
Face Recognition Based on Pixel-Level and

Feature-Level Fusion of the Top-Level’s Wavelet

Sub-Bands

Zheng-Hai Huanga,b, Wen-Juan Lia, Jun Wanga,c, Ting Zhanga,∗

aCenter for Applied Mathematics of Tianjin University, Tianjin 300072, P.R. China
bDepartment of Mathematics, School of Science, Tianjin University, Tianjin 300072,

P.R. China
cCenter for Combinatorics, Nankai University, Tianjin 300071, P.R. China

Abstract

The traditional wavelet-based approaches directly use the low frequency sub-
band of wavelet transform to extract facial features. However, the high fre-
quency sub-bands also contain some important information corresponding
to the edge and contour of face, reflecting the details of face, especially the
top-level’s high frequency sub-bands. In this paper, we propose a novel tech-
nique which is a joint of pixel-level and feature-level fusion at the top-level’s
wavelet sub-bands for face recognition. We convert the problem of finding the
best pixel-level fusion coefficients of high frequency wavelet sub-bands to two
optimization problems with the help of principal component analysis and lin-
ear discriminant analysis, respectively; and propose two alternating direction
methods to solve the corresponding optimization problems for finding trans-
formation matrices of dimension reduction and optimal fusion coefficients of
wavelet high frequency sub-bands. The proposed methods make full use of
four top-level’s wavelet sub-bands rather than low frequency sub-band only.
Experiments are carried out on the FERET, ORL and AR face databases,
which indicate that our methods are effective and robust.
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1. Introduction

Face recognition, as a biological feature recognition, has been one of the
most active research areas in computer vision, pattern recognition and bio-
metrics [1]. Face recognition has several advantages over other biometric
modalities such as fingerprint and iris. Besides being natural and nonin-
trusive, the most important advantage of face recognition is that it can be
captured at a distance and in a friendly manner. Various face recognition
algorithms have been devised in the literature. However, up to now, face
recognition is still faced with a number of challenges such as varying illumi-
nation, facial expression and poses [2, 3, 4].

Feature extraction and classification are two key steps of a face recognition
system. Feature extraction provides an effective representation of face images
to decrease the computational complexity of the classifier, which can greatly
enhance the performance of a face recognition system; while classification is
to distinguish those features with a good classifier. Therefore, in order to
improve the recognition rate of a face recognition system, it is crucial to find
a good feature extractor and an effective classifier [5]. In this paper, we focus
on feature extraction methods by using wavelet transform with the help of
the classical principal component analysis (PCA) [6] and linear discriminant
analysis (LDA) [7].

Wavelet transform, which is an increasingly popular tool in image pro-
cessing and computer vision, has been investigated in many applications,
such as compression, detection, recognition, image retrieval et al., due to
its great advantages with the nice features of space-frequency localization
and multiresolution. Researchers have developed face recognition algorithms
by combining discrete wavelet transform (DWT) with other methods (see,
for example, [8, 9, 10, 11, 12, 13] and references therein). Through a two-
dimensional DWT (2D-DWT), an image of face is transformed into two part-
s: a low frequency sub-band and three high frequency sub-bands. On one
hand, the low frequency sub-band plays a dominant role in four sub-bands
for approximation of the original image; and on the other hand, when the
expression changes or the image is affected by occlusion, the low frequency
sub-band has no obvious change but the high frequency sub-bands change
obviously, so the low frequency sub-band is usually single-handed used for
identification in image recognition [10]. The authors in [14] directly used
the low frequency sub-band of wavelet transform to extract facial features.
However, though the high frequency sub-bands don’t contain as much infor-
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mation as the low frequency sub-band, they also contain important infor-
mation corresponding to the edge and contour of face, reflecting the details
of face [15]. Moreover, we implement the classical DWT+PCA on the ORL
database by using 4-level wavelet transform and every top-level’s high fre-
quency sub-band is single-handed used for identification in face recognition.
The obtained recognition rates by three top-level’s high frequency sub-bands
are 67.5%, 61.0% and 43.0%, respectively. This implies that every top-level’s
high frequency sub-band contains much information of face features. Thus,
it is more reasonable to use the information of more sub-bands for face recog-
nition. A natural question is how to use the information of these sub-bands
effectively for face recognition?

In recent years, data fusion has been developed rapidly and widely ap-
plied in many areas such as object recognition, pattern classification, image
processing, and so on. Generally speaking, data fusion is performed at three
different processing levels according to the stage at which the fusion takes
place: pixel-level, feature-level and decision-level [16]. In pixel-level fusion,
the information derived from multiple feature sets is assimilated and integrat-
ed into a final decision directly. Many fusion algorithms for the pixel-level
fusion have been proposed, from the simplest weighted averaging to more
advanced multiscale methods. There are two existing feature-level fusion
methods. One is to group two sets of feature vectors into a union-vector, and
another one is to combine two sets of feature vectors by a complex vector.
Both feature fusion methods can increase the recognition rate. The advan-
tage of feature-level fusion lies in two aspects: firstly, it can derive the most
discriminatory information from original multiple feature sets; secondly, it is
able to eliminate the redundant information resulting from the correlation
between distinct feature sets. The decision-level fusion, delegated by multi-
classifier combination, has been one of the hot research fields on pattern
recognition, and has achieved successful application in face recognition.

