
Spectral-Spatial Feature Extraction and Classification by ANN

Supervised with Center Loss

in Hyperspectral Imagery

Alan J.X. Guo and Fei Zhu ∗

August 15, 2018

Abstract

In this paper, we propose a spectral-spatial feature extraction and classification framework based on
artificial neuron network (ANN) in the context of hyperspectral imagery. With limited labeled samples, only
spectral information is exploited for training and spatial context is integrated posteriorly at the testing stage.
Taking advantage of recent advances in face recognition, a joint supervision symbol that combines softmax
loss and center loss is adopted to train the proposed network, by which intra-class features are gathered while
inter-class variations are enlarged. Based on the learned architecture, the extracted spectrum-based features
are classified by a center classifier. Moreover, to fuse the spectral and spatial information, an adaptive
spectral-spatial center classifier is developed, where multiscale neighborhoods are considered simultaneously,
and the final label is determined using an adaptive voting strategy. Finally, experimental results on three
well-known datasets validate the effectiveness of the proposed methods compared with the state-of-the-art
approaches.

1 Introduction

Recent advances in remote sensing technology lead to improved imaging quality in terms of both spectral and
spatial resolutions for hyperspectral imagery [1]. Typically, a hyperspectral image is collected by remote sensors
with hundreds of channels over a wavelength range. It is regarded as a data cube consisting of continuous
images, each acquired by a certain channel over the same land-cover. Consequently, every pixel corresponds
to a reflectance spectrum. In hyperspectral imagery analysis, an essential task is the differentiation of target
materials by identifying the class of each pixel.

To address the hyperspectral classification problem, traditional feature extraction (FE) and classification
strategies have been extensively investigated, seeking to extract shallow representations for input spectra. Ex-
tracting features with linear transformations permits representing the original data in a subspace with reduced-
dimension. This category of methods includes principal component analysis (PCA) [2], independent component
analysis (ICA) [3] and linear discriminant analysis (LDA) [4], to name a few. Since the nonlinearities often exist
in hyperspectral images, various nonlinear methods have been proposed accordingly, such as support vector
machine (SVM) [5], manifold learning [6], and the kernel-based algorithms [7, 8].

Most of the aforementioned methods are spectrum-based ones, i.e., to extract the features directly from
the pixel-wise spectra while ignoring the intrinsic geographical structure in specific data. In fact, the spatially
adjacent pixels tend to be inherently correlated. A joint usage of the spectral and spatial information could
improve the representation ability of the extracted features [1]. To this end, numbers of spectral-spacial methods
have been derived and have outperformed the spectral ones in terms of classification accuracy [9–14]. In [15],
the multiscale adaptive sparse representation (MASR) method exploits the spatial information derived from
neighborhoods of varying sizes by an adaptive sparse strategy. Despite promising classification results achieved
on several datasets, MASR produces high computational cost, since multiscale windows around a testing pixel
are constructed, in which every pixel needs to be sparsely coded using a structural dictionary consisting of
training samples. To effectively use the spectral-spatial information remains a challenging problem. Meanwhile,
the greatly improved resolutions in both spectral and spatial domains may enlarge the intra-class variation
(e.g., roofs with shadows) and decrease the interclass variation (e.g., roads and roofs have similar spectra), thus
greatly affecting the classification accuracy [16].
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Deep learning has emerged as a powerful feature extraction technology and gained great success in many
machine learning tasks. Compared with traditional methods, deep models are capable to extract more abstract
and complex features with better representation ability. The features are generated in a hierarchical manner,
namely the high-level representations are successfully built from a cascade of lower layers consisting of nonlinear
processing units. However, to train a deep network with large number of unknown parameters, a large-scale
training set is required. Otherwise, the network is prone to overfitting. This becomes a major obstacle to
exploiting deep learning in hyperspectral imagery, where the number of labeled samples are quite limited due
to high expense of manually labeling and even the available labels are not always reliable [17]. To extract deep
spectral-spatial representation, a conventional strategy is to train a network or a classifier based on patch-based
samples, as did in [16–20]. However, this will further aggregate the sample shortage problem, if the overlap of
training and testing samples is not allowed.

To alleviate this dilemma with deep models, small networks with respectively less parameters have been
advocated, including the earlier stacked autoencoder (SAE) [21,22], the deep belief network (DBN) [23], and a
few models based on the convolutional neural networks (CNN). In [24], an unsupervised CNN has been proposed
to obtain sparse representations, mainly by using the greedy layerwise unsupervised pre-training along with the
efficient enforcing of population and lifetime sparsity. Three supervised CNN architectures, referred by 1-D, 2-D
and 3-D CNNs, were investigated in [18]. More specifically, 3-D CNN could jointly extract the spectral-spatial
integrated features by working on data cube composed by a neighborhood of spectra. The authors enlarged
the training set by virtual sample enhancement, and avoided the overfitting issue by a few techniques, such as
dropout and `2-norm regularization. Similar strategies were also adopted in a novel CNN architecture proposed
in [25]. In [16], a spectral-spatial feature based classification framework was proposed. To address the increasing
intra-class variation and interclass confusion issues in spectral domain, the spectral feature in low-dimensionality
was firstly extracted by the so-called BLDE method, aiming to increase the interclass variation while keeping
the intra-class samples stay close. The deep spatial-based feature was extracted by CNN. Finally, the fusion
feature, stacked by extracted spectral and spatial features, was used to train the classifier.

