(0.0007) 0.0109(0.0011) 0.0097(0.0010) 0.0075(0.0005)
α̂8 −0.0169(0.0037) −0.0278(0.0041) −0.0261(0.0040) −0.0172(0.0039)

α̂0 −0.0227(0.0078) −0.0236(0.0086) −0.0233(0.0081) −0.0229(0.0080)
α̂1 −0.0153(0.0018) −0.0157(0.0022) −0.0152(0.0020) −0.0149(0.0017)
α̂2 0.0060(0.0002) 0.0072(0.0007) 0.0066(0.0004) 0.0055(0.0001)
α̂3 0.0072(0.0003) 0.0098(0.0006) 0.0083(0.0004) 0.0059(0.0002)

n = 500 α̂4 −0.0092(0.0020) −0.0103(0.0023) −0.0101(0.0023) −0.0095(0.0022)
α̂5 0.0063(0.0002) 0.0076(0.0010) 0.0073(0.0006) 0.0055(0.0002)
α̂6 0.0063(0.0001) 0.0078(0.0005) 0.0074(0.0004) 0.0056(0.0001)
α̂7 0.0058(0.0002) 0.0109(0.0009) 0.0063(0.0003) 0.0050(0.0001)
α̂8 −0.0140(0.0022) −0.0153(0.0027) −0.0148(0.0030) −0.0140(0.0023)
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Table 2: Bias and MSE (in parentheses) of the estimators in Case II.

Sample size ALASSO SCAD MCP SELO

α̂0 0.1156(0.1002) 0.1289(0.1211) 0.1256(0.1123) 0.1136(0.0965)
α̂1 −0.0421(0.0082) −0.0539(0.0087) −0.0521(0.0084) −0.0420(0.0079)
α̂2 0.0122(0.0011) 0.0166(0.0018) 0.0150(0.0018) 0.0119(0.0009)
α̂3 0.0090(0.0012) 0.0125(0.0029) 0.0113(0.0018) 0.0102(0.0011)

n = 150 α̂4 −0.0357(0.0088) −0.0363(0.0092) −0.0360(0.0091) −0.0359(0.0090)
α̂5 0.0158(0.0018) 0.0201(0.0022) 0.0193(0.0020) 0.0152(0.0012)
α̂6 0.0095(0.0009) 0.0125(0.0016) 0.0111(0.0012) 0.0090(0.0008)
α̂7 0.0113(0.0013) 0.0149(0.0017) 0.0135(0.0011) 0.0113(0.0011)
α̂8 −0.0356(0.0077) −0.0425(0.0090) −0.0380(0.0081) −0.0351(0.0075)

α̂0 0.0596(0.0498) 0.0652(0.0593) 0.0638(0.0549) 0.0615(0.0501)
α̂1 −0.0339(0.0031) −0.0357(0.0039) −0.0342(0.0035) −0.0335(0.0030)
α̂2 0.0101(0.0005) 0.0172(0.0010) 0.0168(0.0012) 0.0098(0.0006)
α̂3 0.0072(0.0006) 0.0153(0.0011) 0.0152(0.0010) 0.0063(0.0006)

n = 300 α̂4 −0.0245(0.0041) −0.0251(0.0048) −0.0249(0.0046) −0.0241(0.0041)
α̂5 0.0130(0.0008) 0.0159(0.0014) 0.0157(0.0012) 0.0127(0.0006)
α̂6 0.0052(0.0007) 0.0106(0.0008) 0.0118(0.0010) 0.0090(0.0006)
α̂7 0.0091(0.0007) 0.0113(0.0013) 0.0101(0.0007) 0.0099(0.0004)
α̂8 −0.0215(0.0037) −0.0220(0.0041) −0.0217(0.0040) −0.0216(0.0039)

α̂0 0.0338(0.0226) 0.0396(0.0286) 0.0378(0.0269) 0.0341(0.0229)
α̂1 −0.0215(0.0018) −0.0238(0.0023) −0.0227(0.0021) −0.0214(0.0017)
α̂2 0.0060(0.0003) 0.0102(0.0012) 0.0106(0.0009) 0.0055(0.0002)
α̂3 0.0061(0.0002) 0.0096(0.0011) 0.0095(0.0011) 0.0059(0.0002)

n = 500 α̂4 −0.0163(0.0022) −0.0177(0.0028) −0.0175(0.0025) −0.0161(0.0022)
α̂5 0.0082(0.0003) 0.0110(0.0008) 0.0107(0.0011) 0.0090(0.0003)
α̂6 0.0058(0.0003) 0.0103(0.0006) 0.0099(0.0007) 0.0052(0.0001)
α̂7 0.0071(0.0004) 0.0097(0.0011) 0.0085(0.0006) 0.0070(0.0002)
α̂8 −0.0162(0.0022) −0.0175(0.0027) −0.0182(0.0030) −0.0166(0.0023)
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Table 3: Simulation results for model selection in Case I.