In this paper, based on 2D-DWT, we propose a joint of pixel-level and
feature-level fusion at the top-level’s wavelet sub-bands technique which can
make full use of four top-level’s wavelet sub-bands, and we abbreviate it as
TWSBF. The proposed technique is different from those image fusion tech-
niques developed in the literature (see, for example, [17, 18, 19, 20] and
references therein). Firstly, we conduct dimension reduction on low frequen-
cy wavelet sub-band. Then, we consider the top-level’s three high frequency
sub-bands, in which we apply the pixel-level fusion. In this way, we can
keep more discriminatory features and avoid redundancy. We convert the
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problem of finding the best fusion coefficients to two optimization problems
based on PCA and LDA, respectively; and propose two alternating direction
methods to solve the corresponding optimization problems for finding the
optimal transformation matrices of dimension reduction and optimal fusion
coefficients of wavelet sub-bands. Finally, we process feature-level fusion on
low frequency sub-band after dimension reduction and fused high frequency
vector. The experiments are carried out on the FERET, ORL and AR face
databases. The numerical experimental results demonstrate that the pro-
posed methods possess higher recognition rates than the classical wavelet-
based methods and some popular methods at present.

The rest of this paper is organized as follows. In Section 2, after a brief
introduction of 2D-DWT, we propose the model of TWSBF. The model and
algorithm based on TWSBF and PCA are investigated in Section 3; and the
model and algorithm based on TWSBF and LDA are discussed in Section 4.
The numerical experimental results on the FERET, ORL and AR face image
databases are reported in Section 5. The final remarks are given in Section
6.

2. Model of TWSBF

Let L2(R) denote the square integrable space. The continuous wavelet
transform of a one-dimensional function f(t) ∈ L2(R) is defined as

Wf (a, b) =

∫
R

f(t)ψa,b(t)dt, (1)

where the wavelet basis functions ψa,b(t) can be expressed as

ψa,b(t) = |a|−
1
2ψ(

t− b

a
),

in which ψ(t) is called mother wavelet and the parameters a and b stand
for the scale and position, respectively. Equation (1) can be discretized by
imposing restrictions on a and b with a = 2n and b ∈ Z.

The DWT of a one-dimensional signal is processed by transforming it
into two parts with a low-pass filter and a high-pass filter. The low fre-
quency part is split again into two parts of high and low frequencies [21].
In image processing, similar to the one-dimensional DWT, the DWT for a
two-dimensional image can be constructed by applying the one-dimensional
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DWT at horizontal and vertical directions, respectively. The process of 2D-
DWT is shown in Figure 1, in which an image is first filtered in the horizontal
direction with low-pass and high-pass filters. Then the filtered outputs are
downsampled by a factor of 2. Moreover, the same process is applied in the

Figure 1: The Flowchart of 1-Level 2D-DWT

vertical direction. Thus, an image is decomposed into 4 sub-bands denoted
by LL, HL, LH, HH. Each sub-band can be thought of a smaller version
of the image representing different properties. The sub-band LL is a coarser
approximation to the original image; the sub-bands LH and HL record the
changes of the image along horizontal and vertical directions, respectively;
and the sub-band HH shows the changes of the image along diagonal direc-
tion. The sub-bands LH, HL andHH are all the high frequency components
of the image. Further decomposition can be conducted on the LL sub-band.
The 1-level 2D-DWT means that an original image is decomposed into a
low frequency sub-band and three high frequency sub-bands. Generally, the
t-level 2D-DWT (t > 1) means that the low frequency sub-band obtained in
the (t − 1)-level 2D-DWT is further decomposed into a low frequency sub-
band and three high frequency sub-bands. Figure 2(a) shows the flowchart
of a 2-level 2D-DWT and Figure 2(b) shows the face image with a 1-level
2D-DWT.

Generally, sub-band LL is low frequency component of the image which
contains most information of the original image; and sub-bands HL, LH
and HH stand for the high-frequency components of the image which reflect
the details of images. Since the low frequency sub-band plays a dominant
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(a) The 2-Level 2D-
DWT Diagram

(b) The 1-Level
2D-DWT of a Face
Image

Figure 2: The Demonstration of 2D-DWT

role in four sub-bands for approximation of the original image, if a t-level
wavelet-based method is used, then the low frequency sub-band obtained by
the t-th-level wavelet transform (i.e., the top-level’s low frequency sub-band)
is usually single-handed used for identification in image recognition in the
literature. However, though the high frequency sub-bands don’t contain as
much information as the low frequency sub-band, they also contain much
important information. Thus, it is more reasonable to use the information
of all top-level’s sub-bands for face recognition. Based on these analysis, we
now propose a new wavelet-based technique (TWSBF) for feature extraction,
which makes full use of all top-level’s wavelet sub-bands. Such a technique
is described as follows.