Taking advantage of pre-training and fine-tuning techniques, relative deep networks have also been inves-
tigated in the literature. The pre-training on large-scale data sets other than target data is advisable, since
the initial layers of deep network tend to be generic filters, such as edge or color blob detector, which are
independent from specific data and transferable for different recognition tasks [17]. Studies in [26] compared
three possible practices to exploit existing CNNs, namely full-training, fine-tuning, and using CNNs as feature
extractor, finding out that fine-tuning tended to be the best strategy. In [17], a deep multiscale spatial-spectral
feature extraction algorithm is proposed to learn effective discriminant features of hyperspectral images. The
VGG-verydeep-16 net is firstly pre-trained on the natural image data sets, and then used to extract the spatial
structural feature. The fusion vector stacked by the spatial and spectral features is fed to the classifier.

To explore spectral-spatial information, the routine by training with patch-based pixels might easily cause
the overlap between training and testing sets. An alternative is postprocessing of the extracted features at the
testing stage. Authors in [27] proposed a deep pixel-pair feature (PPF) classification framework based on a
well-designed CNN. Pixel-pairs are generated by taking Cartesian product and used to train a deep model. For
a testing sample, paired samples are generated by combining the centering pixel with its neighbors and classified
using the learned network. The final label is predicted by a voting strategy. The idea of postprocessing will
also be adopted in this paper, namely spatial context is only exploited at the testing stage. Therefore, PPF and
the aforementioned MASR are chosen for comparison in Section 4, since these two state-of-the-art methods are
trained only based on spectral samples.

Raised in the field of face recognition, deep metric learning is becoming a hotspot in deep learning and has
gained great success. The basic idea is to enhance the discriminative power of the deeply learned features by
simultaneously enlarging the inter-class variations and decreasing the intra-class variations. To this end, several
metric learning loss functions have been introduced to CNN as supervision signal, such as triplet loss [28],
magnet loss [29], and newly introduced center loss [30] that will be investigated in this paper. To the best of
our knowledge, to design a neuron network based on deep metric learning has not been approached so far in
the context of hypersepctral FE and classification.

In this paper, we propose a deep spectral-spatial FE and classification framework that allows to extract
discriminative spectral-spatial features with intra-class compactness and interclass dispersity. We apply a joint
supervision symbol proposed in [30] to train the network, in which the conventional softmax loss and the so-
called center loss is combined. The spectral pixels are directly fed to the network to estimate the network
parameters and the class centers as well. Based on the learned network, the extracted features are classified
by a center classifier. To further improve the classification performance, we propose to adaptively integrate
the spatial information from multi-scale neighborhoods at the testing stage. For each scale, the label and its
associated weight are estimated using center classifier, and the final label is determined by a voting strategy.
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The proposed framework has following characteristics:

1. Discriminative features: Taking advantage of center loss, the proposed ANNC allows to extract spectral
features that are not only separable but also discriminative. This helps to decrease the undesirable side
effects brought by the high-resolutions to the classification task, namely the increasing intra-class variation
and inter-class similarity. The extracted features fit the proposed center classifier well. Compared with
raw spectra, the discriminative features are easier to handle, facilitating an effective integration of spatial
information at the testing stage.

2. Less overfitting issues: Facing the limited number of training samples in hyperspectral images, we design
a small network with less parameters in order to alleviate the overfitting issue. To make full use of training
set, virtual samples are generated. Moreover, only spectral information is exploited at the training stage
to avoid overlap of training and testing sets. As indicated in [30], the joint supervision which complicates
the training task also helps to alleviate the overfitting problem to some degree.

3. Training with less prior knowledge on the image: In the proposed framework, the training procedure
is strictly spectrum-based, without requiring any local information on the training pixel, such as the
coordinate and the (unlabeled) neighboring pixels that may confront the testing set. This offers a more
flexible model for real world applications with less conditions to satisfy.

The remainder of this paper is structured as follows. Section 2 succinctly describes the basis of artificial
neural network. In Section 3, we propose a deep spectral-spatial FE and classification framework. Experimental
results and analysis on three real hyperspectral images are presented in 4. Finally, Section 5 provides some
conclusion remarks.

2 Basic concepts of ANN

Artificial neural network (ANN) is inspired by the organization and functioning of biological neurons [31, 32].
Typically, it is viewed as a trainable multilayer structure with multiple feature extraction steps, and is composed
by an input layer of neurons, several hidden layers of neurons, and a final layer of output neurons, as shown
in Figure 1.

v11 v12

v21 v22 v23

v31 v32 v33

v41

Input layer

Hidden layers

Output layer

Figure 1: An example of ANN with 2 hidden layers.

