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Abstract

Mobile devices and wireless network links are sometimes unreliable and unstable owing to user mobility
in mobile wireless environments. As a result, failures may occur during the offloading process, which has a
huge influence on the offloading performance. Worse still, it is challenge to make high-level offloading decisions
since they closely rely on an accurate predicting model, especially when encountering with offloading failures.
Unfortunately, due to the high mobility and heterogeneous network environments, such a model is currently not
available to researchers and practitioners. To fill that gap, this letter develops an analytical queueing model for
delayed offloading systems with intermittent connectivity. We set a deadline to detect offloading failures when
taking the impatient jobs and service interruptions into account. Further, for different types of mobile applications,
a tradeoff analysis between energy saving and latency reducing are analyzed on the basis of an Energy-Response
time Weighted Product (ERWP) metric. The proposed offloading model can be effectively used for describing
complex and realistic offloading systems with the presence of failures.
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I. INTRODUCTION AND MOTIVATION

ALONG with the development of Mobile Cloud Computing (MCC) and Mobile Edge Computing
(MEC), offloading is becoming a promising approach to relieve computing pressure, by migrating

tasks from resource-constrained mobile devices either to a resourceful cloud server or a nearby edge
server over wireless networks. Thus, it can effectively enhance the performance of mobile applications
and energy saving on the mobile devices [1]. However, wireless environments between the mobile devices
and the cloud/edge servers are not stable, and as a result, mobile devices are prone to dynamically changing
network conditions on account of user mobility [2].

Disconnection of mobile devices from wireless networks and unstable cloud/edge servers can cause
failures in execution of offloaded tasks, which could severely affect the performance of mobile offloading
systems [3]. Once a failure occurs, a mobile device has to wait for the failure to recover, for example,
the link is reconnected from disconnection or the server is available from outage. Checkpointing was
used in [4] to realize fault-tolerance by periodically saving the state of a process during the failure-free
execution. During the operation of failure recovery, the offloading system loaded the latest checkpoint
data and recovered the application execution. MAUI [5] attempted to handle crash failures by employing
a timeout mechanism. If the mobile device is out of contact with the MAUI server while the server is
executing an offloaded task, then the mobile device can either execute this task locally or attempt to find
an alternate server and then offloads the task to this new server.

Since wireless interfaces usually have different availabilities, delays and energy costs, tasks can be
offloaded to the cloud/edge servers either via costly cellular networks or intermittently available WiFi
networks [6]. By deferring task offloading until some high-speed wireless network becomes available,
the data transfer time can be reduced at the expense of some extra waiting time. The reduced transfer
time may directly translate into energy saving on mobile devices [7]. Offloading failures may occur once
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in a while since the mobile network environment between the mobile side and the server side is not
stable. Unfortunately, existing research on stochastic modeling of delayed offloading systems is lacking,
especially when considering offloading failures occur in the mobile device.

The aim of this letter is to solve the dilemma of waiting for the repair or starting a local execution
after the failure. We cope with offloading failures that appear on the mobile side owing to wireless
link failures or on the server side owing to server failures, e.g., the server is shutdown or the server
becomes unreachable because of the mobile device’s movement. Offloading failures are detected by a
setting deadline. As motivated, we try to solve the following issues: (i) In case the server is not available
or in link failures, how to balance the offloading benefits, e.g., execution time reduction and energy saving?
(ii) Once a failure occurs during the offloading process, the mobile user has to wait for the failure to
recover, but to what extent the user is willing to defer a transmission and how long should it wait? (iii)
How to set an optimal deadline for latency-sensitive or latency-tolerant applications when paying attention
to time saving or energy reducing?