Let I(x, y) be a face image, by using 1-level or multi-level wavelet trans-
form to I(x, y), we get the top-level’s low frequency sub-band matrix LL ∈
Rm×n and high frequency sub-bands matrices HL,LH,HH ∈ Rm×n. With-
out loss of generality, let L,H, V,D ∈ Rl represent the vectorization of
LL,HL,LH,HH, where l = m × n. Supose the dimension reduction func-
tion of L is fL, where the function fL can be PCA, LDA and so on. Then
the low dimensional representation of L is

DL = fL(L) ∈ Rd1 ,

where d1 is the number of dimension reduction, which can be seen the best
representation of L.

While the hight frequency sub-bands of I(x, y) can be further expressed
as an l × 3 matrix: A = [H V D] ∈ Rl×3. Therefore, the linear combination
of the high frequency sub-bands can be described as follows:

S = u1H + u2V + u3D = Au ∈ Rl (2)
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Figure 3: The Flow Chart of TWSBF

where u = (u1, u2, u3)
T ∈ R3 is a coefficient vector of the high frequency

wavelet sub-band fusion, which gives a model of pixel-level fusion of three
top-level’s high frequency wavelet sub-bands.

In order to make such a fusion technique of wavelet sub-bands more ef-
fective, it is necessary to find the optimal coefficient vector u in (2) so that
S is the best representation of A for face recognition. Suppose that fH is the
function of this process, and S is expressed as

DS = fH(S) = fH(Au) ∈ Rd2 ,

where d2 is the number of fused dimension.
By far, we get the low frequency and the high frequency representations of

I, i.e., DL and DS. For the application of high frequency and low frequency
information’ difference, feature-level fusion was used. That is we use

F =

(
DL

DS

)
=

(
fL(L)

fH(S)

)
∈ Rd1+d2

to represent the face I(x, y). Figure 3 vividly illustrates this fusion flow.
While the appropriate function fH is focused in this article.
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3. TWSBF plus PCA

3.1. Classical PCA

The feature extraction is to transform data from a high dimensional space
to a lower dimensional space, which can be linear or nonlinear. PCA [6] is
a linear dimension reduction technique which extracts the desired principal
components of the multidimensional data.

Suppose that the set {x1, x2, · · · , xm} with xi ∈ Rl comes from m training
samples, then PCA is trying to find a transformation matrix W ∈ Rl×γ such
that yi = W T (xi − x), where yi ∈ Rγ and x = 1

m

∑m
i=1 xi is the mean of

the samples. To make yi be on behalf of xi in the projection subspace, the
covariance of yi must be as large as possible. The covariance matrix of yi in
projection subspace is defined by

S =
m∑
i=1

yiy
T
i

=
m∑
i=1

[
W T (xi − x)

] [
W T (xi − x)

]T
= W T

[
m∑
i=1

(xi − x)(xi − x)T

]
W

= W TSPCAW,

where SPCA =
∑m

i=1(xi − x)(xi − x)T is the covariance matrix of training
samples. So, the classical PCA needs to solve the following optimization
problem to obtain the transformation matrix W :

max
W

tr(W TSPCAW ), (3)

where tr(·) is the trace of a matrix. From the property of Rayleigh quotient
[22], the solution of (3) can be obtained by solving the following eigenvalue
problem:

SPCAw = λw. (4)

Suppose that w1, w2, · · · , wγ are eigenvectors of (4) which correspond to the
γ largest eigenvalues λ1, λ2, · · · , λγ satisfying λ1 ≥ λ2 ≥ · · · ≥ λγ, then the
solution of (3) is W ∗ = [w1 w2 · · · wγ].
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3.2. Model of TWSBF plus PCA

In this subsection, we combine TWSBF with PCA to propose a new
model for feature extraction. Let m be the number of training face images.
For any i = 1, · · · ,m, the top-level’s wavelet sub-bands of the i-th image are
Li, Hi, Vi, Di, respectively. Firstly, we implement dimension reduction on low
frequency sub-band Li through PCA and obtain DLi. Then we implement
pixel-level fusion on high frequency sub-bands as follows.

Denote Ai = [Hi Vi Di]. The mean high frequency wavelet image of
all training images is A = 1

m

∑m
i=1Ai. The pixel-level fusion of the high

frequency wavelet image Ai is given by

Si = u1Hi + u2Vi + u3Di = Aiu ∈ Rl,

where u = (u1, u2, u3)
T ∈ R3 is a coefficient vector of wavelet high frequency

sub-bands fusion.
Let S be the total mean vector, i.e., S = Au; and yi be the projection

vector of Si, i.e., yi = W T (Si−S). Then the covariance matrix of projection
vector is defined by

S(W,u) =
m∑
i=1

yiy
T
i

=
m∑
i=1

[
W T (Si − S)

] [
W T (Si − S)

]T
= W T

[
m∑
i=1

(Si − S)(Si − S)T

]
W

= W T

[
m∑
i=1

(Aiu− Au)(Aiu− Au)T

]
W

= W T

[
m∑
i=1

(Ai − A)uuT (Ai − A)T

]
W. (5)

If we define the covariance matrix of high-frequency wavelet sub-bands by

Sc(u) =
m∑
i=1

(Ai − A)uuT (Ai − A)T ∈ Rl×l, (6)

then (5) becomes
S(W,u) = W TSc(u)W.
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Therefore, we need to solve the following optimization problem to obtain the
optimal transformation matrix W and the optimal coefficient vector u:

max
W,u

tr(W TSc(u)W ). (7)

Comparing the classical PCA model (3) with the new model (7), it is
easy to see that the new model (7) is more difficult to solve than the classical
PCA model (3), since, in the new model (7), we need to find the optimal
coefficient vector u besides the transformation matrix W . Fortunately, the
new model (7) is computationally tractable, which is investigated in the
following subsection.