Given an ANN architecture, let vij denote the j-th neuron in the i-th layer. This value is computed based
on the neurons in previous layer, and takes the form

vij = Φ

(
bij +

ni−1∑
k=1

wij(i−1)kv(i−1)k

)
, (1)

where ni−1 denotes the number of neurons in the (i − 1)-th layer, wij(i−1)k represents the weight connecting

neurons vij and v(i−1)k, and bij indexes the bias for the neuron vij . The pointwise activation function Φ(·)
is often applied to introduce nonlinearity to the neutron network. In this paper, the commonly-used ReLU
function is chosen, which is defined by

Φ(x) = max(0, x).
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The loss function measures the global error between the ANN output and the groundtruth. To train a
network, namely to determine the parameters of weight and bias, one seeks to minimize the loss function
defined on the given training set consisting of labeled samples in pair. The resulting optimization problem is
addressed by the celebrated gradient-based, error back-propagation algorithm.

To avoid gradient computation on the whole training set, the stochastic gradient descent (SGD) with mini-
batch strategy is often applied, which alleviates the computational burden by processing a mini-batch at each
iteration of training.

The main objective of dropout is to regularize the neuron network in order to prevent overfitting [33]. During
the training step, the weights associated to some units are excluded from being updated temporarily, and these
units are randomly chosen with a fixed probability, namely dropout ratio.

3 Proposed spectral-spatial feature extraction and classification frame-
work

This section firstly presents the proposed neuron network, followed by explaining the joint supervision symbol
used for training. Based on the learned architecture, a spectral center classifier is proposed at the testing stage.
Finally, a spectral-spatial FE and classification framework termed ANNC-ASSCC is presented.

3.1 Proposed ANN structure

We first briefly describe the proposed ANN architecture. As illustrated in Figure 2, the proposed network
consists of an input layer, three hidden layers, and an output layer followed by a softmax classifier, and all the
layers are fully connected. We call the i-th layer fully connected, if every neuron in it has connections to all
activations in the previous layer, namely all the parameters wij(i−1)k in (1) are set learnable.

The sizes of the input and output layers are determined according to the hyperspectral image under study:
the former is set as the size of each sample pixel L, and the later is chosen to be the number of classes K. The
numbers of neurons in Layer 1, 2 and 3 are empirically set to be 512, 256 and 32.

Layer 1 and 2 consist of ReLU as the activation function, while Layer 3 does not transformed with any
activation function. The output layer is activated by the softmax function in order to perform the classification
task based on the learned features, namely the outputs of Layer 3.

It is noteworthy that the pixel-wise spectra are directly fed into the proposed network at the training stage,
differing from most existing spatial-spectral deep learning models which are trained using patch-based samples,
each being a neighborhood area centering at every labeled pixel [18–20].

3.2 Joint supervision of softmax loss and center loss

Inspired by a discriminative feature learning strategy proposed for deep face recognition in [30], we propose to
train the aforementioned network by simultaneously supervising the conventional softmax loss and the newly-
introduced center loss.

Suppose that the proposed network is optimized by the SGD with mini-batch strategy at the training
stage, namely the network parameters are updated based on a small set of samples at each iteration. Let
{(x1, y1), . . . , (xM , yM )} be a given mini-batch composed by M labeled samples, where xi ∈ RL×1 denotes the
i-th input spectra in the batch, and yi ∈ {1, ...,K} is the corresponding ground-truth label.

The softmax loss combines softmax function with multinomial logistic loss. Softmax function is commonly
used in multi-class classification, as its output could be regarded as a probability distribution over predefined
classes. Let σ(z) = [σ1(z), σ2(z), . . . , σK(z)]> represent the softmax function over the K-dimensional output
feature z = [z1, z2, . . . , zK ]>. The predicted probability that sample xi belongs to class j is given by

p(ŷi = j|xi) = σj(z) =
exp(zj)∑K
l=1 exp(zl)

, (2)

where ŷi is the predicted label of sample xi. Multinomial logistic loss generalizes the logistic loss from binary
classification to multi-class case, and is formulated as

LS = − 1

M

 M∑
i=1

K∑
j=1

I{j}(yi) log p(ŷi = j|xi)

 , (3)
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where IA(x) is the indicator function of the set A defined by

IA(x) =

{
1 ∀x ∈ A;
0 otherwise.