II. DELAYED OFFLOADING MODEL

Figure 1 shows a delayed offloading model with the presence of failures, which are listed as follows:
• Connection failures: Link failures occur frequently due to the high mobility of mobile devices, which

will ultimately lead to connection failures [8]. When the mobile devices get suddenly disconnected
from the cloud/edge servers, severe performance degradation will incur for mobile applications since
the offloading request is dropped. During the process of offloading execution, a disconnection between
a mobile device and a cloud/edge server can be treated as a failure. Besides, the servers sometimes
are inaccessible due to node failure or unstable link.

• Server failures: Because the reliability is typically ensured through Service Level Agreements (SLAs)
negotiated with the service providers, cloud/edge servers are not perfectly reliable, especially when
data center outages occur, they will not be accessible. A recent survey [9] reported that 93% of
enterprises that suffered from a data center downtime for more than 10 days, filed for bankruptcy
within a year of the outage. Execution errors in the servers can also happen and return some wrong
results. This can be another cause of the connection failures.

In addition, there exist crash failures especially when disastrous breakdowns (e.g., running out of battery,
abnormal shutdown).
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Fig. 1: The delayed offloading model with failures [10]
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In Fig. 1, the offloading process will be interrupted in the event of a connection or server failure, and
the task has to be re-executed from the scratch. The mobile device is unaware that how long it should
wait for the failure recovery. In order to tackle this issue, we define an exponential distributed deadline
Td. Using the memoryless property of exponential random variables, the analysis process can be greatly
simplified [7]. On the one hand, if the failure is repaired in a period of time (≤ Td), then the task will be
offloaded again; on the other hand, if the failure does not recover before the deadline expires, then the
task will be processed locally instead of being offloaded to the server.
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Fig. 2: A queueing model for mobile offloading systems with failures

As shown in Fig. 2, we can treat such mobile system as an M/M/1 modulated Offload Queue, where it
occasionally suffers a disastrous breakdown during the offloading phase. Once a failure occurs, this queue
declines all existing jobs, and a repair process begins immediately, referred as the repair phase. When
the connection is down and undergoing a repair process, new arrivals become impatient: each individual
job, upon arrival, activates an ‘impatience timer’, exponentially distributed with an abandonment rate
ξ (= 1/Td) [10]. If the failure is repaired before the assigned deadline Td has expired, then we retry
offloading, i.e., the job will be migrated to External Queue with cloud/edge server for external execution.
If the mobile environment remains unchanged, the queue does not change from the repair phase to the
offloading phase before Td has expired, then the job is scheduled to Local Queue for local execution
immediately instead of being offloaded to the nearby edge server or remote cloud server.

TABLE I: Notations

Notations Meanings

Td The assigned deadline
ξ The abandonment rate
η The failure rate
γ The recovery rate
ω The weighting parameter
λ The job arrival rate
μ The job service rate
πon The steady probability when the queue is in the on-state
πoff The steady probability when the queue is in the off-state
λlocal The job arrival rate in the local queue
μexternal The job service rate in the external queue
ρlocal The utilization of the local queue
ρon The utilization during the on-state
ρoff The utilization during the off-state
plocal The power consumption for local processing
pidle The power consumption for being idle
ptr The power consumption for transferring data
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Assuming that jobs arriving at Offload Queue is according to a Poisson process with a rate of λ. The
mobile system suffers disastrous breakdowns, occurring when the server is at its offloading phase, at a
Poisson rate η [10]. When the server fails, all jobs present are rejected and lost. Once an offloading failure
happens, a repair process will begin immediately. The repair times are exponentially distributed random
variables with a rate of γ. Accompanied with offloading failures, the Offload Queue is then modeled with
a 2D Markov chain, as illustrated in Fig. 3.
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Fig. 3: The 2D Markov chain for the delayed offloading model with failures

During the on-state, the queue drains at rate μ and during the off-state, the queue drains at rate i · ξ
since any of the i queued jobs can abandon the Offload Queue and then move to Local Queue for local
execution on the mobile device [11]. The balance equations can be written as:

(λ+ γ)πoff,0 = ξπoff,1 + ηπon (1a)
(λ+ γ + iξ)πoff,i = λπoff,i−1 + (i+ 1)ξπoff,i+1 (i > 0) (1b)