3.3. Algorithm for Model of TWSBF plus PCA

In order to design the effective method to solve the optimization problem
(7), the following property is a key.

Theorem 3.1. Denote

Lc(W ) =
m∑
i=1

(Ai − A)TWW T (Ai − A) ∈ R3×3. (8)

Then, we have
tr(W TSc(u)W ) = tr(uTLc(W )u).

Proof: By using the property of the exchange of trace, we can obtain

tr(W TSc(u)W ) = tr

(
m∑
i=1

W T (Ai − A)uuT (Ai − A)TW

)

= tr

(
m∑
i=1

uT (Ai − A)TWW T (Ai − A)u

)

= tr

(
uT

(
m∑
i=1

(Ai − A)TWW T (Ai − A)

)
u

)
= tr(uTLc(W )u),

which completes the proof.
It is easy to see that
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• if u is fixed, the optimal transformation matrix W in (7) can be ob-
tained by the similar method for solving the classical PCA model; and

• ifW is fixed, we know from Theorem 3.1 and Rayleigh quotient [22] that
the optimal coefficient vector u in (7) is the corresponding eigenvector
of the largest eigenvalue of matrix Lc(W ).

Thus, we can design an alternating direction method to solve the new model
(7), which is described in Algorithm 3.1.

Algorithm 3.1. ( TWSBF+PCA )

1: Let Li, Hi, Vi, Di be four sub-bands obtained by the t-level 2D-DWT.

2: Implement PCA dimension reduction on Li and obtain DLi.

3: Denote Ai = [Hi Vi Di]. Set k = 0, and provide an initial value for u,
i.e., u = u[k].

4: Compute Sc(u) by (6) , and its eigenvector wi corresponding to the
i-th largest eigenvalue of Sc(u), where i = 1, 2, · · · , γ. Let W [k+1] =
[w1 w2 · · · wγ].

5: Compute Lc(W
[k+1]) by (8), and its eigenvector u[k+1] corresponding to

the largest eigenvalue of Lc(W
[k+1]).

6: If k > 0 and∣∣tr(S(W [k+1], u[k+1]))− tr(S(W [k], u[k]))
∣∣ < ε,

then

Let u∗ = u[k+1], W ∗ = W [k+1]. Stop.

else

Update u = u[k+1], W =W [k+1], k = k + 1. Go to 3.

end if

7: Compute DSi through u
∗ and W ∗. Then implement feature-level fusion

on DLi and DSi and obtain Fi.
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4. TWSBF plus LDA

4.1. Classical LDA

From Section 3, we know that PCA is a dimension reduction method
without discrimination because there is no use of the sample label informa-
tion during the discussion of PCA. However, the dimension reduction method
with discrimination is more advantageous for classification problems in gen-
eral. LDA is a widely used criterion of dimension reduction method whose
main idea is to make the samples’ distribution in the same class in the low di-
mensional space compact as much as possible (minimize within-class scatter);
and make the distance of samples in different classes in the low dimensional
space separate as much as possible (maximize between-class scatter) [23, 24].

Given c training classes of faces. Suppose that each class i hasmi training
face images andm is the total number of face images satisfying

∑c
i=1mi = m.

Let xij be the vector from j-th training image in class i. LDA is trying to find
a transformation matrix W ∈ Rl×γ such that yij = W Txij where yij ∈ Rγ,
which maximizes the between-class scatter matrix of the projected train-
ing samples and minimizes the within-class scatter matrix of the projected
training samples. Suppose that xi denotes the mean vector of class i, i.e.,
xi =

1
mi

∑mi

j=1 xij; and x denotes the mean vector of the whole training set,

i.e., x = 1
m

∑c
i=1

∑mi

j=1 xij. Then, the between-class and within-class scatter
matrices in the original training space are given, respectively, by

Sb =
c∑

i=1

mi

m
(xi − x)(xi − x)T ,

Sw =
c∑

i=1

mi

m

[
1

mi − 1

mi∑
j=1

(xij − xi)(xij − xi)
T

]
,

and hence, the between-class and within-class scatter matrices in the projec-
tion subspace are given, respectively, by

S̃b =
c∑

i=1

mi

m
(yi − y)(yi − y)T

=
c∑

i=1

mi

m
(W Txi −W Tx)(W Txi −W Tx)T

= W T

[
c∑

i=1

mi

m
(xi − x)(xi − x)T

]
W
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= W TSbW,

S̃w =
c∑

i=1

mi

m

[
1

mi − 1

mi∑
j=1

(yij − yi)(yij − yi)
T

]

=
c∑

i=1

mi

m

[
1

mi − 1

mi∑
j=1

(W Txij −W Txi)(W
Txij −W Txi)

T

]

= W T

{
c∑

i=1

mi

m

[
1

mi − 1

mi∑
j=1

(xij − xi)(xij − xi)
T

]}
W

= W TSwW.