By integrating the expression (2) to (3), we get the expression of the softmax loss.
In [30], the center loss was firstly introduced to address the face recognition task, and has achieved state-of-

the-art performance on several benchmarks. Intuitively, it is designed to enhance the separability of the deeply
learned features, by minimizing the intra-class distances while encouraging the inter-class variations. To this
end, the center loss is defined by averaging the distances between every extracted feature and the corresponding
class center, namely

LC =
1

2M

M∑
i=1

||x̂i − cyi ||22. (4)

Here, the learned feature x̂i corresponds to the i-th input spectra in the batch, for i = 1, ...,M , and ck denotes
the k-th class center defined by the averaging over the features in the k-th class, for k = 1, ...,K. In practice,
the class centers are updated with respect to mini-batch instead of being updated based on the entire training
set. At the t-th training round, let ctk denote the k-th estimated class center, and let c̄tk denote the averaged
features of the i-th class based on mini-batch. Following [30], the class centers are iteratively updated at every
training round, and are formulated as

ct+1
k = ctk + α(c̄t+1

k − ctk), (5)

with c1k = c̄1k, for k = 1, ...,K. Here, a hyperparameter α is introduced to control the learning rate of the
centers, thus avoiding large perturbations. In this paper, we set α = 0.5.

The loss function of the proposed architecture is then defined by combining the softmax loss LS and the
center loss LC , with

L = LS + λLC , (6)

where hyperparameter λ balances the importance between two loss functions, and is fixed to be 0.01 in this
paper.

We apply the algorithm given in [30] to train the proposed network. See Algorithm 1 and find more details
in the related paper.

Algorithm 1 Training algorithm [30]

Input: The number of iteration t← 0. Mini-batches {(xt1, yt1), . . . , (xtM , y
t
M )} for training. Initialized parame-

ters θ in the network . Hyperparameters λ, α and learning rate µt.
Output: The trained network parameters θ.
1: Initialize the parameters θ by Gaussian distribution N(0, 0.012) (weight parameters) and constant number

0 (bias parameters).
2: Compute the joint loss by L0 = L0

S + λL0
C .

3: Compute the backpropagation error ∂L0

∂x0
i

for each i by ∂L0

∂x0
i

=
∂L0

S

∂x0
i

+ λ
∂L0

C

∂x0
i
.

4: Update the parameters θ by θ0 = θ − µ0
∑
i
∂L0

∂x0
i

∂x0
i

∂θ .

5: Update the estimated centers by c0k = c′0k , for 1 ≤ k ≤ K.
6: while not converge do
7: t← t+ 1.
8: Compute the joint loss Lt = LtS + λLtC
9: Compute the backpropagation error ∂Lt

∂xt
i

for each i, by ∂Lt

∂xt
i

=
∂Lt

S

∂xt
i

+ λ
∂Lt

C

∂xt
i
.

10: Update the parameters θ by θt = θt−1 − µt
∑
i
∂Lt

∂xt
i

∂xt
i

∂θt−1 .

11: Update the estimated centers ctk = ct−1k + α(c′tk − ct−1k ), for 1 ≤ k ≤ K.
12: end while

3.3 Discriminative spectral feature extraction and center classifier

At the testing stage, the spectral features are firstly generated as the outputs of Layer 3, using the learned
network. Taking advantage of center loss, the obtained features have good discriminative ability for subse-
quent classification task, namely the features are distributed compactly within class while different classes stay
separable.
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FC FC FC FC Softmax

Input Layer 1 Layer 2 Layer 3 Output Label

center loss softmax loss

Feature Extraction Network Logistic Regression

Figure 2: Structure of the proposed neural network.

To perform classification based on the extracted features, we introduce the so-called center classifier, which
assigns label to a given feature according to its nearest class center. As the real class centers are not accessible,
they are approximated by averaging the learned features for training samples from each class. Let ĉk denote
the k-th approximate class center, it is expressed as

ĉk =

∑
x∈{xi|yi=k} f(x)

card{xi|yi = k}
, (7)

for 1 ≤ k ≤ K, where {(xi, yi)} represents the entire training set composed by pairs of spectrum and associated
groundtruth label, and f(·) returns to the learned feature (the outputs of Layer 3) for any entry. For a testing
sample x, it is classified to have label k0 such that

k0 = arg min
k
{d(f(x), ĉk)}, (8)

where d(·, ·) measures the Euclidean distance between two vectors.
The above testing stage is combined with the training stage presented in Section 3.2, and the whole framework

is termed artificial neuron network with center loss and spectral center classifier (ANNC-SCC). For comparison,
the case without center loss is abbreviated by ANN-SCC.

3.4 Spectral-spatial feature generation and classification

Existing works in [16–20] seek the spectral-spatial representation by training a model with patch-based sam-
ples. Although effective, this may further aggregate the sample shortage problem in hyperspectral classification.
Thanks to center loss, the spectral features extracted using the proposed framework have good enough discrim-
inative ability that enables an effective integration of spatial information posteriorly at the testing stage.

1) Spectral-Spatial Center Classifier : We propose a spectral-spatial center classifier by applying center clas-
sifier to the averaged spectral feature, which is calculated within a neighborhood around a testing sample.
Firstly, the spectral features, i.e., the outputs of Layer 3, of the whole image are extracted and stored. Given a
testing sample x, let Ni×i(x) denote a local neighborhood of samples centering at x, where i× i represents the
pre-defined neighborhood scale with i being an odd number. The average feature of the neighborhood, repre-
sented by f̃(x) is computed and taken as the spectral-spatial feature for the testing sample x, as summarized
in Algorithm 2. Here, all the training samples are excluded and not taken into account. The new feature is fed
to the aforementioned center classifier. The method is termed artificial neuron network with center-loss and
spectral-spatial center classifier (ANNC-SSCC).

