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Abstract. A common task in computational physics is the convolution of a translation invariant,4
free-space Green’s function with a smooth and compactly supported source density. Fourier methods5
are natural in this context, but encounter two difficulties. First, the kernel is typically singular in6
Fourier space and second, the source distribution can be highly anisotropic. The truncated kernel7
method [49] overcomes the first difficulty by taking into account the spatial range over which the8
solution is desired and setting the Green’s function to zero beyond that range in a radially symmetric9
fashion. The transform of this truncated kernel can be computed easily and is infinitely differentiable10
by the Paley-Wiener theorem. As a result, a simple trapezoidal rule can be used for quadrature, the11
convolution can be implemented using the FFT, and the result is spectrally accurate.12

Here, we develop an anisotropic extension of the truncated kernel method, where the truncation13
region in physical space is a rectangular box, which may have a large aspect ratio. In this case, the14
Fourier transform of the truncated kernel is again smooth, but is typically not available analytically.15
Instead, an efficient sum-of-Gaussians approximation is used to obtain the Fourier transform of the16
truncated kernel efficiently and accurately. This then permits the fast evaluation of the desired17
convolution with a source distribution sampled on an anisotropic, tensor-product grid. For problems18
in d dimensions, the storage cost is O(2dN) independent of the aspect ratio, and the computational19
cost is O(2dN log(2dN)), where N is the total number of grid points needed to resolve the density.20
The performance of the algorithm is illustrated with several examples.21
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1. Introduction. In this paper, we consider the evaluation of convolution inte-25

grals of the form26

(1.1) φ(x) = [U ∗ ρ] (x) =

∫
Rd
U(x− y)ρ(y)dy,27

where d is the ambient dimension, ρ(x) is a smooth and compactly supported (or28

rapidly decaying) source distribution, and the convolution kernel U(x) is a known29

radially symmetric function, which might be singular at the origin and/or at infinity.30

A typical example is the solution of the Poisson equation31

−∆φ = ρ32

in free space, in which case U(x) = − 1
2π ln |x| for d = 2 and U(x) = 1

4π|x| for d = 3.33

It is well known from the convolution theorem that φ(x) in (1.1) can be computed34
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2 L. Greengard, S. Jiang and Y. Zhang

in Fourier space by the formula35

(1.2) φ(x) =
1

(2π)d

∫
Rd
Û(k)ρ̂(k)eik·xdk,36

where the Fourier transform of f is defined as f̂(k) =
∫
Rd f(x)e−ik·xdx. For the37

Coulomb potential (the Poisson equation), we have38

(1.3) Û(k) =
1

|k|2
.39

This is, of course, true more generally; for any of the constant-coefficient partial dif-40

ferential equations of mathematical physics, the solution due to a source distribution41

ρ(x) takes the form (1.1), (1.2), where U(x) is the corresponding free-space Green’s42

function. Important cases aside from the Coulomb potential include the Yukawa43

potential, the biharmonic potential, etc.44

There is a substantial literature on alternative methods for the solution of partial45

differential equations in free space. Finite difference and finite element discretization46

of the governing equation, for example, are more flexible in terms of spatial adaptiv-47

ity, but require the solution of large linear systems and the imposition of artificial,48

“outgoing” boundary conditions on the boundary of a finite computational domain.49

Integral transform methods, which compute (1.1) directly, avoid the need to solve50

a linear system or to impose artificial boundary conditions, but require quadrature51

schemes to handle the singularity of the kernel U(x) and fast algorithms (such as52

the fast Fourier transform or the fast multipole method) to reduce the O(N2) cost,53

where N is the number of source and target points of interest (see, for example,54

[1, 2, 7, 14, 16, 23, 30, 33, 34, 37]).55

Here, we are interested in the development of purely Fourier-based methods,56

sacrificing spatial adaptivity, but exploiting the speed of the FFT. The principal57

novelty of the present work is that we develop an effective method for the case where58

the source term ρ is strongly anisotropic, a situation which is frequently encountered59

in confined quantum systems [3, 4]. More precisely, we seek to develop an efficient60

method for (1.2) when ρ is given on a rectangular domain in d dimensions of the form61

(1.4) RLγ =

d∏
j=1

[−Lγj , Lγj ] .62

We define the anisotropy vector by γ = (γ1, . . . , γd). The magnitudes of the γj reflect63

the degree of anisotropy. Without loss of generality, we assume that γ1 = 1 and that64

γj ≤ 1 for j = 2, . . . , d. We also assume, for the sake of simplicity, that ρ is sampled65

on a grid with the same number of points in each linear dimension (achieving greater66

spatial resolution in the dimensions where γj is small).67

Definition 1.1. We will refer to68

(1.5) γf :=

d∏
j=2

γ−1
j69

as the anisotropy factor. In the isotropic case, γf = 1, while for highly anisotropic70

source distributions, γf � 1.71
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Anisotropic Truncated Kernel Method 3

Leaving anisotropy aside for the moment, suppose that we approximate the inte-72

gral in (1.2) by the trapezoidal rule (leading to a discrete Fourier transform). This,73

unfortunately, yields low order accuracy for the Poisson equation, because of the sin-74

gularity in the kernel (1.3) (see [5, 6, 18]). While Jiang et al. developed a high order75

correction method in three dimensions that uses a spherical coordinate system near76

the origin [27], it requires the use of the nonuniform FFT (NUFFT) [15, 24]. This77

approach has been extended successfully to a variety of other kernels [6, 36], includ-78

ing the 2D Poisson kernel, where the 1/|k|2 singularity cannot be obviated by simply79

changing to polar coordinates. Nevertheless, the needed modifications can become80

rather complicated when dealing with more general kernels, such as the Helmholtz81

kernel, where singularities are not restricted to the origin. Moreover, significant work82

would be required to extend these methods to the case of anisotropic grids.83

A simpler and more efficient method is described in the recent paper by Vico et84

al. [49], which we refer to as the truncated kernel method (TKM). It is based on the85

observation that, if one seeks the solution to the convolution equation (1.2) only in a86

ball B of radius R, with the source distribution supported in B as well, then no error87

is incurred by convolving with UB(x) instead of U(x), where88

UB(x) =

{
U(x) for |x| ≤ 2R

0 for |x| > 2R.
89

This is clear from inspection of the formula (1.1); the maximum distance of a target90

point of interest from a source point is 2R. The truncated kernel UB(x) is compactly91

supported, so that ÛB(k) is entire (and C∞) by the Paley-Wiener Theorem (see, for92

example, [44]). It is, in fact, straightforward to show that93

(1.6) ÛB(k) =
1− cos(2|k|R)

|k|2
.94

In short, the TKM replaces (1.2) with95

(1.7) φ(x) =
1

(2π)d

∫
Rd
ÛB(k)ρ̂(k)eik·xdk.96

Note that for the source distribution in (1.4), we have97

(1.8) R = L
√

1 + γ2
1 + · · ·+ γ2

d .98

Although smooth, ÛB decays slowly in the Fourier domain. It is the smoothness99

of the source distribution that provides the needed high-frequency cut-off in (1.2).100