So, the classical LDA needs to solve the following optimization problem:

max
W

tr(W TSbW )

tr(W TSwW )
. (9)

From the property of Rayleigh quotient [22], the solution of (9) can be ob-
tained by solving the following generalized eigenvalue problem:

Sbwi = λSwwi.

Suppose that {wi|i = 1, 2, · · · , γ} is the set of generalized eigenvectors of
matrices Sb and Sw corresponding to the γ largest generalized eigenvalues
{λi|i = 1, 2, · · · , γ}. Then the solution of (9) is W ∗ = [w1 · · · wγ].

4.2. Model of TWSBF plus LDA

Given a set of training face images with class labels, we can generate a
pixel-level combined feature-level fusion of the wavelet sub-bands for each
image. In order to achieve the better recognition performance, we combine
TWSBF with the classical LDA to propose a new model for feature extrac-
tion.

Let c be the number of training face classes, and Lij, Hij, Vij, Dij be
the top-level’s wavelet sub-bands of j-th face image in class i, where i =
1, 2, · · · , c, j = 1, 2, · · · ,mi, and mi denotes the number of training samples
in class i. Firstly, we implement dimension reduction in low frequency sub-
band Lij through LDA and obtain DLij. Then we implement pixel-level
fusion on high frequency sub-bands as follows.

Let Aij = [Hij Vij Dij] be the top-level’s high frequency wavelet sub-band
matrix of j-th face image in class i, The mean high frequency wavelet image of
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training images in class i is Ai =
1
mi

∑mi

j=1Aij = [Hi Vi Di] and the mean high

frequency wavelet image of all training images is A = 1
m

∑c
i=1

∑mi

j=1Aij =

[H V D], where m is the total number of training images satisfying m =∑c
i=1mi. Suppose that the pixel-level fusion of three high frequency wavelet

sub-bands of Aij = [Hij Vij Dij] is Sij, i.e.,

Sij = u1Hij + u2Vij + u3Dij = [Hij Vij Dij]u = Aiju ∈ Rl,

where u = (u1, u2, u3)
T ∈ R3 is a coefficient vector of high frequency wavelet

sub-band fusion. Denote the mean vector in class i by Si = Aiu and the
total mean vector by S = Au. Then, the between-class scatter matrix Sb(u)
and the within-class scatter matrix Sw(u) are defined, respectively, by

Sb(u) =
c∑

i=1

Pi(Si − S)(Si − S)T

=
c∑

i=1

Pi[(Ai − A)u][(Ai − A)u]T

=
c∑

i=1

Pi[(Ai − A)uuT (Ai − A)T ], (10)

Sw(u) =
c∑

i=1

Pi

[
1

mi − 1

mi∑
j=1

(Sij − Si)(Sij − Si)
T

]

=
c∑

i=1

Pi
1

mi − 1

mi∑
j=1

[(Aij − Ai)u][(Aij − Ai)u]
T

=
c∑

i=1

Pi
1

mi − 1

mi∑
j=1

[(Aij − Ai)uu
T (Aij − Ai)

T ], (11)

where Pi is the prior probability of class i which is generally calculated with
Pi = mi/m. From the analysis of Subsection 4.1, we need to maximize the
following function:

J(W,u) =
tr(W TSb(u)W )

tr(W TSw(u)W )
, (12)

where W is an l × γ transformation matrix, which is formed by a set of
projection basis vectors w1, w2, · · · , wγ.
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By the property of Rayleigh quotient [22], maximizing the function given
in (12) is equivalent to solving the following optimization problem:

max
W,u

tr(W TSb(u)W ) s.t. W TSw(u)W = I, (13)

where I denotes the identity matrix of γ × γ.

4.3. Algorithm for Model of TWSBF plus LDA

In order to solve the optimization problem (13), we need the following
key property, whose proof is similar to the one of Theorem 3.1. Thus, we
omit the proof here.

Theorem 4.1. Denote

Lb(W ) =
c∑

i=1

Pi[(Ai − A)TWW T (Ai − A)] ∈ R4×4, (14)

Lw(W ) =
c∑

i=1

Pi
1

mi − 1

mi∑
j=1

[(Aij − Ai)
TWW T (Aij − Ai)] ∈ R4×4. (15)

Then, we have

tr(W TSb(u)W ) = uTLb(W )u and tr(W TSw(u)W ) = uTLw(W )u.

Thus, the problem (13) can be solved by the following approach.
Case 1. Suppose that u is fixed. In this case, the optimal transformation

matrix W in (13) can be obtained by the similar method for solving the clas-
sical LDA. However, the within-class scatter matrix Sw(u) is usually singular
or close to singular. To improve the performance of the proposed method,
we use the following strategy of PCA plus LDA [7]. Define the total scatter
matrix ST (u) of PCA by

ST (u) =
1

m

c∑
i=1

mi∑
j=1

(Sij − S)(Sij − S)T

=
1

m

c∑
i=1

mi∑
j=1

[(Aij − A)uuT (Aij − A)T ]. (16)
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Then, we compute ST (u)
′s eigenvectors v1, · · · , vδ corresponding to the δ

largest eigenvalues; and set V := [v1 · · · vδ], Sb(u) := V TSb(u)V , and
Sw(u) := V TSw(u)V . Furthermore, we compute the generalized eigenvec-
tors y1, · · · , yγ of Sb(u) and Sw(u) corresponding to the γ largest eigenvalues;
and set w1 := V y1, · · · , wγ := V yγ. Then, we obtain W ∗ = [w1 w2 · · · wγ].

