
An Alternating Direction Method of Multipliers with a
Worst-case O(1/n2) Convergence Rate

WENYI TIAN∗ XIAOMING YUAN†

Abstract. The alternating direction method of multipliers (ADMM) is being widely used
for various convex programming models with separable structures arising in many scien-
tific computing areas. The ADMM’s worst-case O(1/n) convergence rate measured by
the iteration complexity has been established in the literature when its penalty parameter
is a constant, where n is the iteration counter. Research on ADMM’s worst-case O(1/n2)
convergence rate, however, is still in its infancy. In this paper, we suggest applying a rule
proposed recently by Chambolle and Pock to iteratively updating the penalty parameter and
show that the ADMM with this adaptive penalty parameter has a worst-case O(1/n2) con-
vergence rate in the ergodic sense. Without strong convexity requirement on the objective
function, our assumptions on the model are mild and can be satisfied by some representative
applications. We test the LASSO model and numerically verify the significant acceleration
effectiveness of the faster ADMM with a worst-case O(1/n2) convergence rate. Moreover,
the faster ADMM is more favorable than the ADMM with a constant penalty parameter,
as the former is much less sensitive to the initial value of the penalty parameter and can
sometimes produce very high-accuracy solutions.

Keywords. Convex programming, Alternating direction method of multipliers, Conver-
gence rate, Acceleration, First order methods

1 Introduction

Many applications can be modeled as such a convex minimization problem whose objective
function is separable and representable by the sum of two or more functions. A representa-
tive case is where one function represents a data-fidelity term and the other is a regulariza-
tion term; this case arises frequently in areas such as inverse problems, image processing
and machine learning. For such a separable convex minimization model, the alternating di-
rection method of multipliers (ADMM) proposed originally in [18] (see also [6, 16]) turns
out to be a benchmark solver and it is being widely used for many applications in a broad
spectrum of areas. We refer the reader to [3, 14, 17] for some review papers on the ADMM.

The convergence of ADMM has been well studied in earlier literature, e.g., [15, 16],
and recently its worst-case O(1/n) convergence rate measured by the iteration complexity
has also been established in [24, 25, 29]. Here, n is the iteration counter and we refer to
[31, 32, 33] for some seminal work of convergence rate analysis in terms of the iteration
complexity. The main goal of this paper is to investigate under which scenario the ADMM
has a faster worst-caseO(1/n2) convergence rate. Note that it still remains open whether or
not the ADMM can achieve a worst-case O(1/n2) convergence rate under the general set-
ting where no special assumptions on the model are posed. This can be partially understood
by the result in [8] (see Theorem 8 therein).
∗Center for Applied Mathematics, Tianjin University, Tianjin 300072, China. This author was partially sup-

ported by the National Natural Science Foundation of China (No. 11701416). Email: twymath@gmail.com
†Department of Mathematics, The University of Hong Kong, Hong Kong, China. This author was par-

tially supported by the General Research Fund from Hong Kong Research Grants Council:12300515. Email:
xmyuan@hku.hk

1

To discuss the possibility of deriving a worst-case O(1/n2) convergence rate for the
ADMM, we concentrate on the convex minimization model

(1.1) min
x∈X

f(x) + g(Ax)

where X ⊂ Rd is closed and convex, f : X → (−∞,∞] and g : Rm → (−∞,∞] are
closed, proper, and convex functions, g is smooth with a Lipschitz continuous gradient and
A ∈ Rm×d is full column rank. Throughout the solution set of (1.1) is assumed to be
nonempty. The model (1.1) can be written as

min f(x) + g(y)

s.t. Ax− y = 0

x ∈ X , y ∈ Rm,
(1.2)

where y ∈ Rm is an auxiliary variable. Then, the iterative scheme of ADMM for (1.2)
reads as

(1.3)


xn+1 = argmin

x∈X

{
f(x) +

σ

2

∥∥Ax− yn +
λn
σ

∥∥2}
yn+1 = argmin

y∈Rm

{
g(y) +

σ

2

∥∥Axn+1 − y +
λn
σ

∥∥2}
λn+1 = λn + σ(Axn+1 − yn+1),

with σ > 0 the penalty parameter and λ ∈ Rm the Lagrange multiplier. There are different
ways to understand the ADMM. For example, it can be regarded as a splitting version of
the classical augmented Lagrangian method in [26, 34]; it was also explained in [15] as an
application of the Douglas-Rachford splitting method (DRSM), which was first proposed in
[11] for linear heat equations and then generalized in [27] to the nonlinear case, to the dual
problem of (1.1); and it was further analyzed in [13] that the ADMM is an application of the
proximal point algorithm (PPA) [28, 30] from the maximal monotone operator perspective.

An important variant of ADMM is the partially proximal version:

(1.4)


xn+1 = argmin

x∈X

{
f(x) +

σ

2

∥∥Ax− yn +
λn
σ

∥∥2 +
1

2
‖x− xn‖2Q

}
yn+1 = argmin

y∈Rm

{
g(y) +

σ

2

∥∥Axn+1 − y +
λn
σ

∥∥2}
λn+1 = λn + σ(Axn+1 − yn+1),

where Q ∈ Rd×d is a positive definite matrix; see e.g. [21]. In particular, when Q =
µI − σATA with µ > σ‖ATA‖, it is easy to see that the x-subproblem in (1.4) reduces to

xn+1 = argmin
x∈X

{
f(x) +

µ

2

∥∥x− xn +
1

µ
AT
(
λn + σ(Axn − yn)

)∥∥2}.
When X = Rd, the minimization problem in the equation above amounts to computing the
proximity operator of f :

(1.5) proxγf (x) := argmin
y

{
f(y) +

1

2γ
‖y − x‖2

}
,

with γ > 0. Note that the proximity operator (1.5) has a closed-form solution for some
interesting cases such as f(x) = ‖x‖1. In this case, the proximal version of ADMM (1.4)

2

reduces to the linearized version of ADMM for (1.2):

(1.6)


xn+1 = argmin

x∈X

{
f(x) +

µ

2

∥∥x− xn +
1

µ
AT
(
λn + σ(Axn − yn)

)∥∥2}
yn+1 = argmin

y∈Rm

{
g(y) +

σ

2

∥∥Axn+1 − y +
λn
σ

∥∥2}
λn+1 = λn + σ(Axn+1 − yn+1).

We refer to, e.g., [40, 41, 43], for some efficient applications of the linearized version
of ADMM. Note that we only consider the case where the x-subproblem is proximally
regularized because it is useful enough for most of the ADMM’s applications. Technically,
there is no difficulty if both the subproblems are proximally regularized, see e.g., [12, 21].

In [4], the problem (1.1) with X = Rd was written as the saddle-point problem

(1.7) min
x∈Rd

max
λ∈Rm

{
f(x) + (Ax, λ)− g∗(λ)

}
,

where g∗(λ) := supy{(y, λ) − g(y)} is the Fenchel conjugate of g(y) (see, e.g., [35]).
Then, the following generalized primal-dual algorithm was proposed to solve (1.7):

(1.8)


λn+1 = proxσg∗

(
λn + σAx̃n

)
xn+1 = proxτf

(
xn − τATλn+1

)
x̃n+1 = xn+1 + θ(xn+1 − xn),

where “prox” is defined in (1.5), θ ∈ [0, 1] is a combination parameter, τ > 0 and σ > 0 are
two constants. For the scheme (1.8) with θ = 1, its worst-case O(1/n) convergence rate in
the ergodic sense was established in [4] under the condition τσ‖A‖2 < 1. Then, the scheme
(1.8) was extended in [23] with the combination parameter θ ∈ [−1, 1]; some correction
steps were combined with the primal-dual step and the convergence was established under
the condition

τσ
(1 + θ)2

4
‖ATA‖ < 1.

Convergence analysis for the scheme (1.8) with θ ∈ [−1, 1] were further established in
[22, 38] for the case where f is strongly convex. As analyzed in [4], the primal-dual
algorithm (1.8) with θ = 1 is equivalent to the application of the linearized (also called
preconditioned) version of ADMM with Q = σ−1I− τAAT and τσ‖A‖2 < 1 for the dual
problem of (1.1).

Moreover, in [4] (see also [5]), the authors suggested choosing the involved parame-
ters θ, τ and σ dynamically, instead of constants, in (1.8). That is, they considered the
generalized primal-dual algorithm with dynamically adjusted parameters:

(1.9)


λn+1 = proxσng∗

(
λn + σnAx̃n

)
xn+1 = proxτnf

(
xn − τnATλn+1

)
x̃n+1 = xn+1 + θn+1(xn+1 − xn).

A worst-case O(1/n2) convergence rate of (1.9) in the ergodic sense was established in [4]
provided that these parameters satisfy the conditions:

(1.10) θn+1 =
1√

1 + 2γτn
, τn+1 = θn+1τn, σn+1 = σn/θn+1.