Combining these observations, it follows that trapezoidal rule discretization of (1.7)101

and the FFT lead to a spectrally accurate method. This idea was introduced in the102

Coulomb setting as the “supercell” method [26, 43], and in the Helmholtz setting by103

Vainikko [48]. The TKM [49] developed this approach in some generality and derived104

analytic formulas for ÛB(k) in connection with many physically important problems105

including the Coulomb, Helmholtz, biharmonic, and constant-coefficient advection-106

diffusion kernels in both two and three dimensions. It has recently been extended to107

systems with periodicity in a subset of directions in [45].108

Returning now to the issue of anisotropy, let us assume that the source ρ is re-109

solved in physical space with a grid whose grid spacing in the jth coordinate direction110

is ∆xj = Lγj/n. By standard results in Fourier analysis [47], it follows that111

(1.9) ∆kj =
π

Lγj
112
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4 L. Greengard, S. Jiang and Y. Zhang

is sufficient to resolve ρ̂(k). Using the TKM, however, we would first need to enclose113

the rectangular box RLγ from (1.4) in a sphere. As noted above, however, the radius114

of the smallest such sphere is given by (1.8) in d dimensions and the isotropically115

truncated kernel ÛB requires that116

(1.10) ∆kj <
π

2R
117

in each coordinate direction. This can be seen either from inspection of the cos(2|k|R)118

term in (1.6) and the Nyquist-Shannon sampling theorem or from consideration of119

“local-global duality” in the Fourier transform [47]. As a result, to reach the desired120

resolution requires a factor of γf more points in Fourier space than needed to resolve121

the source distribution itself. A further oversampling factor of 2d is needed in order to122

carry out aperiodic convolution (but that holds for any FFT-based scheme). In short,123

the excessively fine ∆kj needed to resolve ÛB(k) in (1.10) compared to that needed124

to resolve ρ̂(k) in (1.9) makes the TKM prohibitively expensive for highly anisotropic125

problems.126

In this paper, we propose an anisotropic truncated kernel method (ATKM) to127

handle anisotropic problems while avoiding the extra cost induced by the anisotropy128

factor γf . Instead of truncating the convolution kernel in a radially symmetric fashion,129

we set the kernel to zero outside a rectangular box that is twice the size of RLγ in each130

direction. That is, we let UR(x) = U(x)χR2Lγ
(x). Since the truncated kernel UR(x)131

now has the same anisotropic structure as the source ρ, this eliminates the need for132

uniform sampling in Fourier space when computing the inverse Fourier transform in133

(1.7). On the other hand, the truncated kernel in the Fourier domain now takes the134

form135

(1.11) ÛR(k) =

∫
Rd
UR(x)e−ik·xdx =

∫
R2Lγ

U(x)e−ik·xdx, k ∈ Rd.136

It no longer has an explicit analytical expression, even if the original kernel is radially137

symmetric. Instead, it must be computed numerically. For this, we approximate the138

kernel U(x) by a sum of Gaussians UGS(x) for |x| ∈ [δ, 2R], where δ is a cut-off139

parameter to be determined and R is given by (1.8).140

That is, for a prescribed precision ε, we assume that141

(1.12) ‖U(x)− UGS(x)‖ < ε‖U(x)‖, δ ≤ |x| ≤ 2R,142

where143

(1.13) UGS(x) =

S∑
i=1

wie
−si|x|2 .144

We may then write145

(1.14) ÛR(k) =

∫
R2Lγ

UGS(x)e−ik·xdx +

∫
Bδ

[U(x)− UGS(x)]e−ik·xdx +O(ε),146

where Bδ is the ball of radius δ.147

It remains to find an efficient sum of Gaussians approximation for the first integral148

in (1.14) and a suitable asymptotic method to compute the second integral. We can149

then provide a complete description of the algorithm.150
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Remark 1. The approximation of the convolution kernel in physical space by151

a sum of Gaussians has been studied extensively in [10, 11, 9, 12, 17, 20, 21, 25,152

35]. The paper [17], in particular, is closely related to the present work. There, the153

convolution is split into a singular near-field component, computed using a Taylor154

expansion of the density and a regular far-field component, computed using a sum-of-155

Gaussians approximation of the kernel. Both can be evaluated via the FFT.156

Remark 2. The reason a sum-of-Gussians approximation is particularly useful is157

that it permits the first (d-dimensional) integral in (1.14) to be computed as a product158

of d one-dimensional integrals - that is, it permits separation of variables. Thus, the159

cost of evaluating these one-dimensional integrals is only O(SN1/d), where N is the160

total number of discretization points in either physical or Fourier space.161

The cutoff parameter δ is chosen sufficiently small that a low-order asymptotic162

expansion yields sufficient accuracy and requires only O(S+N) work for the evaluation163

of the second integral in (1.14).164

Remark 3. There have been other FFT based fast algorithms developed for the165

calculation of convolution-type integrals. These include the pre-corrected FFT for166

computing convolution integrals when the discretization points are close to but not167

exactly on a regular grid (see, for example, [40, 41, 50]) and Particle Mesh Ewald168

method for systems involving periodic conditions in certain directions (see, for exam-169

ple, [13, 31, 32, 46]). We do not intend to present a comprehensive review of these170

algorithms here, and refer the reader to the aforementioned references for details.171

The paper is organized as follows. We show, in section 2, that the number of172

Gaussians S is of the order S = O(log δ log ε) for a variety of non-oscillatory kernels173

with radial symmetry. In section 3, we present the ATKM with detailed error analysis174

and parameter selection strategies. In section 4, we illustrate the performance of the175

algorithm with several numerical examples. Some concluding remarks can be found176

in section 5.177

2. Sum-of-Gaussian approximation of convolution kernels. In this sec-178

tion, we first consider the three-dimensional Yukawa (or modified Helmholtz) kernel179
e−λr

4πr , i.e., the Green’s function for the partial differential equation (−∆ + λ2)u = ρ.180

The 3D Coulomb kernel (corresponding to λ = 0) and the general power function 1
rβ

181

with β > 0, have been studied in detail in [11].182

We begin with the integral representation183

(2.1)
e−λr

4πr
=

1

2π
√
π

∫ ∞
0

e−r
2t2− λ2

4t2 dt =
1

2π
√
π

∫
R
e−r

2e2ue−
λ2

4 e
−2u

eu du,184

where the first equality can be found in [8], and the second equality follows from185

change of variable t = eu. The representation can be viewed as an integral of a186