Case 2. Suppose that W is fixed. In this case, we know from Theorem
4.1 that the constraint in (13) means that tr(W TSw(u)W ) = γ, where γ is
the number of projection basis vectors. Furthermore, we have

tr(W TSw(u)W ) = uTLw(W )u = γ, i.e., uT [(1/γ)Lw(W )]u = 1.

Therefore, if W is fixed, the optimization problem (13) is equivalent to

max
u

uTLb(W )u s.t. uT [(1/γ)Lw(W )]u = 1,

which implies that we only need to find the generalized eigenvector of matri-
ces Lb(W ) and (1/γ)Lw(W ) corresponding to the largest eigenvalue.

By combining Case 1 with Case 2, we now design an alternating di-
rection method to solve the model (13), which is described in Algorithm
4.1.

Algorithm 4.1. ( TWSBF+LDA )

1: Let Lij, Hij, Vij, Dij (i = 1, 2, · · · , c, j = 1, 2, · · · ,mi) be four wavelet
sub-bands obtained by the t-level 2D-DWT.

2: Implement LDA dimension reduction on Lij and obtain DLij.

3: Denote Aij = [Hij Vij Dij].Initialize u = u[0] and set Pi = mi/m (i =
1, 2, · · · , c). Set k = 0.

4: Compute Sb(u) and Sw(u) by (10) and (11), respectively.

5: Compute ST (u) by (16); and its eigenvectors v1, · · · , vδ corresponding
to the δ largest eigenvalues of ST (u).

6: Let V = (v1, · · · , vδ). Compute Sb(u) and Sw(u) according to Sb(u) =
V TSb(u)V , Sw(u) = V TSw(u)V , and their generalized eigenvectors
y1, · · · , yγ corresponding to the γ largest eigenvalues of Sb(u) and Sw(u).
Let w1 = V y1, · · · , wγ = V yγ, W

[k+1] = [w1 w2 · · · wγ].
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7: Compute Lb(W
[k+1]) and Lw(W

[k+1]) by (14) and (15), respectively; and
their generalized eigenvector u[k+1] corresponding to the largest eigen-
value of Lb(W

[k+1]) and Lw(W
[k+1]).

8: If k > 0 and∣∣J(W [k+1], u[k+1])− J(W [k], u[k])
∣∣ < ε,

then

Let u∗ = u[k+1], W ∗ = W [k+1]. Stop.

else

Update u = u[k+1], k = k + 1. Go to 3.

end if

9: Compute DSij through u
∗ andW ∗. Then implement feature-level fusion

on DLij and DSij and obtain Fij.

5. Numerical Experiments

In this section, we first compare our methods: TWSBF + PCA (i.e., Al-
gorithm 3.1) and TWSBF + LDA (i.e., Algorithm 4.1) with the two classical
wavelet-based methods:

• DWT + PCA [25], i.e., an image of face is transformed by using the
t-level wavelet transform, and the dimension of the final obtained low
frequency sub-band is reduced by using the classical PCA;

• DWT + LDA [11], i.e., an image of face is transformed by using the
t-level wavelet transform, and the dimension of the final obtained low
frequency sub-band is reduced by using the strategy of the classical
PCA plus the classical LDA;

Then, we compare our methods with some popular methods:

• GMTR [26], i.e., an image of face is divided into appropriate sub-regions
and then transformed by Gabor transform, and the Gabor magnitude is
selected as texture representation. The dimension is reduced by using
the classical PCA.
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• PCRC [27], i.e., patch based collaborative representation classification.

• PNN [28], i.e., patch based nearest neighbor classification.

• SRC [29], i.e., sparse representation based classification.

• CRC [30], i.e., collaborative representation based classification.

We implement these methods on the FERET, ORL and AR face databases.
A basic face recognition system is composed of two stages: training pro-

cess and recognition process; and our methods focus on the first stage. How-
ever, recognition process is also very important; and in this stage, classifier
plays a vital role. There are many classifiers such as nearest neighbor classifi-
er (NN) [31], nearest subspace classifier [32], support vector machine (SVM)
[33], and so on. In our experiments, we use NN and SVM. NN is the most
basic and popular classifier. As an evolution of SVM, k-SVM completes the
transformation from the original feature space to a higher dimension space,
which ensures the better discrimination of face features.

Our experiments are made on a PC platform with 64-bit win8 operating
system, Intel Core i5-3550S CPU, and 8G memory.

5.1. Experiments on the FERET Database

The FERET image corpus was assembled to support government moni-
tored testing and evaluation of face recognition algorithms using standardized
tests and procedures. The final corpus, consists of 14051 eight-bit grayscale
images of human heads with views ranging from frontal to left and right pro-
files. In our experiments, FERET database contains 1400 gray level images
of 200 individuals (each person has 7 different images) and each image is
manually cropped and resized to 80× 80 pixels.