It turns out that these conditions are crucial for establishing the desired O(1/n2) conver-
gence rates in [4, 5]. Thus, compared with the primal-dual scheme (1.8) with constant

3

parameters, the scheme (1.9)-(1.10) possesses a higher convergence rate in terms of the
iteration complexity despite that it additionally requires to determine three parameter se-
quences. These existing results strongly inspire us to consider under which conditions
the ADMM (1.3) with dynamically adjusted penalty parameters has a worst-case O(1/n2)
convergence rate.

In the literature, there are some works related to how to derive a worst-case O(1/n2)
convergence rate for the ADMM; which either require stronger assumptions or are eligible
only for some variants of the original ADMM scheme (1.3). In [9, 19], the following more
general problem was considered:

min f(x) + g(y)

s.t. Ax+By = b,
(1.11)

where f : Rd1 → (−∞,∞] and g : Rd2 → (−∞,∞] are closed, proper and convex func-
tions,A ∈ Rm×d1 ,B ∈ Rm×d2 and b ∈ Rm. It was shown in [9] that if g is strongly convex
and the ADMM’s penalty parameter σ is less than a constant depending on the strong con-
vexity modulus of g and the norm of the matrix B, then the residual of the constraint in
(1.11) is decreasing in order of o(1/n2) in a nonergodic sense while the measurement of
the error of the objective function in the primal model (1.11) is still in order of o(1/n)1. In
[19], a modified version of the ADMM was proposed by combining it with the acceleration
technique in [33]. Then, it was shown that the error of the objective function of the dual
problem of (1.11) has a worst-case O(1/n2) convergence rate in a nonergodic sense, under
the conditions that both f and g are strongly convex with g being further assumed to be
quadratic, and the penalty parameter σ is less than some constant depending on the strong
convexity modulus of f and g, the spectral radius of matrices A and B.

In this paper, we will establish a worst-case O(1/n2) convergence rate in the ergodic
sense for both the original ADMM scheme (1.3) and the proximal version (1.4) with the
penalty parameter σ replaced by adaptive ones σn, under the condition that the penalty
parameter σn is iteratively adjusted by a specific rule similar as the one in [4, 5]. The
restriction of the penalty parameter is mild and can be automatically determined with a
given initial value (see (2.3) and (2.4)). We also show that the proximity of the Lagrange
multiplier {λn} to the optimal value is reduced on an O(1/n2) rate. Our assumptions on
the model (1.1) are given at the beginning of Section 2. Note that we do not assume any
strong convexity on the objective function of the model (1.1) as in existing work such as
[7, 9, 19, 37].

Finally, we would mention that some convergence rate results in the asymptotic sense
can be established for the ADMM if further assumptions are made. For example, the
asymptotic linear convergence rate of ADMM was established in [2, 20] for the special
case of (1.2) where both functions are quadratic. But this type of analysis is not the focus
of this paper.

The rest of the paper is organized as follows. In Section 2, a faster ADMM is proposed
and some remarks are given. We first prove the convergence for the faster ADMM in
Section 3 and then establish its worst-case O(1/n2) convergence rate in Section 4. In
Section 5, we elaborate on the connection between the faster ADMM and the primal-dual
algorithm in [4] and it’s variants. In Section 6, we test the LASSO model and report some
preliminary numerical results; some conclusions are also drawn based on these numerical
results.

1In our discussion, for simplicity, we do not differentiate the orders of O(1/n) and o(1/n) (also O(1/n2)
and o(1/n2)) because of two reasons. First, they are of the same order in the worst-case nature; thus usually their
difference is not that significant. Second, technically, for some basic operator splitting methods it is not hard to
improve an O(1/n) rate to o(1/n) or from O(1/n2) to o(1/n2), see, e.g., [7].

4

2 A Faster ADMM

As mentioned, we consider the original ADMM (1.3) and its proximal version (1.4) simul-
taneously for (1.2) with adaptive penalty parameters {σn}. So we relax the restriction of
Q in (1.4) and only require it to be positive semi-definite in our discussion. We slightly
abuse the notation ‖x‖2Q to denote the number xTQx even if Q may only be positive semi-
definite. To derive a worst-caseO(1/n2) convergence rate for the ADMM, our assumptions
on the model (1.1) are summarized as follows.
Assumption: Both f(x) and g(x) are closed, proper, and convex functions; g(x) is smooth
and∇g is Lipschitz continuous with constant 1

γ ; and A is full column rank.
Note that the model (1.1) with this assumption still includes a variety of applications

such as the LASSO problem given in (6.1), despite that our assumption here is the reverse
of some usual ones in the literature in which f is assumed to be smooth with a Lipschitz
gradient while g is convex. Such a difference results in different orders of the subproblems
for the implementation of ADMM; but our analysis for deriving a worst-case O(1/n2)
convergence rate for the faster ADMM is based on this assumption. Furthermore, we notice
that with the above assumption, it follows from [1, Theorem 18.15] that the following
inequality holds:

(2.1) g(y1) ≥ g(y2) + 〈∇g(y2), y1 − y2〉+
γ

2
‖∇g(y1)−∇g(y2)‖2, ∀ y1, y2 ∈ Rm.

We propose the faster ADMM with a worst-case O(1/n2) convergence rate in Algo-
rithm 1.

Algorithm 1: Faster ADMM with a worst-case O(1/n2) convergence rate.
Specify an integer κ > 0 as the frequency of adjusting the penalty parameter σn; an
initial value of σ0 > 0; and (x0, y0, λ0) ∈ X × Rm × Rm. Choose a positive
semi-definite matrix Q ∈ Rd×d. For the (n+ 1)-th iteration, perform the following
steps:

(2.2)


xn+1 = argmin

x∈X

{
f(x) +

σn
2

∥∥Ax− yn +
λn
σn

∥∥2 +
σn
2
‖x− xn‖2Q

}
yn+1 = argmin

y∈Rm

{
g(y) +

σn
2

∥∥Axn+1 − y +
λn
σn

∥∥2}
λn+1 = λn + σn(Axn+1 − yn+1),

where the penalty parameter σn is updated every κ iterations by the rule

(2.3) σn = σ̃bnκ c,

where bnκc is the largest integer no greater than n
κ and the sequence {σ̃i} is given by

(2.4) σ̃i+1 =
σ̃i√

1 + γσ̃i
, with σ̃0 = σ0 > 0.

Remark 2.1. Note that the sequence {σ̃i} is specified with a given σ0 and the rule (2.3)
adjusts the penalty parameter {σn} after every κ iterations by assigning each σ̃i to κ
iterations of the faster ADMM (2.2) consecutively. Thus, the sequence {σn} is also auto-
matically determined with a given initial value σ0 and a frequency κ. For the extreme case

5

where κ = 1, then we have

κ = 1,

σ0 σ1 σ2 · · · σn · · ·
↓ ↓ ↓ ↓
σ̃0 σ̃1 σ̃2 · · · σ̃n · · ·

 ,

which means the sequence {σn} is iteratively updated by

(2.5) σn+1 =
σn√

1 + γσn
.

This is precisely the formula for updating the parameters of the accelerated primal-dual
scheme in [4, 5]. If we choose κ > 1, e.g., κ = 10, then we have

σ0 σ1 · · · σ9︸ ︷︷ ︸
σ̃0

σ10 σ11 · · · σ19︸ ︷︷ ︸
σ̃1

· · · ;

and for the general κ, we have

σ0 · · · σκ−1︸ ︷︷ ︸
σ̃0

σκ · · · σ2κ−1︸ ︷︷ ︸
σ̃1

· · · σsκ · · · σ(s+1)κ−1︸ ︷︷ ︸
σ̃s

· · · .

For an integer n, it can be decomposed as n = sκ+ j with 0 ≤ j ≤ κ− 1. Thus, it follows

(2.6) σn+1 =


σn, 0 ≤ j ≤ κ− 2,

σn√
1 + γσn

, j = κ− 1.

Clearly, the sequence {σn} is monotonically non-increasing. Thus, it is easy to understand
that if the sequence {σn} is updated on a too high frequency, i.e., κ is small, then the
sequence {σn} decreases too fast and the step size for updating the dual variable becomes
too small, especially when γ is relatively large. In this case, the efficiency of the scheme
(2.2) may be deteriorated. On the other hand, if the sequence {σn} is updated on a too
low frequency, i.e., κ is huge, as we shall show in Theorems 4.1 and 4.2 (see (4.13) and
(4.16)), the coefficient of the O(1/n2) convergence rate to be established is too large and it
deteriorates the convergence also. So, in general we do not recommend too extreme values
of κ for the proposed faster ADMM (2.2) with large γ. As we shall numerically verify later,
medium values such as κ = 5 or 10, usually can result in very good numerical results even
though the “optimal” choice, we believe, still depends on the specific application of the
abstract model (1.2) and the data set under consideration.

3 Convergence

Recall our main goal is to establish a worst-case O(1/n2) convergence rate for Algorithm
1. First of all, in this section we prove the convergence of Algorithm 1.