2) Adaptive Spectral-Spatial Center Classifier : In ANNC-SSCC, the neighborhood scale greatly influences
the classification performance and should be appropriately set according to the feature distribution and local
contextual property. However, to obtain such information is not practical, thus posing an obstacle to the
estimation of neighborhood scale. To overcome this difficulty, we improve ANNC-SSCC by adopting an adaptive-
weighted multiscale voting strategy, where neighborhoods of varying scales are considered simultaneously.

For a testing sample x, let {f̃i×i(x), `i×i(x)} denote the pair of spectral-spatial feature and predicted label
computed by ANNC-SSCC, and let P = card({`i×i(x)}) be the number of candidate labels. Eight scales of
neighborhoods, i.e., 3× 3, 5× 5, ..., 17× 17 are taken into account. Considering that smaller distance between
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Algorithm 2 Spatial-spectral feature generation

Input: The testing sample x. The neighborhood of samples Ni×i(x) centering at x (with x included). The
training set T .

Output: The spectral-spatial feature f̃(x)
1: Initialize the summation variable featureSum = 0 and counter cnt = 0.
2: for all z in neighborhood Ni×i(x) do
3: if z not in training set T then
4: featureSum = featureSum + f(z); cnt = cnt + 1.
5: end if
6: end for
7: return f̃(x) = featureSum

cnt

Data & labels #1

Data & labels #2

Data & labels #m· · ·
Data & labels #M

Neural network
supervised with joint loss

Neural network
Trained model

Neural network
Trained model

Features of training dataClass K

Features of training data. . .

Features of training dataClass 2

Features of training dataClass 1
average

Nĉ1

Nĉ2

N· · ·
NĉK

Class Centers

Compare
& Vote

Predicted
label

N3×3 N5×5

· · · N17×17

Eight neighborhoods

F3×3 F5×5

· · · F17×17

Features

N N · · · N
average

Training stage Testing stage

Figure 3: Flowchart of the proposed ANNC-ASSCC framework. Training and testing stages are distinguished
by thin and thick dashed arrows, respectively. The estimation of class centers with trained model is drawn with
solid thick arrows. At the testing stage, the dashed rectangle in white represents the excluded training sample,
appearing within the neighborhoods of a testing sample in red.

style.where three arrow types are used to distinguish different procedures.

a feature to its predicted class center means more reliable label prediction, the weight of neighborhood Ni×i is
estimated by

wi×i(x) =
1

d(f̃i×i(x), ĉ`i×i(x))
, (9)

where d(·, ·) is Euclidean distance between the feature and its predicted class center, for i = 3, 5, .., 17. After
gathering the neighborhoods with the same label, the weight for candidate label p is expressed by

Wp(x) =
∑

{i|`i×i(x)=p}

wi×i, (10)

for p = 1, ..., P . The sample x is predicted to have label p0, such that

p0 = arg max
p
{Wp(x)}. (11)

The whole training and testing procedure is referred as artificial neuron network with center-loss and adaptive
spatial-spectral center classifier (ANNC-ASSCC), and the flowchart is depicted in Figure 3.
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4 Experimental results and analysis

4.1 Data description and quantitative metrics

Three well known hyperspectral images are used in experiments1. The first one is Pavia Centre scene acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over Pavia, northern Italy. After removing
a strip without information, a sub-image of size 1096×715 is taken, with a spatial resolution of 1.3 meters. After
discarding the noisy bands, L = 102 out of 115 spectral bands are utilized for analysis, covering a wavelength
range from 0.43 to 0.86µm. The groundtruth information consists of K = 9 classes, as given in Table 1. The
false color composite and the groundtruth map of Pavia Center are shown in Figure 4.

Table 1: Reference classes and sizes of training and testing sets of Pavia Centre image

No. Class Cardinality Train Test
1 Water 65971 200 65771
2 Trees 7598 200 7398
3 Asphalt 3090 200 2890
4 Self-Blocking Bricks 2685 200 2485
5 Bitumen 6584 200 6384
6 Tiles 9248 200 9048
7 Shadows 7287 200 7087
8 Meadows 42826 200 42626
9 Bare Soil 2863 200 2663

Total 148152 1800 146352

Figure 4: The false color composite and groundtruth map of Pavia Centre

The second image is Pavia University scene that is also returned by the ROSIS sensor. This data comprises
610× 340 pixels with L = 103 relatively clean spectral bands of interest. As detailed in Table 2, the available
groundtruth information consists of K = 9 classes. The false color composite and the groundtruth map are
illustrated in Figure 5.