Gaussian kernel with respect to the r variable so that a discrete sum-of-Gaussians187

approximation can be obtained by discretization.188

Lemma 2.1. Let [δ, L] denote an interval with 0 < δ < R. Then189

(2.2) ‖e
−λr

4πr
− UGS(r)‖ = O(e−C1M/ logM )190

where191

(2.3) UGS(r) =

M∑
j=−M

ωje
−τ2

j r
2

,192
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6 L. Greengard, S. Jiang and Y. Zhang

with ωj = 1
4π

2√
π
h euje−

λ2

4 e
−2uj

, uj = j h, τj = euj , and h = log
(

2πaM
b

)
/(aM).193

Proof. As a function of u, the integrand f(u) := e−r
2e2ue−

λ2

4 e
−2u

eu lies in H1(Dl)194

for l < π/2 [25], containing all holomorphic functions in the stripDl := {z ∈ C : | Im z| ≤ l},195

satisfying the additional property196

N(f,Dl) :=

∫
∂Dl

|f(z)| |dz| =
∫
R

(
|f(u+ il)|+ |f(u− il)|

)
du <∞.(2.4)197

198

We also have that |f(u)| ≤ Ce−bea|u| with a = 2, b = min{δ2, λ2/4} for all u ∈ R and199

r ∈ [δ,R]. Thus, by Proposition 2.1 in [25], the truncated trapezoidal rule applied to200

(2.1) leads to a spectrally accurate approximation.201

Remark 4. In practice, we change the summation limits in (2.3) to M1 and M2202

by finding a range for u in (2.1) beyond which the integrand is negligible. We then203

apply standard model reduction algorithm (see, for example, [51]) to reduce the number204

of Gaussians as a final optimization step.205

Table 2.1 shows the number of terms for various values of δ and ε over the interval206

[δ, 16
√

3] for λ = 1, where the desired accuracy ε is measured in the relative maximum207

norm. Note that the number of terms grows linearly (or sublinearly) in terms of both208

log(ε−1) and log(δ−1).

Table 2.1
Number of Gaussians needed for approximating the 3D Yukawa kernel U(r) = 1

4π
e−λr

r
over

[δ, 16
√

3] with λ = 1 for the given accuracy ε.

δ \ ε 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10−3 33 38 44 49 55 60 67
10−4 40 46 53 60 67 73 80
10−5 47 54 62 70 78 85 93
10−6 54 62 72 80 90 98 107

209
For the 2D Yukawa kernel 1

2πK0(λr), where K0 is the modified Bessel function210

of the second kind of order 0 (Section 10.25 in [39]), we may start from the integral211

representation (eq. 10.32.10 in [39])212

(2.5) Uλ(r)=
1

2π
K0(λr)=

1

4π

∫ ∞
0

e

(
−t−λ2r24t

)
dt

t
=

1

4π

∫
R
e−

λ2r2

4 e−ue−e
u

du.213

We then follow a similar procedure to obtain an efficient, accurate sum-of-Gaussians214

approximation.215

2.1. A black-box algorithm for the Gaussian-sum approximation of ra-216

dially symmetric kernels. Assume now that the kernel is radially symmetric, i.e.,217

U(x) = U(r), r = |x|. Then the problem is reduced to one-dimensional approximation218

problem. By a simple change of variable r =
√
x, we observe that the sum-of-Gaussian219

approximation of U(r) on [δ,R] is equivalent to the sum-of-exponential approxima-220

tion of U(
√
x) on [δ2, R2]. Sum-of-exponential approximations have been studied221

more extensively in literature (see, for example, [10, 11]). However, [10] samples the222

function using equispaced points; while [11] considers the power functions only. Here223

we consider sum-of-exponential approximation of a nonoscillatory function f(x) on224

an interval [a, b] ⊂ R+. We assume that f is in general singular at the origin, as is225
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Anisotropic Truncated Kernel Method 7

the case for most Green’s functions, and the left end point a may be very close to226

the origin. Thus, the method in [10] does not seem to be a very effective method for227

finding sum-of-exponential approximation of f .228

As is well known, the Laplace transform of an exponential function e−αt is the pole229

function 1
s+α . In [51], a bootstrap method for finding sum-of-pole approximations for230

a certain class of function is developed. The method applies a nonlinear least squares231

procedure recursively on a successively larger interval on the imaginary axis. The232

method in [51] tries to find the sum-of-pole approximation for a given function such233

that the approximation is valid in the entire right half of the complex plane; while234

our objective here is to find a Gaussian-sum approximation on a finite interval.235

We have developed a simplified algorithm for finding the sum-of-exponential ap-236

proximation. The algorithm consists of two stages (see [28] for details). In the first237

stage, a preliminary sum-of-exponential approximation that is accurate but inefficient238

is constructed for f on [a, b]. That is,239

(2.6) f(x) ≈
P∑
j=1

w̃je
s̃jx, x ∈ [a, b].240

This is done as follows. We first allocate a set of P logarithmically equally spaced241

points s̃j (j = 1, . . . , P ) lying on the negative real axis, which serve as the nodes in the242

preliminary sum-of-exponential approximation (2.6). Second, a set of sampling points243

on [a, b] are constructed via adaptive bisections into smaller and smaller subintervals244

such that the given function f is accurately approximated by a Chebyshev polynomial245

of degree no greater than nc on each subinterval. Since the origin is assumed to be a246

singular point, we further make dyadic subdivisions for the interval close to the origin.247

We denote these sampling points by xi, i = 1, . . . ,M . We now solve the following248

linear least squares problem249

(2.7) Aw̃ = b,250

where A is an M×P matrix with the entry Aij = es̃jxi , w̃ is a column vector of length251

P containing the weights in the preliminary sum-of-exponential approximation, and252

b is a column vector of length M with bi = f(xi).253

In the second stage, we apply the “squareroot method” in model reduction (see,254

for example, [51] and references therein for details) to reduce the number of exponen-255

tials to achieve a near optimal sum-of-exponential approximation. That is,256

(2.8)

P∑
j=1

w̃je
s̃jx ≈

S∑
j=1

wje
sjx.257

The optimality of the resulting sum-of-exponential approximation in L∞ norm is258

guaranteed by well-known results in control theory (see, for example, [22]). We would259

like to remark that the model reduction technique was originally designed for sum-of-260

pole approximations. However, since all the nodes lie in the left half of the complex261

plane, we may apply it directly to the reduction of sum-of-exponential approximation262

due to the aforementioned connection between these two types of approximations.263

Taking now f(x) = U(
√
x), [a, b] = [δ2, R2], and combining (2.6) and (2.8), we264

obtain265

(2.9) U(x) = U(r) = U(x) ≈
S∑
j=1

wje
sjx

2

, x ∈ [δ,R].266
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8 L. Greengard, S. Jiang and Y. Zhang

We have applied the algorithm to find efficient and accurate Gaussian-sum approxi-267

mations for many kernels, including the biharmonic Green’s function in both two and268

three dimensions, the Poisson kernel in two dimensions, etc. The performance of the269

algorithm on these kernels is similar. Table 2.2 lists the number of Gaussians needed270

to approximate the 2D Poisson kernel − 1
2π ln |x| on the interval [δ,R] with various δ271

and relative L2 error bound ε.272

Table 2.2
Number of Gaussians needed for approximating the 2D Poisson kernel U(r) = − 1

2π
ln(r) over

[δ, 2
√

2] for the given accuracy ε.