Let the Lagrangian function of (1.2) be defined as

(3.1) L(x, y;λ) := f(x) + g(y) + (λ,Ax− y),

with λ ∈ Rm the Lagrange multiplier. Further, we define Ω := X × Rm × Rm. Then,
solving (1.2) is equivalent to finding a saddle point of L(x, y;λ). This is equivalent to
solving the variational inequality: finding (x∗, y∗, λ∗) ∈ Ω such that

(3.2) Θ(x, y)−Θ(x∗, y∗) +

 ATλ∗

−λ∗
−Ax∗ + y∗

T x− x∗y − y∗
λ− λ∗

 ≥ 0, ∀ (x, y, λ) ∈ Ω,

6

where Θ(x, y) = f(x) + g(y).
To prove the convergence of the sequence {(xn, yn, λn)} generated by Algorithm 1, we

first give a lemma.

Lemma 3.1. Let the sequence {(xn, yn, λn)} be generated by Algorithm 1. Then we have

(3.3)

Θ(x, y)−Θ(xn+1, yn+1) +


 ATλn+1

−λn+1

−Axn+1 + yn+1

T

+

σnAT (yn+1 − yn)
−σn(yn+1 − yn)

0

T

+ σn

Q(xn+1 − xn)
yn+1 − yn

1
σ2
n

(λn+1 − λn)

T

x− xn+1

y − yn+1

λ− λn+1


≥ γ

2
‖∇g(y)−∇g(yn+1)‖2, ∀ (x, y, λ) ∈ Ω.

Proof. First, the optimality condition of the x-subproblem in (2.2) is
(3.4)
f(x)− f(xn+1) +

(
AT (σn(Axn+1 − yn) + λn

)
+ σnQ(xn+1 − xn), x− xn+1

)
≥ 0, ∀ x ∈ X .

Using the updating scheme for λn+1 in (2.2), we obtain
(3.5)
f(x)−f(xn+1)+

(
ATλn+1+σnA

T (yn+1−yn)+σnQ(xn+1−xn), x−xn+1

)
≥ 0, ∀ x ∈ X .

In addition, it yields from the optimality condition of the y-subproblem in (2.2) and the
updating formula for λn+1 that

λn+1 = ∇g(yn+1),

then it follows from (2.1) that

(3.6) g(y)− g(yn+1)−
(
λn+1, y − yn+1

)
≥ γ

2
‖∇g(y)−∇g(yn+1)‖2, ∀ y ∈ Rm.

Together with (3.5), (3.6) and the following identity

(3.7) −Axn+1 + yn+1 +
1

σn
(λn+1 − λn) = 0,

we obtain the result (3.3).

Theorem 3.1. Let (x∗, y∗, λ∗) be a saddle point of (3.1) and the sequence {(xn, yn, λn)}
be generated by Algorithm 1. Then we have

(3.8)

‖xn+1 − x∗‖2Q + ‖yn+1 − y∗‖2 +
1

σ2
n+1

‖λn+1 − λ∗‖2

≤
(
‖xn − x∗‖2Q + ‖yn − y∗‖2 +

1

σ2
n

‖λn − λ∗‖2
)

−
(
‖xn+1 − xn‖2Q + ‖yn+1 − yn‖2 +

1

σ2
n

‖λn+1 − λn‖2
)
.

Proof. From the y-subproblem in (2.2), it holds

λn+1 = ∇g(yn+1), λ∗ = ∇g(y∗).

7

Then, it follows from (3.3) with (x, y, λ) = (x∗, y∗, λ∗) that

(3.9)

σn

Q(xn+1 − xn)
yn+1 − yn

1
σ2
n

(λn+1 − λn)

T x∗ − xn+1

y∗ − yn+1

λ∗ − λn+1


≥ γ

2
‖λ∗ − λn+1‖2 + Θ(xn+1, yn+1)−Θ(x∗, y∗)

+


 ATλn+1

−λn+1

−Axn+1 + yn+1

T

+

σnAT (yn+1 − yn)
−σn(yn+1 − yn)

0

T

xn+1 − x∗
yn+1 − y∗
λn+1 − λ∗

 .

Taking (x, y, λ) = (xn+1, yn+1, λn+1) in (3.2) and adding the identity
 ATλn+1

−λn+1

−Axn+1 + yn+1

T

−

 ATλ∗

−λ∗
−Ax∗ + y∗

T

xn+1 − x∗
yn+1 − y∗
λn+1 − λ∗

 = 0

to both sides, we have

(3.10) Θ(xn+1, yn+1)−Θ(x∗, y∗) +

 ATλn+1

−λn+1

−Axn+1 + yn+1

T xn+1 − x∗
yn+1 − y∗
λn+1 − λ∗

 ≥ 0.

By the updating formula for λn+1 in (2.2) and the monotonicity of the gradient ∇g of the
smooth function g, we obtain
(3.11)σnAT (yn+1 − yn)

−σn(yn+1 − yn)
0

T xn+1 − x∗
yn+1 − y∗
λn+1 − λ∗

 =
(
yn+1 − yn, σn(Axn+1 − yn+1)

)
= (yn+1 − yn, λn+1 − λn)

=
(
yn+1 − yn,∇g(yn+1)−∇g(yn)

)
≥ 0.

Therefore, it follows from (3.9), (3.10) and (3.11) that

(3.12)

Q(xn+1 − xn)
yn+1 − yn

1
σ2
n

(λn+1 − λn)

T x∗ − xn+1

y∗ − yn+1

λ∗ − λn+1

 ≥ γ

2σn
‖λ∗ − λn+1‖2.

Using the identities(
Q(xn+1 − xn), x∗ − xn+1

)
=

1

2

(
‖x∗ − xn‖2Q − ‖x∗ − xn+1‖2Q − ‖xn − xn+1‖2Q

)
,(

yn+1 − yn, y∗ − yn+1

)
=

1

2

(
‖y∗ − yn‖2 − ‖y∗ − yn+1‖2 − ‖yn − yn+1‖2

)
,(

λn+1 − λn, λ∗ − λn+1

)
=

1

2

(
‖λ∗ − λn‖2 − ‖λ∗ − λn+1‖2 − ‖λn − λn+1‖2

)
,

and (3.12), we have

(3.13)

‖xn+1 − x∗‖2Q + ‖yn+1 − y∗‖2 +
1 + γσn
σ2
n

‖λn+1 − λ∗‖2

≤
(
‖xn − x∗‖2Q + ‖yn − y∗‖2 +

1

σ2
n

‖λn − λ∗‖2
)

−
(
‖xn+1 − xn‖2Q + ‖yn+1 − yn‖2 +

1

σ2
n

‖λn+1 − λn‖2
)
.

8

Moreover, according to (2.6), it holds

(3.14)
1 + γσn
σ2
n

≥ 1

σ2
n+1

.

Thus, it follows from (3.13) and (3.14) that the assertion (3.8) holds.

The assertion (3.8) essentially implies the convergence of the sequence {(xn, yn, λn)}.
We prove a lemma and then present the convergence result.

Recall the special case of the rule (2.3)-(2.4) with κ = 1, i.e., the sequence {σn}
is updated by (2.5). Then, as proved in [4], we have lim

n→∞
γ
2nσn = 1, which means

σn ∼ O(1/n). Now, we generalize this result to the general rule (2.3)-(2.4) with a general
frequency κ.

Lemma 3.2. For {σn} updated by the rule (2.3)-(2.4) in Algorithm 1, we have σn ∼
O(κ/n).

Proof. For {σn} updated by the rule (2.3)-(2.4), we have lim
s→∞

γ
2 sσ̃s = 1. For an integer

n, it can be written as n = sκ + j, 0 ≤ j ≤ κ − 1, where s = bnκc. Thus, we have
lim
n→∞

γ
2nσn = κ, because κ is a fixed integer. This yields σn = σ̃bnκ c ∼ O(κ/n) and

completes the proof.

Theorem 3.2. Let {(xn, yn, λn)} be the sequence generated by Algorithm 1. Then, the
sequence {(xn, yn, λn)} converges to a saddle point (x∗, y∗, λ∗) of (3.1). In addition, we
have

(3.15) lim
n→∞

(Axn − yn) = 0, and lim
n→∞

{
f(xn) + g(yn)

}
= f(x∗) + g(y∗).

Proof. Taking the summation of (3.8) for n from 0 to N , we have

N∑
n=0

(
‖xn+1 − xn‖2Q + ‖yn+1 − yn‖2 +

1

σ2
n

‖λn+1 − λn‖2
)

≤
(
‖x0 − x∗‖2Q + ‖y0 − y∗‖2 +

1

σ2
0

‖λ0 − λ∗‖2
)
,

which indicates

(3.16) lim
n→∞

(
‖xn+1 − xn‖2Q + ‖yn+1 − yn‖2 +

1

σ2
n

‖λn+1 − λn‖2
)

= 0.