Sample size Penalty function MS CMR F+ F−

n = 150 ALASSO 4.1780 0.5640 0.0954 0.0395
SCAD 4.2240 0.4640 0.1211 0.0554
MCP 4.1880 0.5020 0.1064 0.0441
SELO 4.1340 0.6280 0.0829 0.0294

n = 300 ALASSO 4.1260 0.6440 0.0746 0.0216
SCAD 4.1700 0.5680 0.0869 0.0385
MCP 4.1660 0.6020 0.0907 0.0260
SELO 4.1080 0.7300 0.0506 0.0192

n = 500 ALASSO 4.0500 0.7980 0.0338 0.0151
SCAD 4.1400 0.6120 0.0770 0.0305
MCP 4.0940 0.7320 0.0544 0.0185
SELO 4.0440 0.8980 0.0194 0.0054
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Table 4: Simulation results for model selection in Case II.

Sample size Penalty function MS CMR F+ F−

n = 150 ALASSO 4.3180 0.6080 0.1035 0.0118
SCAD 4.3920 0.4860 0.1344 0.0280
MCP 4.3760 0.5360 0.1190 0.0213
SELO 4.3060 0.6500 0.0895 0.0080

n = 300 ALASSO 4.2300 0.7440 0.0686 0.0039
SCAD 4.3120 0.6100 0.0984 0.0126
MCP 4.2920 0.6580 0.0921 0.0103
SELO 4.2120 0.7500 0.0655 0.0041

n = 500 ALASSO 4.1620 0.8020 0.0521 0.0010
SCAD 4.3040 0.6560 0.0915 0.0080
MCP 4.2620 0.6960 0.0818 0.0036
SELO 4.1160 0.8400 0.0414 0.0007
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Table 5: Estimated regression coefficients, standard errors(SE) and p-value.

ALASSO SCAD MCP SELO

α̂0 1.2136 1.2126 1.2117 1.2130

(SE, p-value) (0.3534, 0.0006) (0.3541, 0.0006) (0.3539, 0.0006) (0.3536, 0.0006)

α̂1 0 0 0 0

(SE, p-value) (−, −) (−, −) (−, −) (−, −)

α̂2 0.1563 0.1577 0.1572 0.1565

(SE, p-value) (0.0641, 0.0147) (0.0643, 0.0141) (0.0642,0.0143 ) (0.0641, 0.0147)

α̂3 0.1270 0.1286 0.1281 0.1275

(SE, p-value) (0.0635, 0.0454) (0.0636, 0.0433) (0.0636, 0.0439) (0.0635, 0.0447)

α̂4 0 0 0 0

(SE, p-value) (−, −) (−, −) (−, −) (−, −)

α5 0 0 0 0

(SE, p-value) (−, −) (−, −) (−, −) (−, −)

α̂6 0 0 0 0

(SE, p-value) (−, −) (−, −) (−, −) (−, −)

α̂7 0 0 0 0

(SE, p-value) (−, −) (−, −) (−, −) (−, −)

α̂8 0 0 0 0

(SE, p-value) (−, −) (−, −) (−, −) (−, −)

α̂9 0.2196 0.2208 0.2205 0.2201

(SE, p-value) (0.0615, 0.0004) (0.0616, 0.0003) (0.0616, 0.0003) (0.0615, 0.0003)
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Fig. 1: The optimal tuning parameter λ with n = 500 (Case I).
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Fig. 2: Monthly counts of burglaries in the 25 police car beat in Pittsburgh and their ACF and PACF plots.
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Fig. 3: The observed (red) and predicted (blue) counts of monthly burglaries in Pittsburgh.
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Fig. 4: The cumulative periodogram plot of the Pearson residuals.
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