The last image under study is the Salinas scene, collected by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) over Salinas Valley, California. This image contains 512 × 217 pixels, characterized by a
spatial resolution of 3.7 meters. After removing the water absorption bands, L = 204 out of 224 bands are
retained for analysis, with a wavelength range of 0.4 − 2.5µm. There are K = 16 classes of land-cover in the
groundtruth information, as reported in Table 3. The false color composite and the groundtruth map are shown
in Figure 6.

Three metrics, i.e., overall accuracy (OA), average accuracy (AA), and Kappa coefficient (κ) are adopted
to quantitatively evaluate the classification performance. OA represents the general percentage of the testing
samples that are correctly classified, AA computes the average percentage of correctly classified testing samples
for each class, and κ measures the percentage of classified samples adjusted by the number of agreements that
would be expected by chance alone.

4.2 Experimental setting

1) Training and Testing Sets: Before subsequent training and testing procedures, each raw image is firstly
normalized to have zero mean and unit variance. To alleviate overfitting caused by limited training samples,

1The datasets are available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Table 2: Reference classes and sizes of training and testing sets of Pavia University image

No. Class Cardinality Train Test
1 Asphalt 6631 200 6431
2 Meadows 18649 200 18449
3 Gravel 2099 200 1899
4 Trees 3064 200 2864
5 Painted metal sheets 1345 200 1145
6 Bare Soil 5029 200 4829
7 Bitumen 1330 200 1130
8 Self-Blocking Bricks 3682 200 3482
9 Shadows 947 200 747

Total 42776 1800 40976

Figure 5: The false color composite and groundtruth representation of Pavia University

Table 3: Reference classes and sizes of training and testing sets of Salinas image

No. Class Cardinality Train Test
1 Brocoli green weeds 1 2009 200 1809
2 Brocoli green weeds 2 3726 200 3526
3 Fallow 1976 200 1776
4 Fallow rough plow 1394 200 1194
5 Fallow smooth 2678 200 2478
6 Stubble 3959 200 3759
7 Celery 3579 200 3379
8 Grapes untrained 11271 200 11071
9 Soil vinyard develop 6203 200 6003
10 Corn senesced green weeds 3278 200 3078
11 Lettuce romaine 4wk 1068 200 868
12 Lettuce romaine 5wk 1927 200 1727
13 Lettuce romaine 6wk 916 200 716
14 Lettuce romaine 7wk 1070 200 870
15 Vinyard untrained 7268 200 7068
16 Vinyard vertical trellis 1807 200 1607

Total 54129 3200 50929
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Figure 6: The false color composite and groundtruth representation of Salinas

(a) ANNC (b) ANN

Figure 7: Comparison of (a) ANNC and (b) ANN in terms of softmax loss LS and classification accuracy along
with iterations (×100).

we enlarge the training set by virtual samples generation in a similar way as did in [18]. Let x1 and x2 be two
samples from the same class, a virtual sample y with the same label is generated by y = qx1 + (1− q)x2, where
the range of q is empirically set as [−1, 2]. In the following, the training set of each class consists of 200 real
samples enhanced by 80000 virtual ones. All the remaining samples with groundtruth information are used for
testing.

2) Network Configuration: The same network structure, as illustrated in Figure 2, is utilized on each of the
datasets, except for various sizes of input and output layers that are determined case by case. The mini-batch
size is 512, and the learning rate in SGD is initialized as 0.01, and decays every 20000 mini-batches with a
multiplier

√
0.1 ≈ 0.3162. Dropout strategy is adopted in Layer 3 with the dropout ratio to be 0.3. The

proposed framework is built on the open source deep learning framework Caffe [34], and each experiment is
repeated 5 times.

4.3 Investigation of spectrum-based FE and classification

1) Enhancing Discriminative Ability with Center Loss: We analyze how does center loss enhance the discrim-
inative ability on spectral feature extraction. To this end, experiments are performed on Pavia Center, using
two neuron networks supervised by conventional softmax loss (ANN) and by a joint loss combining softmax loss
and center loss (ANNC), respectively. For fair comparison, all the other conditions are identically set in both
cases, such as network structure, training set, hyperparameters, etc.

The behaviours of softmax loss, i.e. LS in (3), and classification accuracy of models ANN and ANNC in
training stage are illustrated in Figure 7. We observe that training with center loss leads to more stable changes
in terms of both softmax loss and classification accuracy along with iterations, when compared to its counterpart
without center loss.

We investigate how the distribution of features changes in Euclidean space at the training stage. To this
end, three statistics are monitored, as shown in Figure 8. The center loss, i.e. LC in (4), measures the averaged
intra-class distance of features among classes, with a smaller value reflecting better intra-class compactness.
As a measurement of inter-class variation, the minimum squared distance between any two centers are traced,
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(a) ANNC (b) ANNC

Figure 8: Comparison of (a) ANNC and (b) ANN in terms of center loss 2× LC , D2
min and the ratio between

them, along with iterations (×100).