Then we have

(3.17) lim
n→∞

Q(xn−xn+1) = 0, lim
n→∞

(yn−yn+1) = 0 and lim
n→∞

1

σn
(λn−λn+1) = 0.

It follows from (3.8) that
(
‖xn−x∗‖2Q+ ‖yn− y∗‖2 + 1

σ2
n
‖λn−λ∗‖2

)
is bounded. Recall

the identity (3.7), we know that ‖Axn − Ax∗‖2 is bounded. Since A is full column rank
and σn ∼ O(κ/n) shown in Lemma 3.2, we conclude that the sequence {(xn, yn, λn)} has
a cluster point. Let us denote it by (x∗, y∗, λ∗). Then, substituting it into (3.3) and using
(3.17), we obtain

Θ(x, y)−Θ(x∗, y∗) +

 ATλ∗

−λ∗
−Ax∗ + y∗

T x− x∗y − y∗
λ− λ∗

 ≥ 0, ∀ (x, y, λ) ∈ Ω,

9

which implies that (x∗, y∗, λ∗) is a saddle point of (3.1). Furthermore, by (3.7) and (3.17),
it immediately yields

(3.18) lim
n→∞

(Axn − yn) = lim
n→∞

1

σn−1
(λn − λn−1) = 0.

Taking (x, y, λ) = (xn, yn, λn) in (3.2), we get

f(xn) + g(yn) ≥ f(x∗) + g(y∗)− (λ∗, Axn − yn),

and thus

(3.19) lim inf
n→∞

{
f(xn) + g(yn)

}
≥ f(x∗) + g(y∗).

In addition, we set (x, y, λ) = (x∗, y∗, λ∗) in (3.3) and simplify it as

f(x∗) + g(y∗) ≥ f(xn+1) + g(yn+1) + (λ∗, Axn+1 − yn+1)

+ σn(yn+1 − yn, Axn+1 − yn+1) + σn
(
Q(xn+1 − xn), xn+1 − x∗

)
+ σn

(
yn+1 − yn, yn+1 − y∗

)
+

1

σn

(
λn+1 − λn, λn+1 − λ∗

)
.

Thus, using the boundedness of the sequence
(
‖xn−x∗‖2Q+‖yn−y∗‖2+ 1

σ2
n
‖λn−λ∗‖2

)
,

the results in (3.16), (3.17) and (3.18), and σn ∼ O(κ/n) shown in Lemma 3.2, we obtain

(3.20) f(x∗) + g(y∗) ≥ lim sup
n→∞

{
f(xn) + g(yn)

}
.

Therefore, (3.18), (3.19) and (3.20) imply the assertion (3.15) and the proof is complete.

Remark 3.1. If the matrix A in the problem (1.1) is not full rank but Q in Algorithm 1 is
chosen to be positive definite, then similar results as Theorem 3.2 can be derived.

4 Worst-case O(1/n2) Convergence Rate

In this section, we establish a worst-case O(1/n2) convergence rate for Algorithm 1. Our
analysis is based on the saddle-point reformulation of the model (1.1)

(4.1) min
x∈X

max
λ∈Rm

{
L(x, λ) := f(x) + (Ax, λ)− g∗(λ)

}
.

As mentioned in [4], the following partial primal-dual gap can be used to measure the
accuracy of an iterate generated by Algorithm 1:

(4.2) GB1×B2
(x, λ) := max

λ′∈B2

L(x, λ′)− min
x′∈B1

L(x′, λ),

where B1 ×B2 is a bounded subset of the space U := X ×Rm containing a solution point
(x∗, λ∗) of the saddle-point reformulation (4.1). According to [4], we know that for (x̂, λ̂)

in B1 × B2, if GB1×B2
(x̂, λ̂) ≤ 0, then (x̂, λ̂) is also a solution point of (4.1). Hence, we

can define (x̃, λ̃) ∈ B1 × B2 as an approximate solution to (4.1) with an accuracy of ε if

GB1×B2
(x̃, λ̃) ≤ ε

with ε > 0.
Now we start to establish a worst-case O(1/n2) convergence rate for Algorithm 1.

First, based on the first-order optimality conditions of the subproblems in (2.2), we prove a
lemma.

10

Lemma 4.1. Let {(xn, yn, λn)} be the sequence generated by Algorithm 1. Then, we have

f(x)− f(xn+1) +

(
AT
(
σnA(xn+1 − xn) +

σn
σn−1

(λn − λn−1) + λn

)
+σnQ(xn+1 − xn), x− xn+1

)
≥ 0, ∀ x ∈ X ;

(4.3)

(4.4) λn+1 = ∇g(yn+1);

g∗(λ)− g∗(λn+1)−
(
Axn+1 −

1

σn
(λn+1 − λn), λ− λn+1

)
−γ

2
‖λ− λn+1‖2 ≥ 0, ∀ λ ∈ Rm.

(4.5)

Proof. The assertion (4.3) is an immediate result by inserting the updating formula for the
multiplier λn = λn−1 + σn−1(Axn − yn) into the optimality condition (3.4) of the x-
subproblem. The second assertion (4.4) can be derived from the optimality condition of the
y-subproblem by using the updating formula for λn+1 in (2.2). Furthermore, because of
(4.4), we have

(4.6) yn+1 ∈ ∂g∗(λn+1).

Since ∇g is Lipschitz continuous with constant 1
γ , it follows from [1, Theorem 18.15] that

g∗ is γ-strongly convex. Then, together with (4.6), we obtain

g∗(λ)− g∗(λn+1)−
(
yn+1, λ− λn+1

)
− γ

2
‖λ− λn+1‖2 ≥ 0, ∀ λ ∈ Rm.

Thus, using the updating scheme for λ in (2.2), we prove the assertion (4.5).

Then, we prove one more lemma, based on which the worst-caseO(1/n2) convergence
rate of Algorithm 1 can be easily obtained.

Lemma 4.2. Let {(xn, λn)} be generated by Algorithm 1 and U = X × Rm. Then, we
have

(4.7)
(
L(xn+1, λ)− L(x, λn+1)

)
+

1

θn+1
Sn+1(x, λ) ≤ Sn(x, λ), ∀ (x, λ) ∈ U,

where
θn :=

σn
σn−1

and

Sn(x, λ) :=
σn
2
‖A(x− xn)‖2 +

σn
2
‖x− xn‖2Q +

1

2σn
‖λ− λn‖2

+
θ2n

2σn
‖λn − λn−1‖2 + θn

(
A(x− xn), λn − λn−1

)
.

(4.8)

Proof. First, it follows from (4.3) and (4.5) that(
f(x) + (Ax, λn+1)− g∗(λn+1)

)
−
(
f(xn+1) + (Axn+1, λ)− g∗(λ)

)
+ σn

(
(ATA+Q)(xn+1 − xn), x− xn+1

)
+

1

σn
(λn+1 − λn, λ− λn+1)

≥
(
A(x− xn+1), λn+1 − λn

)
− σn
σn−1

(
A(x− xn+1), λn − λn−1

)
+
γ

2
‖λ− λn+1‖2, ∀ (x, λ) ∈ U.

(4.9)

11

With the definition of L(·, ·) in (4.1) and the equality(
A(x− xn+1), λn − λn−1

)
=
(
A(x− xn), λn − λn−1

)
−
(
A(xn+1 − xn), λn − λn−1

)
,

we can reformulate (4.9) as

−
(
L(xn+1, λ)− L(x, λn+1)

)
+ σn

(
A(xn+1 − xn), A(x− xn+1)

)
+ σn

(
Q(xn+1 − xn), x− xn+1

)
+

1

σn

(
λn+1 − λn, λ− λn+1

)
≥
(
A(x− xn+1), λn+1 − λn

)
− σn
σn−1

(
A(x− xn), λn − λn−1

)
+

σn
σn−1

(
A(xn+1 − xn), λn − λn−1

)
+
γ

2
‖λ− λn+1‖2

≥
(
A(x− xn+1), λn+1 − λn

)
− σn
σn−1

(
A(x− xn), λn − λn−1

)
− σn

2
‖A(xn+1 − xn)‖2 − σ2

n

2σ2
n−1σn

‖λn − λn−1‖2 +
γ

2
‖λ− λn+1‖2, ∀ (x, λ) ∈ U.

Further, using the identities(
A(xn+1 − xn), A(x− xn+1)

)
=

1

2

(
‖A(x− xn)‖2 − ‖A(x− xn+1)‖2 − ‖A(xn − xn+1)‖2

)
,(

Q(xn+1 − xn), x− xn+1

)
=

1

2

(
‖x− xn‖2Q − ‖x− xn+1‖2Q − ‖xn − xn+1‖2Q

)
,(

λn+1 − λn, λ− λn+1

)
=

1

2

(
‖λ− λn‖2 − ‖λ− λn+1‖2 − ‖λn − λn+1‖2

)
,

we have

σn
2
‖A(x− xn)‖2 +

σn
2
‖x− xn‖2Q +

1

2σn
‖λ− λn‖2

+
σ2
n

2σ2
n−1σn

‖λn − λn−1‖2 +
σn
σn−1

(
A(x− xn), λn − λn−1

)
≥ σn

2
‖A(x− xn+1)‖2 +

σn
2
‖x− xn+1‖2Q +

1 + γσn
2σn

‖λ− λn+1‖2

+
σn
2
‖xn+1 − xn‖2Q +

1

2σn
‖λn+1 − λn‖2 +

(
A(x− xn+1), λn+1 − λn

)
+
(
L(xn+1, λ)− L(x, λn+1)

)
, ∀ (x, λ) ∈ U.