δ \ ε 10−6 10−7 10−8 10−9 10−10 10−11 10−12

10−3 80 86 95 107 117 128 137
10−4 98 109 124 136 152 160 171
10−5 118 134 146 164 189 196 209
10−6 131 151 167 195 214 231 241

3. Anisotropic truncated kernel method. We now discuss the ATKM in273

detail. We assume that the density function ρ is compactly supported in a generally274

anisotropic rectangular box RLγ and well resolved by n equispaced points in each275

direction. Thus, the total number of grid points needed to resolve the density function276

ρ on RLγ is N = nd. We truncate the kernel on a rectangular box R2Lγ instead of277

an isotropic ball. That is,278

(3.1)

φ(x) =

∫
Rd
U(y)ρ(x− y)dy =

∫
x+RLγ

U(y)ρ(x− y)dy

=

∫
R2Lγ

U(y)ρ(x− y)dy, x ∈ RLγ .

279

For the density ρ(x−y) in (3.1), we have x−y ∈ R3Lγ for ∀x ∈ RLγ ,y ∈ R2Lγ .280

Therefore we can approximate the density ρ on R3Lγ by a Fourier pseudo-spectral281

method with spectral accuracy [47]. This seems to require a threefold zero-padding282

from RLγ to R3Lγ . However, straightforward analysis shows that to obtain the283

solution in the domain RLγ itself, it is sufficient to carry out zero-padding to R2Lγ .284

In short, the density ρ is well resolved by the following finite Fourier series285

(3.2) ρ(z) ≈
∑
k

ρ̂k e
ik·z, z ∈ R2Lγ ,286

where k = π
2L (k1γ1 , . . . ,

kd
γd

) with kj = −n, . . . , n − 1 for j = 1, . . . , d. The Fourier287

coefficients are given by the formula288

(3.3) ρ̂k =
1

|R2Lγ |

∫
R2Lγ

ρ(z)e−ik·zdz,289

where |R2Lγ | = (4L)d
∏d
j=1 γj is the volume of R2Lγ .290

By the assumption on ρ, the integral in (3.3) is well approximated by the trape-291

zoidal rule. Thus ρ̂k can be evaluated via the forward FFT of size 2dN . Using (3.1)292

and (3.2), we obtain293
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(3.4)

φ(x) =

∫
R2Lγ

U(y)ρ(x− y)dy

≈
∑
k

ρ̂ke
ik·x

(∫
R2Lγ

U(y)e−ik·ydy

)
:=
∑
k

ÛR(k) ρ̂k e
ik·x,

294

where ÛR(k) is defined by the formula295

(3.5) ÛR(k) :=

∫
R2Lγ

U(y)e−ik·ydy.296

Clearly, once ÛR(k) is available, the evaluation of the potential φ can be accom-297

plished in three simple steps: (1) a forward FFT of size 2dN for computing ρ̂(k), (2)298

pointwise multiplication of ÛR(k) and ρ̂(k), and (3) a backward FFT of size 2dN for299

computing φ(x). An alternative derivation of the procedure can be obtained from the300

Fourier integral representation (1.2) rather than the convolution form to derive (3.4).301

We prefer the derivation above because it is easier to verify that twofold zero-padding302

along each direction is necessary and sufficient for the evaluation of the potential.303

In order to compute ÛR(k), we apply the Gaussian-sum approximation of the304

kernel to split the integral into two parts as in (1.14). That is,305

(3.6) ÛR(k) ≈ I1(k) + I2(k),306

where307

(3.7) I2(k) =

∫
Bδ

(U − UGS)(y)e−ik·ydy308

and309

(3.8)

I1(k) =

∫
R2Lγ

UGS(y)e−ik·ydy =

∫
R2Lγ

S∑
i=1

wi e
si|y|2e−ik·ydy

=

S∑
i=1

wi

d∏
j=1

Gij(si, kj),

310

with311

(3.9) Gij(si, kj) =

∫ 2Lγj

−2Lγj

esiy
2
j e
−πi kj yj

2Lγj dyj , i = 1, . . . , S, kj = −n, . . . , n− 1.312

The last equality in (3.8) follows from the separable structure of Gaussians. We313

observe that the d-dimensional integral is decomposed into d one-dimensional Fourier314

integrals of the Gaussians, leading to great reduction in the computational cost. Let315

α2 = −siL2γ2
j , β = πkj/2, and x = yj/(Lγj). These one-dimensional integrals are316
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10 L. Greengard, S. Jiang and Y. Zhang

reduced to the following standard form317

(3.10)

Gij(si, kj)

Lγj
= G(α, β) =

∫ 2

−2

e−α
2x2

e−i
πkx
2 dx

=

√
π

α
e−

β2

4α2

[
erf

(
−2α+ i

β

2α
)

)
−erf

(
2α+ i

β

2α
)

)]
=

√
π

α
e−

β2

4α2 −
√
π

α
e−4α2

Re

(
e−iπkjω

(
− β

2α
+ 2iα

))
.

318

Here erf(z) = 2√
π

∫ z
0
e−t

2

dt is the error function [39] and ω(z) = e−z
2

(1− erf(−iz)) is319

the so-called Faddeeva function [19, 42, 52], which can be evaluated easily via existing320

software package [29]. After the evaluation of these 2dSn = 2dSN1/d one-dimensional321

integrals, I1(k) can be evaluated in O(S2dN) multiplications and additions. Thus the322

computation of I1(k) is very cheap, even though S may be in the order of 100. We323

remark here that it is embarrassingly easy to parallelize this step, leading to further324

reduction on the computational time if needed.325

For I2(k), we expand the plane-wave function into Taylor series and calculate the326

integral term by term. That is,327

(3.11) I2(k) ≈
∫
Bδ

(U − UGS)(y)T (y)dy,328

where T (y) is the truncated Taylor expansion of the complex exponential e−ik·y of329

order p. Since U − UGS is radially symmetric, any term involving yα :=
∏d
j=1 y

αj
j330

with some odd αj vanishes by symmetry. Hence, we only need to compute those even331

power terms. The lowest order term is simply the integral of U −UGS itself. And the332

second order terms can be calculated as follows333

(3.12)

∫
Bδ

(U − UGS) (y)y2
jdy =

2d−1π

d

∫ δ

0

(U − UGS)(r)rd+1dr.334

This integral may be computed semianalytically for many kernels. For example, if U335

is the 3D Coulomb kernel, then336 ∫
Bδ

(U − UGS) (y) y2
j dy=

4π

3

∫ δ

0

(
1

4π

1

r
−

S∑
i=1

wie
sir

2

)
r4dr =

δ4

12
− 4π

3

S∑
i=1

wiF (si, δ),337

where F (si, δ) =
∫ δ

0
esir

2

r4dr. As kj can be pulled out when evaluating these integrals,338

the computational cost of evaluating I2(k) is O(Sp+N) or simply O(N) as Sp� N339

in practice.340

We now discuss the choice of the parameter δ. δ should be chosen so that the341

truncation error of the Taylor expansion is uniformly bounded for all k in the com-342

putational range. That is, if we write343

(3.13) ET (k) =

∫
Bδ

(U − UGS)(y)(e−ik·y − T (y))dy,344

where T (y) is the Taylor expansion of the complex exponential e−ik·y to the p-th345

order, then we require that346

(3.14) |ET (k)| ≤ ε347
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for all k in the computational range. For the 3D Coulomb kernel, we have348

(3.15) |ET (k)| = C

(
π|k|δ
2Lγj

)p+4

, |k| = 1, . . . , n, j = 1, . . . , d.349

Combining (3.14) and (3.15), we obtain350

(3.16) δ ≈ 2Lε1/(p+4)

πN1/d
min
j
γj .351

For example, if L = 8, p = 2, ε = 2 × 10−16, n = N1/d = 128, minj γj = 1
16 , then352

(3.16) leads to δ ≈ 6× 10−6.353

Algorithm 3.1 Anisotropic truncated kernel method

Comment: Given a precision requirement ε, the computational box RLγ , the con-
volution kernel U , and the density ρ, compute the potential defined in (1.1).