(a) Features under ANNC (b) Features under ANN

Figure 9: The distributions of spectral features on training samples, using networks ANNC and ANN. Features
from various classes are denoted in different colors.

denoted by D2
min. The ratio between these two statistics are also considered, with a smaller magnitude signifying

better discriminative ability.
We observe that training with center loss yields smaller LC and greater D2

min, with the ratio between them
several times smaller, when compared to its ANN counterpart. This demonstrates that the learned features
under ANNC are more gathered within class while different classes are more distant. Moreover, the curves of
ANNC are smoother, showing more steady convergence property over iterations.

Figure 9 visualises the spatial distribution of spectral features extracted by ANN and ANNC, on 2000 random
testing samples. For illustration purpose, the 32-dimension features are projected to certain 2 coordinates (i, j).
As observed, the features extracted by ANNC are gathered more closely within class while the distances between
different classes are more enlarged, compared to the case ANN. The above discussions validate that training
with center loss helps to improve the discriminative property of the network that is otherwise trained by trivial
softmax loss.

2) Classification with Spectral Features: To demonstrate the effectiveness of the discriminative spectral
features for subsequent classification, comparative experiments are performed on spectral features that are
extracted with ANN and ANNC, respectively. Two classifiers, namely the aforementioned center classifier (CC)
and the logistic regression (LR) are considered. The results on datasets Pavia Center, Pavia University and
Salinas are presented in Tables 4-6.

Compared with ANN, the spectral features extracted by ANNC generally leads to better classification
accuracy in terms of AA, OA and κ, using either classifier on all the datasets. It demonstrates that the
discriminative ability induced by center loss has a positive influence on classification performance. To be precise,
ANNC combined with CC yields best classification accuracy on Pavia University and Salinas. Regarding Pavia
Center, it is ANNC combined with LR that archives the best performance, second by ANNC classified with
CC. The combination of ANN and CC leads to the worst results on all the datasets, since features trained with
ANN are lack of intra class compactness and inter class dispersion, thus not suitable for CC.

It is noteworthy that ANNC is effective in addressing the confusion between similar classes. Concerning
Salinas, while most classes are well recognized with high classification accuracy achieved by both ANN and
ANNC, there are two classes, namely Grapes untrained and Vinyard untrained, that are locally adjacent and
hard to be distinguished one from the other. By examining the predictions and groundtruth labels, one could
find that most of failed predictions are caused by the mislabeling between these two classes located at the up-left
region of the image, see Figure 10. Table 6 illustrates that ANNC improves the classification result on such
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Table 4: The results on Pavia Centre scene
Classifier LR CC

FE method ANN ANNC ANN ANNC

Water 99.92 99.96 99.94 99.96
Trees 96.13 97.10 90.61 97.24

Asphalt 97.38 97.21 92.33 97.11
Self-Blocking Bricks 97.15 96.61 94.13 96.60

Bitumen 95.65 95.67 93.50 95.60
Tiles 97.94 98.10 99.32 98.22

Shadows 94.05 94.34 88.84 94.29
Meadows 99.37 99.44 94.93 99.37
Bare Soil 99.92 99.95 99.99 99.94

OA(%) 98.88 1©98.98 96.90 2©98.96
AA(%) 97.50 1©97.60 94.84 2©97.59
κ 0.9840 1©0.9855 0.9561 2©0.9852

Table 5: The results on Pavia University scene

Classifier LR CC
FE method ANN ANNC ANN ANNC

Asphalt 88.41 90.06 88.46 90.47
Meadows 94.12 95.27 58.21 94.94

Gravel 85.76 87.71 84.09 85.52
Trees 97.43 97.35 90.77 97.41

Painted metal sheets 99.96 99.98 99.05 99.98
Bare Soil 95.68 95.71 90.01 96.09
Bitumen 95.41 95.07 95.61 94.96

Self-Blocking Bricks 88.57 85.30 88.85 88.06
Shadows 99.70 99.81 99.86 99.81

OA(%) 93.08 2©93.66 75.69 1©93.76
AA(%) 93.89 2©94.03 88.32 1©94.14
κ 0.9078 2©0.9153 0.6976 1©0.9166

difficult task, compared with its ANN counterpart, using either classifier.

4.4 Performance of Adaptive Spectral-Spatial Center Classifier (ANNC-ASSCC)

The performance of ANNC-ASSCC is compared with two state-of-the-art methods, namely PPF [27] and
MASR [15]. To examine the proposed spatial integration strategy, ANNC-SCC is also considered. As shown in
Tables 7-9, ANNC-ASSCC achieves classification improvements over ANNC-SCC in terms of all the metrics on
three datasets. It demonstrates that the discriminative features facilitate the postprocessing, and the proposed
spatial integration strategy is effective in classifying these features.