(4.10)

Recall (2.3), (2.4) and (2.6). We have

(4.11)
1 + γσn
σn

≥ 1

θn+1σn+1
, σnθn+1 = σn+1.

Then, it easily yields from (4.10) and the definition of Sn(x, λ) in (4.8) that

(4.12) Sn(x, λ) ≥ 1

θn+1
Sn+1(x, λ) +

(
L(xn+1, λ)− L(x, λn+1)

)
, ∀ (x, λ) ∈ U.

The proof is complete.

Now, we establish a worst-case O(1/n2) convergence rate in the ergodic sense for
Algorithm 1.

12

Theorem 4.1 (O(1/n2) convergence rate in the ergodic sense). Let {(xn, λn)} be the se-
quence generated by Algorithm 1. Let

Tn =

n∑
i=0

σ0
σi
, x̃n =

1

Tn

n∑
i=0

σ0
σi
xi+1 and λ̃n =

1

Tn

n∑
i=0

σ0
σi
λi+1.

Then, for any bounded subset B1×B2 of U = X×Rm containing the sequence {(x̃n, λ̃n)},
we have

(4.13) GB1×B2(x̃n, λ̃n) ≤ c κ
n2

= O(
1

n2
),

where c > 0 is a constant.

Proof. Multiplying the inequality (4.7) with index i in Lemma 4.2 by σ0

σi
, summing it over

i = 0, 1, · · · , n, and using the relationship σiθi+1 = σi+1 in (4.11), we obtain

n∑
i=0

σ0
σi

(
L(xi+1, λ)−L(x, λi+1)

)
+

n∑
i=0

σ0
σi+1

Si+1(x, λ) ≤
n∑
i=0

σ0
σi
Si(x, λ), ∀ (x, λ) ∈ U.

Because f and g are convex functions, we have

(4.14) Tn
(
L(x̃n, λ)− L(x, λ̃n)

)
+

σ0
σn+1

Sn+1(x, λ) ≤ S0(x, λ), ∀ (x, λ) ∈ U.

It follows from Lemma 3.2 that σn ∼ O(κ/n). With the definition of Tn, this immediately
yields that Tn ∼ O(n2/κ). Since Sn+1(x, λ) is nonnegative, we have

(4.15) L(x̃n, λ)− L(x, λ̃n) ≤ 1

Tn
S0(x, λ) ≤ c κ

n2
S0(x, λ), ∀ (x, λ) ∈ U.

From the result of Theorem 3.1, we know that the sequence {(xn, λn)} is bounded, then its
linear average (x̃n, λ̃n) is also bounded. Therefore, for some open bounded subset B1×B2
of U containing the sequence {(x̃n, λ̃n)}, S0(x, λ) is bounded over B1 ×B2. Then, taking
the maximum of both sides of (4.15) with (x, λ) over B1 × B2 and recalling the definition
of GB1×B2

(x, λ) in (4.2) give us

GB1×B2(x̃n, λ̃n) = max
(x,λ)∈B1×B2

{
L(x̃n, λ)− L(x, λ̃n)

}
≤ c κ

n2
= O(

1

n2
).

The proof is complete.

The assertion (4.13) means that (x̃n, λ̃n) calculated by n iterations of Algorithm 1 is an
approximate solution of the saddle-point reformulation (4.1) with an accuracy of O(1/n2).
Therefore, a worst-case O(1/n2) convergence rate in the ergodic sense is established for
Algorithm 1. Moreover, we can obtain a stronger convergence rate for the sequence of
{λn} in terms of the proximity to the optimal value λ∗ in the following theorem.

Theorem 4.2 (Convergence rate of the dual variable). Let (x∗, λ∗) be a solution point of
the saddle-point reformulation (4.1), and {(xn, λn)} be generated by Algorithm 1. Then,
we have

(4.16) ‖λn+1 − λ∗‖2 ≤
2σ2

n+1

σ0
S0(x∗, λ∗) = O(

κ2

n2
).

13

Proof. Taking (x, λ) = (x∗, λ∗) in (4.14), and recalling the fact

L(x̃n, λ
∗)− L(x∗, λ̃n) ≥ 0,

we have σ0
σn+1

Sn+1(x∗, λ∗) ≤ S0(x∗, λ∗).

It follows from the definition of Sn in (4.8) that

Sn+1(x∗, λ∗) =
σn+1

2
‖A(x∗ − xn+1)‖2 +

σn+1

2
‖x∗ − xn+1‖2Q +

1

2σn+1
‖λ∗ − λn+1‖2

+
θ2n+1

2σn+1
‖λn+1 − λn‖2 + θn+1

(
A(x∗ − xn+1), λn+1 − λn

)
=

1

2

∥∥∥√σn+1A(x∗ − xn+1) +
θn+1√
σn+1

(λn+1 − λn)
∥∥∥2

+
σn+1

2
‖x∗ − xn+1‖2Q +

1

2σn+1
‖λ∗ − λn+1‖2

≥ 1

2σn+1
‖λ∗ − λn+1‖2.

Therefore, the result (4.16) follows from the above two inequalities and Lemma 3.2.

5 Connection with Primal-Dual Algorithms

In this section, we elaborate on the connection between Algorithm 1 with the primal-dual
algorithm proposed in [4] and a variant of it for the special case of (1.1) with X = Rd.
Recall the relationship between the primal-dual algorithm (1.9) and the linearized version
of ADMM for the dual problem of (1.1) with X = Rd.

5.1 (x-λ-λ) Primal-Dual Scheme

First, we consider a variant version of (1.9) which updates the dual variable λ twice at each
iteration and thus is called the (x-λ-λ) scheme

(5.1)


xn+1 = proxτnf

(
xn − τnAT λ̃n

)
λn+1 = proxσng∗

(
λn + σnAxn+1

)
λ̃n+1 = λn+1 + θn+1(λn+1 − λn).

First, using the Moreau’s identity in [35]:

proxσg∗(λ) + σproxg/σ(λ/σ) = λ,

we can reformulate the λ-subproblem in (5.1) as

(5.2) λn+1 = λn + σn(Axn+1 − yn+1),

where
yn+1 = argmin

y

{
g(y) +

σn
2

∥∥y −Axn+1 −
λn
σn

∥∥2}.

14

Second, by the definition of proximal operator in (1.5) and the relationships λ̃n = λn +
θn(λn − λn−1) in (5.1) and λn − λn−1 = σn−1(Axn − yn) in (5.2), the x-subproblem in
(5.1) can be rewritten as

xn+1 = proxτnf
(
xn − τnAT λ̃n

)
= argmin

x

{
f(x) +

1

2τn

∥∥x− xn + τnA
T λ̃n

∥∥2}
= argmin

x

{
f(x) +

1

2τn

∥∥x− xn‖2 +
(
A(x− xn), λ̃n

)
+
τn
2
‖AT λ̃n‖2

}
= argmin

x

{
f(x) + 1

2τn

∥∥x− xn‖2 − σn
2 ‖A(x− xn)‖2 + σn

2 ‖A(x− xn)‖2

+
(
A(x− xn), λ̃n

)
+ 1

2σn
‖λ̃n‖2 − 1

2σn
‖λ̃n‖2 + τn

2 ‖A
T λ̃n‖2

}

= argmin
x

{
f(x) + σn

2

∥∥A(x− xn) + λ̃n
σn

∥∥2
+ 1

2‖x− xn‖
2
τ−1
n I−σnATA

+ τn
2 ‖A

T λ̃n‖2 − 1
2σn
‖λ̃n‖2

}

= argmin
x

{
f(x) + σn

2

∥∥Ax− yn + (1− ϑn)λnσn + ϑn
λn−1

σn

∥∥2
+ 1

2‖x− xn‖
2
τ−1
n I−σnATA

+ Cn

}
,

where
ϑn :=

σn − θnσn−1
σn−1

and Cn =
τn
2

∥∥AT λ̃n∥∥2 − 1

2σn

∥∥λ̃n∥∥2.
Thus, the primal-dual algorithm (5.1) is equivalent to the following scheme:

(5.3)


xn+1 = argmin

x

{
f(x) + σn

2

∥∥Ax− yn + (1− ϑn)λnσn + ϑn
λn−1

σn

∥∥2
+ 1

2‖x− xn‖
2
τ−1
n I−σnATA

}

yn+1 = argmin
y

{
g(y) +

σn
2

∥∥Axn+1 − y +
λn
σn

∥∥2}
λn+1 = λn + σn(Axn+1 − yn+1),

which can be viewed as a linearized version of the ADMM with varying penalty parameters

(5.4)


xn+1 = argmin

x

{
f(x) +

σn
2

∥∥Ax− yn + (1− ϑn)
λn
σn

+ ϑn
λn−1
σn

∥∥2}
yn+1 = argmin

y

{
g(y) +

σn
2

∥∥Axn+1 − y +
λn
σn

∥∥2}
λn+1 = λn + σn(Axn+1 − yn+1),

whose x-subproblem is proximally regularized by the term 1
2‖x− xn‖

2
τ−1
n I−σnATA

.
Furthermore, ϑn = 0 if θn = σn/σn−1. Therefore, the scheme (5.4) can be simplified

as

(5.5)


xn+1 = argmin

x

{
f(x) +

σn
2

∥∥Ax− yn +
λn
σn

∥∥2}
yn+1 = argmin

y

{
g(y) +

σn
2

∥∥Axn+1 − y +
λn
σn

∥∥2}
λn+1 = λn + σn(Axn+1 − yn+1).