1: Precomputation stage: determine δ and find the Gaussian-sum approximation of
the kernel U on [δ, 2R].

2: Compute 2dSn one-dimensional integrals Gij(si, kj) via (3.10).
3: Compute I1(k) via (3.8).
4: Compute I2(k) via (3.11).

5: Compute the Fourier transform of the truncated kernel ÛR(k) by adding I1(k)
and I2(k).

6: Compute ρ̂k via the forward FFT.
7: Compute the product ÛR(k)ρ̂(k).
8: Compute φ(x) via the backward FFT.

We summarize the algorithm in Algorithm 3.1. The second step requiresO(SN1/d)354

work; the third step requires O(SN) work; the fourth step requires O(S + N) work;355

the fifth and seventh steps require O(N) work; and the sixth and eighth steps require356

O(N logN) work. As noted before, S depends on δ and ε logarithmically. Combining357

this observation with (3.16), we have S = O(logN log ε). Hence, the total computa-358

tional cost is O(N logN). Here we also note that the evaluation of ÛR(k) (i.e., steps359

1–5 in the algorithm) need to be done only once for many time-dependent problems360

or problems with fixed geometry.361

Finally, we would like to emphasize that the main advantage of the ATKM in362

this paper, as compared with the TKM in [49], is that one does not need excessive363

zero-padding for highly anisotropic problems. Figure 3.1 illustrates different zero-364

paddings of the TKM and the ATKM for an anisotropic density in two dimensions.365

The density ρ(x) is assumed to be compactly supported in RLγ = [−1, 1] × [−γ, γ]366

(here γ = 1
4 ). The TKM in [49] requires that the physical domain be enlarged to367

[−2, 2]× [−2, 2] via zero-padding, i.e., a factor of 22/γ = 16 increase in the number of368

discretization points. For the ATKM, the physical domain needs only to be enlarged369

to [−2, 2] × [− 1
2 ,

1
2 ], i.e., a factor of 22 = 4 increase. The savings in the ATKM370

become even greater for three dimensional highly anisotropic problems. It should also371

be noted that the TKM requires an initialization phase with oversampling by a factor372

of 4 in each linear dimension rather than two [49]. This would increase the memory373

requirements, but can be obviated by decomposing the precomputation into smaller374

subproblems.375
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(a) -2 -1 0 1 2

-2

-1

0

1

2

(b) -2 -1 0 1 2

-2

-1

0

1

2

Fig. 3.1. Meshing strategies of the TKM (a) and the ATKM (b) for an anisotropic density
ρ(x) that is compactly supported in [−1, 1] × [− 1

4
, 1
4

] (labeled in blue). The zero-padded grid points

are plotted in red. The zero-padded physical domain is [−2, 2]× [−2, 2] and [−2, 2]× [− 1
2
, 1
2

] for the
TKM and the ATKM, respectively.

3.1. Error estimates. To derive error estimates of the algorithm, we only have376

to analyze the error of computing (3.5) via (3.6)–(3.11), as all other approximations377

are of spectral accuracy. Straightforward inspection shows that the error consists of378

two parts - the error due to the Gaussian-sum approximation of the kernel on R2Lγ\Bδ379

and the error due to the truncated Taylor expansion of the complex exponential. That380

is381

(3.17) E(k) = EGS(k) + ET (k),382

where EGS(k) =
∫
R2Lγ\Bδ(U −UGS)(y)e−ik·ydy and ET (k) is given by (3.13). Using383

the Cauchy-Schwarz inequality, we have384

(3.18)

|EGS(k)| ≤
∫
R2Lγ\Bδ

|U − UGS|dy ≤ Sd−1

∫ 2R

δ

|U − UGS|(r) rd−1 dr

≤ ε Sd−1

(2d− 1)1/2
‖U‖L2([δ,2R]) (2R)d−1/2,

385

with R = L
√∑

j γ
2
j and Sd−1 = 2π

d
2

Γ(d/2) . For ET (k), the choice of δ in (3.16) guaran-386

tees that |ET (k)| ≤ ε for all k in the computational range. Therefore, the error can387

be controlled to any prescribed precision.388

4. Numerical Results. To demonstrate the accuracy and efficiency of the389

ATKM, we carry out several numerical experiments. All numerical errors are cal-390

culated in the relative maximum norm, defined as follows:391

(4.1) E :=
‖φ− φ~h‖l∞
‖φ‖l∞

=
maxx∈Th |φ(x)− φ~h(x)|

maxx∈Th |φ(x)|
,392

where Th is the rectangular computational domain discretized uniformly in each di-393

rection with mesh size vector ~h = (h1, . . . , hd)
T . Here, the grid function φ~h is the394

numerical solution and φ is the exact/reference solution. We denote the mesh size395

vector ~h simply by h if hj = h for j = 1, . . . , d. The algorithm has been implemented396

in FORTRAN, and all reported timing results are obtained using a single 2.60GHz397

Intel(R) Core(TM) i7-6660U CPU with 4MB cache with the Intel compiler ifort and398

optimization level -O3.399
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4.1. Coulomb potentials.400

Example 1. The 2D Coulomb potential (U(r) = − 1
2π ln r).401

Case I: We first test the method with an isotropic Gaussian source ρ(x) := e−|x|
2/σ2

402

with σ > 0. The corresponding potential is given by403

(4.2) φ(x) = −σ
2

4

[
E1

(
|x|2

σ2

)
+ 2 ln(|x|)

]
,404

where E1(r) :=
∫∞
r
t−1e−tdt for r > 0 is the exponential integral function [39].405

Case II: We next consider an anisotropic Gaussian source ρ(x) generated by taking406

the Laplacian of the potential φ(x) = e−
x2

σ2
− y2

α2 , α, σ > 0 as follows:407

(4.3) ρ(x) = −∆φ(x) = φ(x)

(
−4x2

σ4
− 4y2

α4
+

2

α2
+

2

σ2

)
.408

Table 4.1 shows the errors for the 2D Coulomb potential with various mesh sizes409

in Example 1 on R10γ with γ = (1, γ). For Case I, we set σ =
√

1.2, γ = 1 and the410

mesh size hx = hy = h, and for Case II we set σ = 1.2, α = γ σ and ~h = 1
4 (1, γ)T .411

The saturated accuracy of Case I comes from the Gaussian-sum approximation of the412

kernel, which could certainly be further improved with more accurate Gaussian-sum413

approximations if needed.414

Table 4.1
Errors (E) for the 2D Poisson potential in Example 1 on R10γ . For Case I, σ =

√
1.2, γ = 1

and we use a uniform mesh with N points. For Case II, σ = 1.2, α = γ σ and we fix ~h = 1
4

(1, γ)T ,
corresponding to an anisotropic grid with N = 80× 80 points.