(λ+ η)πon,0 = γπoff,0 + μπon,1 (1c)
(λ+ μ+ η)πon,i = λπon,i−1 + μπon,i+1 + γπoff,i (i > 0) (1d)

The steady probability when the offloading queue is in the off-state can be written as πoff =
E[Toff]

E[Ton]+E[Toff]
=

η
γ+η

. In a similar way, the steady probability when the offloading queue is in the on-state is πon =
E[Ton]

E[Ton]+E[Toff]
= γ

γ+η
.

According to [12], after some algebraic manipulations in Eq. (1), we can calculate:

E[Noff] =
λ

γ + ξ
πoff, (2)

E[Non] =
λ

η(γ + ξ)
(ξπon + γ)− μ

η
(πon − πon,0), (3)

where πoff,0 = Kηπon/ξ, πon,0 =
γz0

μ(1−z0)
G(z0),

G(z) = πoff,0 ·
[
1−

∫ z

0
(1− s)

γ
ξ
−1e−

λ
ξ
sds

K

]
(1− z)−

γ
ξ · eλ

ξ
z,

z0 =
λ+μ+η−

√
(λ+μ+η)2−4λμ

2λ
, K =

∫ 1

0
(1− s)

γ
ξ
−1e−

λ
ξ
sds.

As shown in Fig. 3, this queue suffers from two types of losses:
• Rejected jobs due to some disastrous failures occurring in the offloading system. The expected number

of lost jobs lost per unit of time is denoted as ηE[Non].
• Abandonments of impatient jobs during the repair phase. The expected number of jobs served per

unit of time is calculated as μ(πon − πon,0).
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An arbitrary job arriving at the Offload Queue may depart and join the Local Queue because of
impatience in the repair process. Thus, the rate of jobs processed locally, λlocal, is given by:

λlocal = λ− ηE[Non]− μ(πon − πon,0)

= λ− λ

γ + ξ
(ξπon + γ)

= ξ · E[Noff]. (4)

Further, the probability of abandoning the Offload Queue is defined as:

Pr{abandonment} =
λlocal

λ
=

ξ

γ + ξ
πoff, (5)

where Pr denotes the probability operation. From Eq. 5, we can find that the abandonment probability is
not related with the job arrival rate λ.

III. METRIC-BASED ANALYSIS

A. Mean Response Time
In case of offloading failures, the total offloading cost is composed of the cost for sending jobs to the

cloud/edge server, the waiting cost for repairing the failure, the cost for local processing on the mobile
device and the idly waiting cost for the cloud/edge server to complete the jobs.

Applying Little’s Law, E[N ] = λE[T ], we can calculate the mean response time:

E[T ] = E
[
E[Tj]

]
=

∑
j∈{on,off,local,external}

λj

λ
E[Tj]

=
1

λ

∑
j∈{on,off,local,external}

E[Nj], (6)

where j ∈ {on, off, local, external} represents the offloading phase, the repair phase, the local processing
phase (Local Queue) and the external processing phase (External Queue), respectively.

The average number of jobs in the Local Queue can be calculated as:

E[Nlocal] =
ρlocal

1− ρlocal
, (7)

where ρlocal = λlocal/μlocal is the utilization of the Local Queue.
Further, the average number of jobs executed on the cloud/edge server in the External Queue is

calculated as:

E[Nexternal] =
λ− λlocal

μexternal
. (8)

B. Mean Energy Consumption
According to the relationship between energy and power consumption E[P ] = λE[E ], the mean energy

consumption for the delayed offloading model with the presence of failures can be calculated by:

E[E ] = E
[
E[Ej]

]
=

∑
j∈{on,off,local}

λj

λ
E[Ej]

=
1

λ

∑
j∈{on,off,local}

E[Pj], (9)
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Since the probability that the server is busy equals to the utilization of the queue, i.e., Pr{N > 0} = ρ,
the corresponding mean power consumption can be calculated by:

E[P ] = p · Pr{N > 0} = p · ρ. (10)

We assume that the mobile system consumes plocal for local processing, pidle for being idle, and ptr for
transferring data. Then we have:

E[E ] = plocal · ρlocal + pidle · ρoff + ptr · ρon

λ
, (11)

where ρon = πon − πon,0 and ρoff = πoff − πoff,0 are the utilizations during the on-state and off-state,
respectively.