This is precisely the application of the standard ADMM scheme (1.3) with varying penalty
parameters σn to (1.1). Therefore, the conclusion is that if σn = θnσn−1 is satisfied, then

15

the primal-dual algorithm (5.1) is the case of Algorithm 1 with

Q = (τnσn)−1I −ATA.

This connection can be regarded as a generalization of the elaboration in [36] on these two
methods with constant parameters.

5.2 (λ-x-x) Primal-Dual Scheme

With a similar analysis, we can also show that the scheme (1.9) with θn = τn/τn−1 is
equivalent to a linearized version of the ADMM for the dual problem (5.10) of model (1.1).

Different from the (x-λ-λ) scheme in (5.1), the accelerated scheme (1.9)
λn+1 = proxσng∗

(
λn + σnAx̃n

)
xn+1 = proxτnf

(
xn − τnATλn+1

)
x̃n+1 = xn+1 + θn+1(xn+1 − xn)

discussed in [4] performs iterations in order of (λ-x-x).
Taking x = xn − τnATλn+1 and τ = τn in the Moreau’s identity (see, e.g. [35]):

proxτf (x) + τproxf∗/τ (x/τ) = x,

we obtain

(5.6) xn+1 = xn − τn(ATλn+1 + zn+1),

where

zn+1 = proxf∗/τn

(xn
τn
−ATλn+1

)
= argmin

z

{
f∗(z) +

τn
2

∥∥ATλn+1 + z − xn
τn

∥∥2}.
For the λ-subproblem, according to the definition of the proximity operator in (1.5), the
relationships x̃n = xn + θn(xn− xn−1) in (1.9) and xn− xn−1 = −τn−1(ATλn + zn) in
(5.6), we have

λn+1 = proxσng∗
(
λn + σnAx̃n

)
= argmin

λ

{
g∗(λ) +

1

2σn

∥∥λ− λn − σnAx̃n∥∥2}
= argmin

λ

{
g∗(λ) +

τn
2

∥∥AT (λ− λn)− x̃n
τn

∥∥2 +
1

2
‖λ− λn‖2σ−1

n I−τnAAT
+ C̃n

}
= argmin

λ

{
g∗(λ) + τn

2

∥∥ATλ+ zn − (1− δn)xnτn − δn
xn−1

τn

∥∥2
+ 1

2‖λ− λn‖
2
σ−1
n I−τnAAT

}
,

where
δn =

τn − θnτn−1
τn−1

and C̃n =
σn
2
‖Ax̃n‖2 −

1

2τn
‖x̃n‖2.

With the above discussions, we can derive that the scheme (1.9) is equivalent to

(5.7)


λn+1 = argmin

λ

{
g∗(λ) + τn

2

∥∥ATλ+ zn − (1− δn)xnτn − δn
xn−1

τn

∥∥2
+ 1

2‖λ− λn‖
2
σ−1
n I−τnAAT

}
zn+1 = argmin

z

{
f∗(z) +

τn
2

∥∥ATλn+1 + z − xn
τn

∥∥2}
xn+1 = xn − τn(ATλn+1 + zn+1).

16

If θn = τn/τn−1, then (5.7) can be simplified as
(5.8)

λn+1 = argmin
λ

{
g∗(λ) +

τn
2

∥∥ATλ+ zn −
xn
τn

∥∥2 +
1

2
‖λ− λn‖2σ−1

n I−τnAAT

}
zn+1 = argmin

z

{
f∗(z) +

τn
2

∥∥ATλn+1 + z − xn
τn

∥∥2}
xn+1 = xn − τn(ATλn+1 + zn+1),

which is an application of the linearized version of the ADMM with varying penalty pa-
rameters τn to the problem

min
λ∈Rm,z∈Rd

f∗(z) + g∗(λ)

s.t. ATλ+ z = 0.
(5.9)

Note that the dual problem of (1.1) with X = Rd can be written as

(5.10) max
λ∈Rm

{
−
(
f∗(−ATλ) + g∗(λ)

)}
.

Thus, the problem (5.9) is equivalent to the dual problem (5.10) of (1.1) by introducing
variable z = −ATλ and regarding x in (5.8) as the Lagrange multiplier of the constraint in
(5.9).

Note that (5.3) and (5.7) are not equivalent to each other with non-identity matrix A
and varying parameters τn, σn.

Remark 5.1. The primal-dual scheme (1.9) discussed in [4] with iterations in order of
(λ-x-x) corresponds to a linearized version of the ADMM for the dual problem (5.10) of
model (1.1), while the so called (x-λ-λ) scheme (5.1) corresponds to a linearized version
of the ADMM for the primal problem (1.1). Therefore, the (x-λ-λ) scheme (5.1) is different
from the (λ-x-x) scheme (1.9) discussed in [4].

6 Numerical Results

As mentioned, the ADMM has found many applications in a broad spectrum of areas. In
this section, we take the LASSO model in [39] as an illustrative example to numerically
verify the efficiency of the proposed faster ADMM. The LASSO model is probably the
simplest application representative of those to which the ADMM has been successfully ap-
plied. All the codes were written by MATLAB R2012a and all experiments were performed
on a desktop with Windows 8 system and an Intel(R) Core(TM) i5-4570s CPU processor
(2.9GHz) with a 8GB memory.

6.1 Experiment Setup

The LASSO model in [39] is

(6.1) min
x

{
α‖x‖1 +

1

2
‖Dx− c‖2

}
,

where ‖x‖1 :=
∑d
i=1 |xi|,D ∈ Rl×d is a design matrix usually with l� d, l is the number

of data points, d is the number of features, c ∈ Rl is the response vector and α > 0 is a
regularization parameter. The LASSO model provides a sparse estimation of x when there
are more features than data points. It can also be explained as a model for finding a sparse
solution of the under-determined system of linear equations Dx = c.

17

Obviously, the model (6.1) can be rewritten as

min
x,y

α‖x‖1 +
1

2
‖Dy − c‖2

s.t. x− y = 0,

(6.2)

which is a special case of model (1.2) with f(x) = α‖x‖1, g(y) = 1
2‖Dy − c‖2 and

m = d, X = Rd, A = Id×d. For (6.2), it is easy to see that the assumptions posed in
Section 2 are satisfied. Particularly, the Lipschitz continuity constant of ∇g is ‖DTD‖,
then γ = 1/‖DTD‖ is set in (2.4) for Algorithm 1 as γ denotes the inverse of the Lipschitz
continuity constant of∇g. Thus, applying the proposed faster ADMM (2.2) with Q = 0 to
(6.2), we obtain the scheme

(6.3)


xn+1 = argmin

x

{
α‖x‖1 +

σn
2

∥∥x− yn +
λn
σn

∥∥2}
yn+1 = argmin

y

{1

2
‖Dy − c‖2 +

σn
2

∥∥xn+1 − y +
λn
σn

∥∥2}
λn+1 = λn + σn(xn+1 − yn+1)

where the penalty parameter {σn} is updated by

σn+1 = σ̃bnκ c

with κ being a given integer and

σ̃s+1 =
σ̃s√

1 + σ̃s/‖DTD‖
,

starting from a given σ̃0 = σ0. As mentioned in many literatures, the x-subproblem in (6.3)
has its closed-form solution given by

xn+1 = Sα/σn
(
yn −

λn
σn

)
,

where Sδ(x) is the soft-thresholding operator [10] defined as

(Sδ(x))i = (1− δ/|xi|)+ · xi, i = 1, 2, · · · , d,

and the y-subproblem has its solution given by

yn+1 = (σnI +DTD)−1(σnxn+1 + λn +DT c).