Case I N = 102 N = 202 N = 402 N = 802 N = 1602

E 2.180E-01 9.624E-04 5.134E-09 5.854E-11 5.853E-11
Case II γ = 1 γ = 1/2 γ = 1/4 γ = 1/8 γ = 1/16
E 6.767E-13 3.913E-13 2.816E-13 2.299E-13 2.701E-13

Example 2. The 3D Coulomb potential restricted to a plane (U(r) = 1
2π

1
r ).415

We next consider the anisotropic source ρ(x) = e−(x2+y2/γ2)/σ2

with σ > 0 and γ ≤ 1.416

The Coulomb potential with targets restricted to the xy-plane is given analytically417

[6] by418

(4.4) φ(x) =
γ σ√
π

∫ ∞
0

e
− x2

σ2(t2+1) e
− y2

σ2(t2+γ2)

√
t2 + 1

√
t2 + γ2

dt.419

A reference solution is obtained by applying adaptive Gauss–Kronrod quadrature to420

the above integral and requesting double precision accuracy. The Fourier transform421

of the isotropically truncated Coulomb kernel with a ball BD of radius D is given as422

follows423

(4.5)
ÛB(k) = 2π

∫ D

0

J0(kr)U(r)rdr =

∫ D

0

J0(kr)dr

=
D

2

(
π J1(kD) SH0(kD) + J0(kD) (2− π SH1(kD))

)
, k = |k|,

424
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14 L. Greengard, S. Jiang and Y. Zhang

where J0, J1 are Bessel functions of the first kind with index 0 and 1, and SH0,SH1425

are Struve functions of order 0 and 1, respectively [39].426

A comparison with the TKM for this Coulomb potential is presented in Table 4.2427

on the domain R12γ for various anisotropic vectors γ = (1, γ)T and mesh size vectors428

~h = 1
4γ. From Table 4.2 one can see clearly that both methods are spectrally accurate,429

that the minimum storage required for the TKM depends linearly on the anisotropy430

factor γf = γ, but that the storage of the ATKM remains unchanged with respect to431

γf .432

Table 4.2
Comparison of the ATKM and the TKM for the Coulomb potential in Example 2 on RLγ :

L = 12, σ = 1.5,~h = 1
4

(1, γ)T . N denotes the number of grid points and E denotes the error.

γ = 1 γ = 1/2 γ = 1/4 γ = 1/8 γ = 1/16
N 192× 192 192× 192 192× 192 192× 192 192× 192

ATKM E 1.004E-15 9.738E-16 7.589E-16 1.0572E-15 3.247E-15

N 192× 192 192× 384 192× 768 192× 1536 192× 3072
TKM E 3.353E-16 3.661E-16 3.798E-16 4.531E-16 3.562E-15

Example 3. The 3D Coulomb potential (U(r) = 1
4π

1
r ).433

Let434

ρ0(x) := e−(x2+y2+z2/γ2
3)/σ2

435

with γ3 ≤ 1 be an anisotropic Gaussian source distribution. For436

ρ(x) = ρ0(x) + ρ0(x− x0),437

the corresponding potential is438

φ(x) = φ0(x) + φ0(x− x0).439

where440

(4.6) φ0(x) =
γ3σ

2

4

∫ ∞
0

e
− x2+y2

σ2(t+1) e
− z2

σ2(t+γ23)

(t+ 1)
√
t+ γ2

3

dt, x ∈ R3.441

We let x0 = (2, 2, 0)T , requiring a 2563 uniform mesh for resolution to double precision442

accuracy.443

The error and timing results for the ATKM are presented in Table 4.3. Here,444

Tprecomp is the time for the precomputation of ÛR, and TFFT is the time of the FFT.445

The cut-off parameter δ and the number of Gaussian S are also shown.446

To compare the performance of the TKM and the ATKM, we consider the sin-447

gle anisotropy Gaussian bump ρ0(x) = e−(x2+y2+z2/γ2
3)/σ2

and determine the total448

number of grid points N needed to achieve the indicated error E in Table 4.4. Fig-449

ure 4.1 shows the CPU time in seconds for the TKM and the ATKM as a function450

of the anisotropy factor. Clearly, the ATKM is capable of accurate evaluation of451

the Coulomb potential without increasing the storage and computation costs as the452

anisotropy factor increases. The TKM can be made as accurate as the ATKM, but453

the storage and computation costs grow linearly with the anisotropy factor.454
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Table 4.3
Error and timing results of the ATKM for the 3D Coulomb potential (Example 3) on RLγ .

Here, L = 16, σ = 2, γ = (1, 1, γ3), ~h = 1
4
γ. N denotes the number of grid points and E denotes the

error. Tprecomp is the time for precomputing ÛR, TFFT is the FFT time. δ is the cut-off parameter
and S is the number of Gaussian S used in the kernel approximation.

γ3 N E Tprecomp TFFT δ S
1 2563 6.589E-16 3.685 0.8586 4.974E-07 198
1/2 2563 6.631E-16 3.831 0.8796 2.487E-07 205
1/4 2563 8.083E-16 3.739 0.8211 1.243E-07 213
1/8 2563 7.630E-16 3.856 0.8216 6.217E-08 220

Table 4.4
Comparison with the TKM for the 3D Coulomb potential with anisotropic Gaussian density

(Example 3): ρ(x) = e−(x2+y2+z2/γ23 )/σ
2

on RLγ : L = 12, σ = 2, γ = (1, 1, γ3)T and ~h = 1
2
γ. N

denotes the number of grid points and E denotes the error.

γ3 = 1 γ3 = 1/2 γ3 = 1/4 γ3 = 1/8 γ3 = 1/16
N 963 963 963 963 963

ATKM E 3.522E-15 6.932E-15 1.466E-14 3.021E-14 6.150E-14

N 963 963 × 2 963 × 4 963 × 8 963 × 16
TKM E 3.501E-15 6.957E-15 1.454E-14 2.995E-14 6.200E-14

4.2. Yukawa potentials.455

Example 4. The 2D Yukawa potential (U(r) = 1
2π K0(λr)).456

Given a potential φ(x) = e−
x2

σ2
− y

2

δ2 , we define the corresponding density ρ(x) by457

(4.7) ρ(x) =

(
−4x2δ4 − 4 y2σ4 + 2σ2δ4 + 2δ2σ4

σ4δ4
+ λ2

)
φ(x) ,458

so that459

(−∆ + λ2)φ(x) = ρ(x).460

We compute the convolution (U ∗ ρ)[x] using the ATKM to obtain an approximate461

solution φ~h. For this, the Fourier transform of the isotropically truncated 2D Yukawa462

kernel in a ball BD of radius D is463

(4.8) ÛB(k) =
1

k2 + λ2
[1 + kDJ1(kD)K0(λD)−DλJ0(kD)K1(λD)] ,464

where K0(r) and K1(r) are modified Bessel functions of the second kind with order465

0 and 1, respectively. In Table 4.5, we present results for the ATKM. As above, the466

cost remains independent of the anisotropy, whereas it grows linearly with γf for the467

TKM.468

Example 5. 3D Yukawa potential (U(r) = e−λr

4πr ).469

Case I: We consider the isotropic Gaussian source ρ0(x) = e−|x|
2/2/σ2

, σ > 0, which470

generates the exact potential [12]471

φ0(x) =
√

2(
√
πσ)3 e

−λr+λ2σ2

2

4πr

[
erfc

(
− r√

2σ
+
λσ√

2

)
− e2λrerfc

(
r√
2σ

+
λσ√

2

)]
,472

This manuscript is for review purposes only.