C. The ERWP Metric
We use a metric named Energy-Response time Weighted Product (ERWP) [13]:

ERWP = E[E ]ω · E[T ]1−ω, (12)

where 0 ≤ ω ≤ 1 is a weighting parameter that balances the relative importance of energy consumption
and response time according to the type of application. A larger weighting factor (0.5 < ω ≤ 1) means
more importance is put on energy saving, such as for latency-tolerant applications; on the contrary, a
smaller weighting factor (0 ≤ ω < 0.5) means that we should focus more on time saving, such as for
latency-sensitive applications.

Further, by substituting Eqs. (6) and (9), into Eq. (12), the optimization problem according to the ERWP
metric can be formulated as:

ξ∗ = argmin
ξ

ERWP , (13)

where we attempt to find out the abandonment rate ξ∗ that minimizes the ERWP value.

IV. PERFORMANCE EVALUATION

As a classic example, we consider an offloading scenario with connection failures when using WiFi
networks. Using measurements from real traces in [7], the average data rate of WiFi is 1.28 Mbps, the
average duration of WiFi availability period is 122 min (η = 1/122 min−1), while the average duration
with WiFi unavailability is 41 min (γ = 1/41 min−1) [14]. The mean job size is assumed to be 50 MB.
According to [15], when using a SAMSUNG Galaxy Nexus with dual-core 1.2 Ghz CPU and 1 GB of
RAM, the power coefficients are set as: pm = 2.4 W, ptr = 1.5 W and pidle = 0.05 W, respectively. Besides,
we set the local service rate as μlocal = 0.3 and the external service rate as μexternal = 1.

As shown in Fig. 4, at lower job arrival rates, the ERWP value arises as the deadline Td increases, but
at higher arrival rates, the ERWP value starts to drop as the Td increases. All arrival jobs are offloaded to a
nearby edge server or a remote cloud server through WiFi when the WiFi network is available; otherwise,
if the deadline expires, they are processed locally on the mobile device. Since jobs accompanied with
higher deadlines are prone to be transmitted over the WiFi network, resulting in smaller response time;
while with lower deadlines, jobs leave the queue earlier, leading to smaller queueing delays. Thus, the
proposed delayed offloading model accompanied with failures can obtain the smallest ERWP value by
selecting an optimal Td.

As shown in Fig. 5, when considering response time as a more important factor (e.g., for latency-
sensitive applications), the delayed offloading model is recommended at lower arrival rates; while at
higher ω when considering energy consumption more important (e.g., for latency-tolerant applications),
it is preferred to adopt the delayed offloading model at higher arrival rates.
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Fig. 4: Comparison of ERWP values for different deadlines as job arrival rate increases
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Fig. 5: Comparison of ERWP values for different weighting parameters as job arrival rate increases

V. CONCLUSION

In this letter, we presented a novel methodology for modeling offloading failures in mobile wireless
environments with intermittently available access links. We have conducted research for mobile offloading
systems with the presence of failures according to the ERWP metric, which takes both energy and delay
characteristics into account.

On the basis of the achieved numerical results, we find that the abandonment probabilities remain
constant across different job arrival rates. By optimally choosing a reneging deadline in the minimization
of the ERWP metric, different energy-delay tradeoffs can be achieved for different kinds of applications.
More importantly, we can use the proposed queueing model to capture the dilemma between offloading
retry and local re-execution when failures occur in complex and realistic offloading systems.
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