We also observe that ANNC-ASSCC outperforms the comparative methods on Pavia Center and Pavia Un-
versity, but is inferior to MASR on Salinas. One possible reason is that MASR exploits multiscale neighborhoods
at the testing stage without removing the training samples. To guarantee a fair comparison and clarify how
does train-test overlap influence the classification performance, supplementary experiments are performed with
slight modifications on MASR. At the testing stage, we design MASR-t that exclusively deteriorates training
information by replacing all the training pixels with a L-dimensional vector of identical entries 0.01. As a con-
trast, MASR-r introduces an even disturb by randomly replacing the same number of pixels with the previous
vector. The results are appended to Table 9. Compared with MASR, MASR-r barely deteriorates the classifi-
cation performance with slight drops less than 0.1% in terms of OA, AA and κ. However, MASR-t yields over
2% decreases in terms of OA and κ, and only achieves comparable results as the proposed ANNC-ASSCC. To
conclude, the proposed method provides competitive classification results over the state-of-the-art approaches
on three datasets.
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Figure 10: Comparison of predicted labels by ANN and groundtruth on Salinas. As observed, most failed
predictions are caused by the mislabeling between classes Grapes untrained and Vinyard untrained located at
up-left corner.

Table 6: The results on Salinas scene
Classifier LR CC

FE method ANN ANNC ANN ANNC

Brocoli green weeds 1 99.91 99.81 99.96 99.80
Brocoli green weeds 2 99.91 99.97 99.54 99.96

Fallow 99.68 99.76 95.23 99.86
Fallow rough plow 99.66 99.66 99.71 99.68

Fallow smooth 98.97 99.10 98.70 99.08
Stubble 99.92 99.98 98.58 99.99
Celery 99.84 99.85 99.90 99.85

Grapes untrained 79.33 80.52 79.27 83.26
Soil vinyard develop 99.77 99.69 99.89 99.70

Corn senesced green weeds 96.03 96.47 88.94 96.47
Lettuce romaine 4wk 99.51 99.74 97.74 99.77
Lettuce romaine 5wk 100.00 100.00 100.00 100.00
Lettuce romaine 6wk 99.77 99.58 99.60 99.58
Lettuce romaine 7wk 99.21 99.35 97.70 99.35
Vinyard untrained 81.96 82.75 68.17 80.14
Vinyard vertical trellis 99.29 99.06 97.82 99.09

OA(%) 92.58 2©92.98 89.84 1©93.22
AA(%) 97.05 2©97.21 95.05 1©97.22
κ 0.9170 2©0.9215 0.8863 1©0.9241
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Table 7: Classification accuracy (averaged over 5 runs) obtained by MASR [15], PPF [27], ANNC-SCC and
ANNC-ASSCC on Pavia Centre

MASR PPF ANNC-SCC ANNC-ASSCC
Water 99.87 99.15 99.91 100.00
Trees 94.22 97.96 96.34 98.75

Asphalt 99.45 97.37 97.72 99.26
Self-Blocking Bricks 99.98 99.27 96.67 99.96

Bitumen 98.75 98.79 95.94 99.35
Tiles 80.23 98.95 98.28 99.73

Shadows 99.34 94.36 93.62 97.49
Meadows 99.90 99.90 99.41 99.99
Bare Soil 84.80 99.96 99.95 98.72

OA(%) 98.02 2©99.03 98.91 1©99.73
AA(%) 95.17 2©98.41 97.54 1©99.25
κ 0.9719 2©0.9862 0.9845 1©0.9961

Table 8: Classification accuracy (averaged over 5 runs) obtained by MASR [15], PPF [27], ANNC-SCC and
ANNC-ASSCC on Pavia University

MASR PPF ANNC-SCC ANNC-ASSCC
Asphalt 89.97 97.25 90.06 98.69

Meadows 98.78 95.24 95.75 99.97
Gravel 99.78 94.17 86.76 93.85
Trees 97.47 97.20 97.54 96.68

Painted metal sheets 100.00 100.00 100.00 100.00
Bare Soil 99.87 99.37 94.88 100.00
Bitumen 100.00 96.16 94.81 96.88

Self-Blocking Bricks 98.76 93.83 83.68 93.11
Shadows 92.17 99.46 99.63 97.62

OA(%) 2©97.42 96.25 93.60 1©98.55
AA(%) 2©97.42 96.97 93.68 1©97.42
κ 2©0.9654 0.9499 0.9145 1©0.9805

5 Conclusion

This paper presented an ANN-based framework for spectral-spatial hyperspectral feature extraction and clas-
sification. The center loss was introduced to train the network in order to enhance the discriminative ability
of the model. Based on the learned network, two classification strategies were proposed at the testing stage.
In ANNC-SCC, the spectral features were classified using the center classifier. In ANNC-ASSCC, multi-scale
spatial information was adaptively integrated to the spectral features, and the classification was performed
using a voting strategy. The effectiveness of the proposed methods were demonstrated on three well-known
hyperspectral images. As for future work, other loss functions proposed in deep metric learning, such as triplet
loss and magnet loss, deserve investigation to address the hyperspectral feature extraction and classification
problems.
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