16 L. Greengard, S. Jiang and Y. Zhang

1 2 4 8 16
10

-1

10
0

10
1

TKM

ATKM

Fig. 4.1. Timing results for the TKM and the ATKM as a function of the anisotropy fac-
tor. The data corresponds to experiments carried out for the 3D Coulomb potential (Example 3),
described in Table 4.4.

Table 4.5
Comparison with the TKM for the 2D Yukawa potential (Example 4) on RLγ : L = 12, λ = 1,

σ =
√

1.5, δ = γ σ, ~h = hγ = 1
4

(1, γ)T . N denotes the number of grid points and E denotes the
error.

γ = 1 γ = 1/2 γ = 1/4 γ = 1/8 γ = 1/16
N 192× 192 192× 192 192× 192 192× 192 192× 192

ATKM
E 4.495E-16 3.343E-16 1.615E-16 2.259E-16 6.183E-16

N 192× 192 192× 384 192× 768 192× 1536 192× 3072
TKM E 2.221E-16 2.245E-16 4.463E-16 8.882E-16 1.999E-15

where erfc(x) = 1− 2√
π

∫ x
0
e−t

2

dt is the complementary error function. To add some473

complexity to the calculation, we consider a density that is composed of multiple such474

Gaussians:475

ρ(x) =
∑

i,j,k∈{0,1}

ρ0(x− xijk),476

and the potential is given as φ(x) =
∑
i,j,k∈{0,1} φ0(x−xijk), where xijk = (2i, 2j , 3k)T477

are shifted centers.478

Case II: Let φ(x) be given by the anisotropic Gaussian potential479

φ0(x) = e−(x2/γ2
1+y2/γ2

2+z2/γ2
3)/σ2

, 0 < γj ≤ 1,480

and let481

ρ0(x) = −
(

4x2

γ4
1σ

4
− 2

γ2
1σ

2
+

4y2

γ4
2σ

4
− 2

γ2
2σ

2
+

4z2

γ4
3σ

4
− 2

γ2
3σ

2
− λ2

)
φ0(x) .482

Letting φ(x) = φ0(x) + φ0(x− x0), it is easy to verify that483

(−∆ + λ2)φ(x) = ρ(x),484

where ρ(x) = ρ0(x) + ρ0(x − x0). We compute the convolution (U ∗ ρ)[x] using the485

ATKM to obtain an approximate solution φ~h for x0 = ( 16
3 ,

8
3 , 0)T .486

Table 4.6 shows the errors and timing results for the 3D Yukawa potentials in487

Example 5.488
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Table 4.6
Error and timing results of the ATKM for the 3D Yukawa potential (Example 5) on RLγ with

σ = 1
4

. Case I: L = 12,~h = h(1, 1, 1)T ; Case II:L = 8,~h = 1
16

(1, 1
2
, γ3)T . N denotes the number of

grid points and E denotes the error. Tprecomp is the time for precomputing ÛR, TFFT is the FFT
time. δ is the cut-off parameter and S is the number of Gaussian S used in the kernel approximation.

Case I N E Tprecomp TFFT δ S
h = 1/2 963 0.119 0.080 0.027 1.326E-06 104
h = 1/4 1923 1.849E-04 0.814 0.297 6.631E-07 109
h = 1/8 3843 2.996E-12 6.759 2.789 3.316E-07 112
h = 1/16 7683 7.990E-16 41.66 26.32 1.658E-07 116
Case II N E Tprecomp TFFT δ S
γ3 = 1 5123 1.403E-15 13.98 10.08 1.243E-07 124
γ3 = 1/2 5123 7.400E-16 17.92 9.651 1.243E-07 124
γ3 = 1/4 5123 2.296E-15 15.75 10.06 6.217E-08 129
γ3 = 1/8 5123 5.161E-15 18.07 9.677 3.108E-08 134
γ3 = 1/16 5123 4.502E-15 16.93 9.866 1.554E-08 139

4.3. Biharmonic potentials.489

Example 6. The 2D biharmonic potential (U(r) = − 1
8π r

2(log(r)− 1)).490

Case I: We consider the isotropic Gaussian source

ρ(x) =
1

2πσ2
e−
|x|2

2σ2 , x ∈ R2,

which generates the exact potential491

φ(x) =
1

8π

(
r2 + e−

r2

2σ2 σ2
)

+
1

16π

(
r2 + 2σ2

)(
Ei

(
− r2

2σ2

)
− 2 log(r)

)
,492

where r = |x| and Ei(x) :=
∫ x
−∞

es

s ds is the exponential integral [39].493

Case II: Let the exact solution φ(x) be given by the anisotropic Gaussian potential494

φ(x) = e−(x2/γ2
1+y2/γ2

2)/σ2

, 0 < γj ≤ 1, j = 1, 2, and let495

ρ(x) = −∆2φ(x).496

Numerical results are presented in Table 4.7. Spectral convergence is evident until497

the error in the kernel approximation using a sum of Gaussians begins to dominate.498

Table 4.7
Errors (E) for the 2D biharmonic potential in Example 6 on RLγ . For Case I, L = 12, σ =

√
1.2

and we use a uniform mesh with N points. For Case II, L = 10, σ = 1.2,γ = (1, γ)T and we fix
~h = 1

4
(1, γ)T , corresponding to an anisotropic grid with N = 80× 80 points.

Case I N = 482 N = 962 N = 1282 N = 2562

E 9.333E-03 7.516E-07 3.172E-11 3.172E-11
Case II γ = 1 γ = 1/2 γ = 1/4 γ = 1/8
E 1.604E-10 5.305E-10 1.767E-09 8.482E-09

Example 7. The 3D biharmonic potential (U(r) = r
8π ).499
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Case I: We consider the isotropic Gaussian source

ρ(x) =
1

(2π)3/2σ3
e−
|x|2

2σ2 , x ∈ R3,

which generates the exact potential [12]500

φ(x) =
1

8π

(
Erf

(
r√
2σ

)(
σ2

r
+ r

)
+ σ

√
2

π
e−

r2

2σ2

)
, r = |x|.501

Case II: Let φ(x) be given by the anisotropic Gaussian potential502

φ(x) = e−(x2/γ2
1+y2/γ2

2+z2/γ2
3)/σ2

, 0 < γj ≤ 1,503

and let504

ρ(x) = −∆2φ(x).505

We compute the convolution (U ∗ ρ)[x] using the ATKM to obtain an approximate506

solution φ~h.507

Table 4.8 presents the errors and timing results for the 3D biharmonic potentials508

in Example 7.509

Table 4.8
Error and timing results of the 3D biharmonic potential (Example 7) on RLγ with σ =

√
1.2.