To implement the scheme (6.3) and avoid loss of efficiency possibly caused by coding
skills, we use the widely-used MATLAB ADMM package downloaded at http://web.
stanford.edu/˜boyd/papers/admm/, with the only slight revision of using an
adaptive penalty parameter. We use the stopping criterion in [14]

(6.4) dist∞

(
0, ∂x

[
α‖x‖1 +

1

2
‖Dx− c‖2

]
x=xn

)
≤ ε,

where dist∞(t, S) := inf{‖t− s‖∞ | s ∈ S}, and ε > 0 is a tolerance.

18

http://web.stanford.edu/~boyd/papers/admm/
http://web.stanford.edu/~boyd/papers/admm/

6.2 Synthetic Data

In this experiment, we specify the LASSO model (6.1) with l = 1500 and d = 5000; the
matrix D in (6.1) is generated by the MATLAB function randn with 1500 by 5000 entries;
all columns are normalized afterwards; the sparse vector x ∈ R5000 is generated by the
MATLAB function sprandn with 100 nonzero entries; the vector c is set as Dx + η with
noise vector η ∼ N(0, 0.001); the regularization parameter α is set as ‖DT c‖∞/10.

We use the original ADMM (1.3) with a constant penalty parameter as the benchmark
to verify the O(1/n2) convergence rate of Algorithm 1. We test different constant penalty
parameters for the original ADMM (1.3) and Algorithm 1 also starting from the same con-
stant for each comparison. In Figure 1, we plot the evaluation of the primal-dual residual
max

{
σn‖yn+1 − yn‖, 1

σn
‖λn+1 − λn‖

}
from (3.3) taking A := I and Q := 0 for LAS-

SO model (6.1) with respect to the iteration number for the original ADMM (1.3) with a
constant penalty parameter σ0 (denoted by “ADMM”) and Algorithm 1 with varying penal-
ty parameter starting from the same σ0 (denoted by “FADMM”). We report the results for
σ0 = 10, 50, · · · , up to 1000. We have tested a number of other cases of σ0 and the compar-
ison is similar except for some extreme cases where σ0 is very small. For Algorithm 1, four
choices of κ = 1, 5, 10, 20 are tested. For each case, we plot the evolution of the primal-
dual residual in Figure 1. These curves show clearly that Algorithm 1 converges absolutely
faster than the original ADMM (1.3) with a given constant parameter. To discern the actual
rate more clearly, we also set a benchmark rate of 100/n2 and plot its decay. As we can
see, the speed of the decay of the primal-dual residuals is even faster than the benchmark
rate of 100/n2; so the established O(1/n2) convergence rate is just a worse-case estimate
of the speed and we can easily witness faster speed empirically. Moreover, the values of the
objective function in each iteration are plotted in Figure 2, where the decay of the objective
function by Algorithm 1 is also much faster than that of the original ADMM, especially
when the initial penalty parameter is large.

In Table 1, we compare the iteration numbers of these two ADMM schemes for some
choices of σ0 and different tolerance in the stopping criterion (6.4). In this table, “–” means
the stopping criterion (6.4) is not satisfied after 5000 iterations. These data show that the
original ADMM (1.3) with a given constant penalty parameter can easily fail, especially
when producing high-precision solutions; while Algorithm 1 usually performs very well
except for the extreme case where κ = 1. Generally, we do not suggest choosing κ = 1 if
the Lipschitz constant of∇g is small.

In Figure 3, we test the sensitivity to the initial value σ0 of Algorithm 1. We only report
the results when κ = 10 for succinctness. For different cases of the tolerance ε in the
stopping criterion (6.4), we plot the iteration numbers with respect to different choices of
σ0 whose values vary from 100 to 103 with an equal exponential distance of 0.1, where the
horizontal axis is in logarithmic scale. It is clearly demonstrated that Algorithm 1 is much
more robust to the value of the initial penalty parameter σ0 especially when it is larger equal
than 10.0, even when high-precision solutions are produced. This is a significant advantage
for implementing ADMM-type algorithms.

6.3 Real Datasets

In this subsection, we test the proposed Algorithm 1 for the LASSO model (6.1) in which
the matrix D and vector c are given by the following six real gene microarray datasets:
GLIOMA, LEU, LUNG, MLL, PROSTATE and SRBCT. These datasets are available in
MATLAB format at the website http://www.biomedcentral.com/1471-2105/
7/228/additional/. The sample and feature numbers of these datasets are listed in
Table 2; more details can be found in, e.g., [42]. All rows of the matrix D are normalized
in our experiments, and the regularization parameter α is set as ‖DT c‖∞/10.

19

http://www.biomedcentral.com/1471-2105/7/228/additional/
http://www.biomedcentral.com/1471-2105/7/228/additional/

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

n

pr
im

al
−

du
al

 r
es

id
ua

l

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)
100/n2

(a) Initial σ0 = 10.0

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

n

pr
im

al
−

du
al

 r
es

id
ua

l

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)
100/n2

(b) Initial σ0 = 50.0

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

n

pr
im

al
−

du
al

 r
es

id
ua

l

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)
100/n2

(c) Initial σ0 = 100.0

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

n

pr
im

al
−

du
al

 r
es

id
ua

l

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)
100/n2

(d) Initial σ0 = 200.0

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

n

pr
im

al
−

du
al

 r
es

id
ua

l

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)
100/n2

(e) Initial σ0 = 500.0

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

10
5

n

pr
im

al
−

du
al

 r
es

id
ua

l

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)
100/n2

(f) Initial σ0 = 1000.0

Figure 1: The decay of the primal-dual residual for LASSO model with the synthetic data
generated in Section 6.2 by ADMM and faster ADMM with κ = 1, 5, 10, 20 and different
initial penalty parameter σ0.

We compare the iteration numbers of the original ADMM (1.3) with a constant penal-
ty parameter σ0 (denoted by “ADMM”) and Algorithm 1 with varying penalty parame-
ter starting from the same σ0 (denoted by “FADMM”), four choices of κ = 1, 2, 5, 10
are tested for Algorithm 1. The numerical results for these real datasets are listed in Ta-
bles 3-8, respectively, with σ0 = 1.0, 5.0, 10.0, 20.0, 50.0, 100.0, 200.0, 500.0, 1000.0 and

20

0 10 20 30 40 50
16

18

20

22

24

26

28

30

32

34

n

f
(x

n
)
+
g
(y

n
)

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)

(g) Initial σ0 = 10.0

0 50 100 150 200
15

20

25

30

35

40

45

n

f
(x

n
)
+
g
(y

n
)

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)

(h) Initial σ0 = 50.0

0 50 100 150 200 250 300
15

20

25

30

35

40

45

n

f
(x

n
)
+
g
(y

n
)

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)

(i) Initial σ0 = 100.0

0 100 200 300 400 500 600
15

20

25

30

35

40

45

50

n

f
(x

n
)
+
g
(y

n
)

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)

0 20 40 60 80 100
15

20

25

30

35

40

45

50

(j) Initial σ0 = 200.0

0 500 1000 1500 2000
15

20

25

30

35

40

45

50

n

f
(x

n
)
+
g
(y

n
)

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)

0 20 40 60 80 100
15

20

25

30

35

40

45

50

(k) Initial σ0 = 500.0

0 500 1000 1500 2000
15

20

25

30

35

40

45

50

n

f
(x

n
)
+
g
(y

n
)

ADMM
FADMM(κ = 1)
FADMM(κ = 5)
FADMM(κ = 10)
FADMM(κ = 20)

0 20 40 60 80 100
15

20

25

30

35

40

45

50

(l) Initial σ0 = 1000.0

Figure 2: The decay of the values of the objective function of LASSO model with the
synthetic data generated in Section 6.2 by ADMM and faster ADMM with κ = 1, 5, 10, 20
and different initial penalty parameter σ0.

ε = 10−3, 10−4, 10−5. The results in these tables show the same observations as those
mentioned in Section 6.2: Algorithm 1 performs faster than the original ADMM (1.3) and
it is more robust with respect to the initial value of σ0.

21

Table 1: Iteration numbers of ADMM and faster ADMM for solving LASSO model with
the synthetic data generated in Section 6.2 with different initial parameter σ0 and different
tolerance ε in the stopping criterion (6.4). (“–” means the iteration number is beyond 5000)

ε 10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

σ0 = 1.0 σ0 = 10.0 σ0 = 20.0 σ0 = 50.0
ADMM 50 84 121 134 204 277 268 407 553 665 1010 1373
FADMM(κ = 1) 276 2232 “–” 150 1133 “–” 149 1117 “–” 150 1112 “–”
FADMM(κ = 5) 65 138 256 44 64 100 49 68 103 53 72 107
FADMM(κ = 10) 56 106 170 54 71 86 64 81 96 72 89 105
FADMM(κ = 20) 52 93 140 74 93 109 93 113 129 110 130 147

σ0 = 100.0 σ0 = 200.0 σ0 = 500.0 σ0 = 1000.0
ADMM 1326 2015 2739 2647 4023 “–” “–” “–” “–” “–” “–” “–”
FADMM(κ = 1) 149 1107 “–” 150 1110 “–” 150 1111 “–” 150 1109 “–”
FADMM(κ = 5) 56 74 109 57 76 110 59 78 112 60 79 113
FADMM(κ = 10) 77 93 110 81 97 113 84 101 116 86 103 119
FADMM(κ = 20) 119 140 156 125 146 163 133 153 170 137 158 174

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

σ0

Ite
ra

tio
n

N
um

be
r

ADMM
FADMM(κ = 10)

(a) ε = 1.0× 10−6

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

σ0

Ite
ra

tio
n

N
um

be
r

ADMM
FADMM(κ = 10)

(b) ε = 1.0× 10−8

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

σ0

Ite
ra

tio
n

N
um

be
r

ADMM
FADMM(κ = 10)

(c) ε = 1.0× 10−10

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

σ0

Ite
ra

tio
n

N
um

be
r

ADMM
FADMM(κ = 10)

(d) ε = 1.0× 10−12

Figure 3: The iteration numbers of ADMM and faster ADMM with κ = 10 and different
initial parameter σ0 for solving LASSO model with the synthetic data generated in Section
6.2 with different tolerance ε in the stopping criterion (6.4).