Firstly, we compare our methods (i.e., TWSBF + PCA and TWSBF
+ LDA) with two wavelet based methods (i.e., DWT + PCA and DWT
+ LDA), where NN is used to classify the query sample. Specifically, each
original image is transformed through the 4-level wavelet transform using the
haar wavelet. We select randomly i samples per person for training and the
remaining samples for testing, where i = 2, 3, 4, 5, 6, respectively. We repeat
the experiments 10 times with each of the above four methods, and calculate
the average recognition rate for every case. The numerical results are shown
in Table 1.

18



Table 1: Average Recognition Rates on the FERET Database

Method 2 3 4 5 6

DWT+PCA 34.09% 34.96% 40.56% 42.75% 54.00%

TWSBF +PCA 38.37% 39.65% 45.51% 47.17% 59.55%

DWT+LDA 41.78% 43.40% 45.93% 46.60% 58.90%

TWSBF +LDA 50.73% 54.06% 57.26% 59.45% 73.00%

From Table 1, it is easy to see that the proposed methods show higher
recognition rates than the basic DWT + PCA and DWT + LDA methods no
matter how many training samples per person are used. This suggests that
our fusion technique is effective and the high frequency sub-bands indeed
play a great role in face recognition.

Secondly, we compare our methods with other popular methods. We se-
lect randomly i samples per person for training and the remaining samples for
testing, where i = 2, 3, 4, 5, 6, respectively; and then, repeat the experiments
10 times and calculate the average recognition rates. In the experiments, the
settings of other methods’ experimental parameters are as follows:

• PNN: the size of the square patches is set as 10.

• PCRC: the regularization parameter is set as 0.001, the size of the
square patches is set as 10, the overlap parameter is set as 5, the neigh-
borhood size is set 0.

• SRC: the regularization parameter is set as 0.001.

• CRC: the regularization parameter is set as 0.005.

The average recognition rates are listed in Table 2.
From Table 2, we can see that our methods are better than other popular

methods in most cases, especially TWSBF + LDA, because LDA makes full
use of the category information compared with PCA.

5.2. Experiments on the ORL Database

The ORL database contains images of 40 individuals, and each people has
10 different images with the size of 112 × 92 pixels. For some persons, the
images were taken at different times, varying the lighting, facial expressions
(open/close eye, smiling/not smiling) and facial details (glasses/no glasses).
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Table 2: Average Recognition Rates on the FERET Database

Method 2 3 4 5 6

GMTR 6.21% 10.70% 13.88% 14.72% 20.25%

PCRC 22.85% 27.65% 29.00% 23.37% 24.60%

CRC 28.75% 35.57% 40.11% 39.30% 48.55%

SRC 28.57% 32.23% 35.93% 33.07% 40.25%

PNN 39.92% 44.81% 53.96% 56.87% 74.30%

TWSBF +PCA 38.37% 39.65% 45.51% 47.17% 59.55%

TWSBF +LDA 50.73% 54.06% 57.26% 59.45% 73.00%

All the images were taken against a dark homogeneous background with
the subjects in an upright, frontal position (with tolerance for some side
movement).

Firstly, we compare our methods (i.e., TWSBF + PCA and TWSBF +
LDA) with two wavelet based methods (i.e., DWT + PCA and DWT +
LDA). Specifically, each original image is transformed through the 4-level
wavelet transform using the haar wavelet. We select randomly i samples
per person for training and the remaining samples for testing, where i =
3, 4, 5, 6, 7, 8, respectively. We repeat the experiments 10 times with each of
the above four methods, and calculate the average recognition rate for every
case. We use NN to classify the query sample. The numerical results are
shown in Table 3.

Table 3: Average Recognition Rates on the ORL Database

Method 3 4 5 6 7 8

DWT+PCA 86.64% 90.54% 92.60% 94.06% 95.83% 96.00%

TWSBF +PCA 88.10% 92.58% 94.25% 95.50% 97.25% 97.50%

DWT+LDA 91.00% 94.12% 97.10% 97.62% 97.66% 98.25%

TWSBF +LDA 92.07% 95.04% 97.15% 97.87% 98.66% 99.00%

From Table 3, it is easy to see that the proposed methods show higher
recognition rates than the basic DWT + PCA and DWT + LDA methods.

Secondly, we compare our methods with other popular methods. Similar-
ly, we select randomly i samples per person for training and the remaining
samples for testing, where i = 3, 4, 5, 6, 7, 8, respectively. We repeat the ex-
periments 10 times with each of the above four methods, and calculate the
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average recognition rate for every case. Experimental parameter settings are
as follows:

• PNN: the size of the square patches is set as 10.

• PCRC: the regularization parameter is set as 0.001, the size of the
square patches is set as 10, the overlap parameter is set as 5, the neigh-
borhood size is set 0.

• SRC: the regularization parameter is set as 0.001.

• CRC: the regularization parameter is set as 0.005.

The average recognition rates are listed in Table 4.