Case I: L = 12,γ = (1, 1, 1)T ,~h = hγ: Case II: L = 10,γ = (1, 1
4
, γ3)T and ~h = 1

4
γ. N denotes

the number of grid points and E denotes the error. Tprecomp is the time for precomputing ÛR, TFFT

is the FFT time. δ is the cut-off parameter and S is the number of Gaussian S used in the kernel
approximation.

Case I N E Tprecomp TFFT δ S
h = 1 483 1.585E-02 9.700E-03 5.000E-04 5.305E-06 199
h = 1/2 963 5.962E-07 4.070E-02 2.900E-03 2.653E-06 199
h = 1/4 1923 1.031E-11 2.373E-01 2.800E-02 1.326E-06 203
h = 1/8 3843 1.701E-11 1.809 3.356E-01 6.631E-07 213
Case II N E Tprecomp TFFT δ S
γ3 = 1 1603 5.499E-12 1.057 0.176 1.989E-07 213
γ3 = 1/2 1603 3.692E-12 1.070 0.168 1.989E-07 213
γ3 = 1/4 1603 3.260E-12 1.060 0.184 1.989E-07 213
γ3 = 1/8 1603 1.873E-11 1.064 0.169 9.947E-08 213

4.4. Application to anisotropic layered media. We consider the transmis-510

sion problem (see Figure 4.2)511

(4.9) −∇ · (εi∇φ) = fi, i = 1, 2,512

subject to continuity conditions at the interface, i.e., at the xy-plane (z = 0)513

(4.10)
[φ] := φ(x, y, 0+)− φ(x, y, 0−) = 0,

[ε∂nφ] := ε1φz(x, y, 0+)− ε2φz(x, y, 0−) = 0,
514

where εi (i = 1, 2) are constants and the source terms f1, f2 are given smooth and515

rapidly decaying functions with (numerical) compact support in regions I and II, re-516

spectively. We will consider source densities that are strongly anisotropic, in the sense517
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that their extent in the z-direction is very small compared to their extents in the x and518

y directions. One such example density is f1(x) = e−((x−x0)2+(y−y0)2+(z−z0)2/η2)/σ2

519

with η � 1.520

Fig. 4.2. Schematic of the anisotropic layered problem.

We first decompose φ into two parts using standard potential theory. That is,521

φ = φF + φS , where φF is the volume potential due to the inhomogeneous source522

terms523

(4.11) φF (x) =

{
1

4π|x| ∗
f1
ε1
, x ∈ I,

1
4π|x| ∗

f2
ε2
, x ∈ II.524

We apply the ATKM to calculate φF on a uniform grid. In order for φ to satisfy the525

continuity conditions above, we let φS denote a correction term which satisfies the526

Laplace equation in both the upper and lower half-spaces with suitable decay condi-527

tions at infinity. It is well-known that φS can be represented using a “Sommerfeld-528

type” integral [38] of the form529

φS(x) =


1

(2π)2

∫∞
0
e−kzdk

∫ 2π

0
M1(k, β)eik(x cos β+y sin β)dβ, z > 0,

1
(2π)2

∫∞
0
e kzdk

∫ 2π

0
M2(k, β)eik(x cos β+y sin β)dβ, z < 0,

530

Here, M1 and M2 are unknown densities to be determined.531

Direct application of (4.10) leads to a 2× 2 linear system for each point (k, β).532

(4.12)

{
M1 −M2 = k g1,

ε1M1 + ε2M2 = −g2,
=⇒

{
M1 = 1

ε1+ε2
(ε2k g1 − g2),

M2 = 1
ε1+ε2

(−ε1k g1 − g2),
533

where534

g1(k, β) := − 1

2π

∫
R

f̂1(k, β, k3)/ε1 − f̂2(k, β, k3)/ε2

k2 + k2
3

dk3,(4.13)535

g2(k, β) := − 1

2π

∫
R

(
f̂1(k, β, k3)− f̂2(k, β, k3)

)
ik3

k2 + k2
3

dk3,(4.14)536

using cylindrical coordinates (k, β, k3).537
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Fig. 4.3. Potential in the plane x = 0,i.e., φ(0, y, z).

For each (k, β), we compute kg1 and g2 using adaptive Gauss-Kronrod quadrature.538

Once M1 and M2 are obtained from (4.12), φS(x) is then evaluated using the NUFFT-539

based method of [5, 27].540

In our example, we set ε1 = 1, ε2 = 2, and541

fi(x) = e
− (x−xi)

2

σ2
i,x

− (y−yi)
2

σ2
i,y

− (z−zi)
2

σ2
i,z , i = 1, 2,542

with ~σ1 = (2.5, 1.1, 0.2)T , ~σ2 = (2.5, 1.1, 0.1)T and the centers x1 = (x1, y1, z1)T =543

(0, 0, 0.8)T , x2 = (0, 0,−0.8)T . The computational domain is chosen to be [−8, 8]2 ×544

[0, 1.6] for region I and [−8, 8]2 × [−1.6, 0] for region II, respectively. The mesh sizes545

are set to be hx = hy = 1
8 and hz = 1

80 in both regions. In Figure 4.3, we plot the546

potential as a function of y and z in the plane x = 0. Numerical convergence tests547

indicate that at least 10 digits of accuracy are obtained with a 128× 128× 256 grid.548

5. Conclusion. We have developed a new method – the anisotropic truncated549

kernel method (ATKM) for computing nonlocal potentials that are convolutions of a550

radially symmetric kernel with a smooth and rapidly decaying source density. When551

the density has compact support on an anisotropic rectangular box RLγ , the kernel552

is truncated on a rectangular box R2Lγ that doubles the length of each side. The553

potential is then computed via the FFT with an optimal zero-padding factor (2d) for554

problems in d dimensions. The method is a useful extension of the isotropic kernel555

truncation method in [49], since it avoids excessive zero-padding for highly anisotropic556

problems and reduces the cost by a factor of γf (see Definition (1.5)).557

A fast algorithm is required to obtain the Fourier transform of the anisotropically558

truncated kernel. For this, we used a sum-of-Gaussians approximation of the kernel559

away from the origin plus a local correction to handle the singularity at the origin.560

The Gaussian-sum approximation is obtained either via a spectral discretization of an561

integral representation of the kernel (when available), or via a black-box algorithm in562

the general case. The algorithm applies to nonoscillatory kernels, including many of563

the kernels encountered in mathematical physics and engineering. We are currently564

investigating oscillatory problems such as the Helmholtz equation, and will report our565

findings at a later date.566
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