Table 4: Average Recognition Rates on the ORL Database

Method 3 4 5 6 7 8

GMTR 76.53% 83.45% 87.35% 89.62% 91.91% 91.37%

PCRC 67.64% 72.79% 76.45% 77.93% 79.58% 79.62%

CRC 86.46% 89.20% 92.25% 92.87% 93.00% 93.37%

SRC 87.28% 89.91% 92.30% 93.00% 93.25% 93.75%

PNN 88.25% 92.66% 94.95% 96.12% 96.66% 97.25%

TWSBF +PCA 88.10% 92.58% 94.25% 95.50% 97.25% 97.50%

TWSBF +LDA 92.07% 95.04% 97.15% 97.87% 98.66% 99.00%

From Table 4, it is easy to see that TWSBF + LDA achieves the higher
recognition rates on all experiments; and TWSBF + PCA has also good
performances compared with other popular methods.

5.3. Experiments on the AR Database

The AR database contains over 4,000 color face images of 126 people (70
men and 56 women), including frontal views of faces with different facial
expressions, lighting conditions and occlusions. The images of most persons
were taken in two sessions (separated by two weeks). Each section contains
13 color images and 120 individuals (65 men and 55 women) participated
in both sessions. In our experiments, each image is manually cropped and
resized to 50× 40 pixels.

Firstly, each original image is transformed through 2-level wavelet trans-
form using the 4-th order Daubechies wavelet because images in AR Database
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are relatively small. For comparison purpose, the methods of TWSBF + P-
CA, TWSBF + LDA, DWT + PCA, and DWT + LDA are implemented,
respectively. We select randomly i samples per person for training and the
remaining samples for testing, where i = 3, 4, 5, 6, 7, 8, respectively. We re-
peat the experiments 10 times with each of the above four methods, and
calculate the average recognition rate for every case. We use k-SVM to clas-
sify and the parameters of k-SVM are set as follows: the penalty parameter
is set as 128 and the parameter given in Gaussian radial basis function is set
as 0.0078425. The numerical results are shown in Table 5.

Table 5: Average Recognition Rates on the AR Database

Method 3 4 5 6 7 8

DWT+PCA 58.30% 65.70% 68.96% 75.69% 80.71% 83.06%

TWSBF +PCA 61.90% 69.99% 73.78% 79.50% 83.99% 86.25%

DWT+LDA 60.85% 68.22% 73.30% 79.58% 83.92% 87.32%

TWSBF +LDA 65.48% 73.47% 81.22% 84.89% 88.51% 90.87%

From Table 5, it can be easily seen that our methods achieve the higher
recognition rates on all experiments than DWT + PCA and DWT + LDA.
And as Table 5 shows, though the number of training images changes, the
recognition rates of the proposed methods are always higher than those of the
DWT + PCA and DWT + LDA methods, which indicates that the proposed
methods are more robust with the number of training samples varying.

Secondly, we compare our methods with other popular methods. We
select randomly thirteen training images per person and the remaining are
for testing; repeat the experiments 10 times, and then calculate the average
recognition rates. Experimental parameter Settings are as follows:

• PNN: the size of the square patches is set as 10.

• PCRC: the regularization parameter is set as 0.001, the size of the
square patches is set as 10, the overlap parameter is set as 5, the neigh-
borhood size is set 0.

• SRC: the regularization parameter is set as 0.001.

• CRC: the regularization parameter is set as 0.005.

The average recognition rates are listed in Figure 4.
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Figure 4: The Average Recognition Rates on AR Database

From Figure 4, we can see that our method of TWSBF + LDA is superior
to the other popular methods and TWSBF + PCA is better or at least not
worse than the popular methods.

6. Remarks

In this paper, we proposed two effective methods of feature extraction for
face recognition. There are four important points in our methods: Firstly, the
data fusion technique proposed in this paper ensures four top-level’s wavelet
sub-bands are all used, which avoids the top-level’s information to be lost.
Secondly, in order to make the proposed high frequency sub-bands pixel-
level fusion technique more effective, by combining it with PCA and LDA
respectively, we converted the problem of finding the best fusion coefficients
to two optimization problems and designed two alternative direction methods
to solve the corresponding problems. Thirdly, the optimal fusion coefficients
of wavelet sub-bands and the optimal transformation matrices of dimension
reduction were obtained simultaneously. Fourthly, we combined feature-level
fusion with pixel-level fusion effectively. Experimental results on the FERET,
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ORL and AR face databases demonstrate the effectiveness and robustness of
the proposed methods for face recognition.

Some further issues are worth studying in the future. Firstly, our methods
were proposed for face recognition. We believe the methods proposed in this
paper can be further used in some other fields about data fusion of images.
Secondly, our methods were proposed by combining the sub-band fusion tech-
nique with PCA and LDA, respectively. In fact, many other approaches for
dimension reduction have been proposed in the literature, such as indepen-
dent component analysis, kernel principal component analysis, kernel linear
discriminant analysis, and so on. It is possible that some more effective meth-
ods can be proposed by combining the sub-band fusion technique proposed
in this paper with other approaches for dimension reduction. Thirdly, in our
methods, only four top-level’s wavelet sub-bands were effectively fused. It
is possible that the proposed fusion technique of the top-level’s sub-bands
can be further developed to fuse the information of more wavelet sub-bands
including those located in other wavelet levels instead of the top-level only.
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