6.4 Conclusions

In the literature, it is well known that the efficiency of the original ADMM (1.3) with a
constant penalty parameter heavily depends on the value of this parameter and it seems
we still lack of any general strategy to tune this constant. This can also be seen from the

22

Table 2: The informations about the six gene microarray datasets.
Dataset GLIOMA LEU LUNG MLL PROSTATE SRBCT
Samples 50 72 203 57 102 83
Gene features 4434 3571 3312 5848 5966 2308

Table 3: GLIOMA dataset: iteration numbers of ADMM and faster ADMM. (“–” means
the iteration number is beyond 5000)

ADMM FADMM(κ = 1) FADMM(κ = 2) FADMM(κ = 5) FADMM(κ = 10)
σ0 ε 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1.0 21 1286 “–” 22 467 1879 21 555 2677 21 743 4069 21 892 “–”
5.0 28 “–” “–” 11 535 1954 14 687 2830 10 1037 4441 17 1418 “–”
10.0 78 “–” “–” 15 545 1964 29 707 2850 47 1085 4492 58 1511 “–”
20.0 169 “–” “–” 20 550 1970 37 717 2860 64 1111 4518 87 1561 “–”
50.0 426 “–” “–” 23 553 1973 43 724 2867 79 1128 4535 114 1595 “–”
100.0 851 “–” “–” 24 555 1974 45 726 2870 85 1134 4541 126 1608 “–”
200.0 1700 “–” “–” 25 556 1975 47 728 2871 89 1138 4545 134 1616 “–”
500.0 4249 “–” “–” 25 556 1976 48 729 2873 92 1142 4549 141 1623 “–”
1000.0 “–” “–” “–” 26 557 1976 49 730 2874 94 1144 4551 144 1627 “–”

Table 4: LEU dataset: iteration numbers of ADMM and faster ADMM. (“–” means the
iteration number is beyond 5000)

ADMM FADMM(κ = 1) FADMM(κ = 2) FADMM(κ = 5) FADMM(κ = 10)
σ0 ε 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1.0 39 175 2795 29 117 602 29 137 839 39 153 1225 39 161 1556
5.0 158 763 “–” 61 191 677 80 227 984 107 308 1561 124 411 2173
10.0 315 1524 “–” 70 182 687 96 245 1004 139 350 1610 175 488 2270
20.0 629 3048 “–” 74 187 692 105 255 1015 160 375 1636 214 535 2322
50.0 1569 “–” “–” 78 209 696 111 262 1022 176 391 1654 244 567 2356
100.0 3137 “–” “–” 79 192 697 114 265 1024 182 398 1660 257 580 2370
200.0 “–” “–” “–” 80 211 698 116 266 1026 186 402 1664 265 589 2378
500.0 “–” “–” “–” 81 212 698 117 268 1028 190 405 1668 272 596 2385
1000.0 “–” “–” “–” 81 194 699 118 269 1028 192 407 1670 276 599 2389

Table 5: LUNG dataset: iteration numbers of ADMM and faster ADMM. (“–” means the
iteration number is beyond 5000)

ADMM FADMM(κ = 1) FADMM(κ = 2) FADMM(κ = 5) FADMM(κ = 10)
σ0 ε 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1.0 85 1096 1593 88 585 1596 86 783 1483 111 838 1435 85 906 1601
5.0 434 4905 “–” 185 906 1813 247 1106 1706 312 1718 2216 353 2119 2615
10.0 886 “–” “–” 225 943 1952 302 1180 1779 420 1890 2290 528 2437 2934
20.0 1783 “–” “–” 243 962 1870 337 1218 1818 497 1984 2384 663 2618 3115
50.0 4453 “–” “–” 255 975 1882 360 1243 1842 552 1950 2444 767 2736 3234
100.0 “–” “–” “–” 259 979 1988 368 1251 1851 573 2065 2564 808 2779 3276
200.0 “–” “–” “–” 261 981 1787 373 1256 1756 584 1983 2477 830 2802 3299
500.0 “–” “–” “–” 263 983 1992 376 1259 1859 592 2085 2584 847 2819 3316
1000.0 “–” “–” “–” 264 984 1891 377 1261 1860 596 2089 2489 854 2826 3323

tables in this section. Indeed, it is the main disadvantage of the ADMM (1.3) and it usually
requires users to tune this parameter to find a specific value appropriate to a given problem.
Based on the numerical experiments, we find that for most of the cases, Algorithm 1 with a
given initial value of the penalty parameter outperforms the original ADMM (1.3) with the
same constant penalty parameter; thus the theoretically faster O(1/n2) convergence rate is

23

Table 6: MLL dataset: iteration numbers of ADMM and faster ADMM. (“–” means the
iteration number is beyond 5000)

ADMM FADMM(κ = 1) FADMM(κ = 2) FADMM(κ = 5) FADMM(κ = 10)
σ0 ε 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1.0 10 905 “–” 10 228 1751 10 431 2170 10 381 2634 10 658 3192
5.0 4 4546 “–” 4 421 1839 4 576 2336 4 873 3028 4 1224 3938
10.0 2 “–” “–” 2 432 1851 2 598 2359 2 926 3084 2 1327 4049
20.0 4 “–” “–” 4 313 1857 4 610 2370 4 955 3113 4 1383 4107
50.0 3 “–” “–” 5 441 1860 4 617 2378 3 974 3132 3 1420 4145
100.0 8 “–” “–” 6 443 1862 4 620 2381 6 981 3139 8 1435 4160
200.0 16 “–” “–” 3 319 1863 5 622 2383 10 985 3144 13 1444 4169
500.0 38 “–” “–” 4 320 1863 7 623 2384 13 989 3147 20 1451 4176
1000.0 74 “–” “–” 7 445 1864 8 624 2385 16 991 3149 23 1455 4180

Table 7: PROSTATE dataset: iteration numbers of ADMM and faster ADMM. (“–” means
the iteration number is beyond 5000)

ADMM FADMM(κ = 1) FADMM(κ = 2) FADMM(κ = 5) FADMM(κ = 10)
σ0 ε 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1.0 38 926 4259 41 500 1151 39 605 1498 38 689 2253 38 754 2707
5.0 26 4601 “–” 25 622 1279 26 770 1841 26 1126 2908 26 1558 3853
10.0 161 “–” “–” 26 641 1299 47 806 1879 83 1213 3001 124 1728 4038
20.0 334 “–” “–” 30 576 1309 74 826 1899 137 1261 3050 176 1823 4136
50.0 835 “–” “–” 38 657 1315 85 839 1912 163 1292 3081 224 1884 4199
100.0 1670 “–” “–” 40 660 1317 90 843 1916 174 1303 3093 245 1907 4222
200.0 3338 “–” “–” 52 586 1319 92 846 1919 180 1310 3099 258 1921 4235
500.0 “–” “–” “–” 53 587 1320 94 848 1921 185 1315 3104 268 1931 4246
1000.0 “–” “–” “–” 53 663 1320 95 849 1922 188 1318 3107 273 1936 4251

Table 8: SRBCT dataset: iteration numbers of ADMM and faster ADMM. (“–” means the
iteration number is beyond 5000)

ADMM FADMM(κ = 1) FADMM(κ = 2) FADMM(κ = 5) FADMM(κ = 10)
σ0 ε 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1.0 56 90 182 48 67 124 52 84 142 54 88 159 55 89 170
5.0 186 411 900 87 122 186 109 161 249 125 221 363 145 270 466
10.0 368 819 1798 98 132 198 128 180 271 163 266 415 205 349 560
20.0 733 1634 3592 103 138 204 139 192 283 189 294 444 252 401 616
50.0 1828 4081 “–” 107 142 208 146 199 291 208 313 463 288 439 654
100.0 3654 “–” “–” 109 144 210 149 202 294 215 321 471 302 454 670
200.0 “–” “–” “–” 110 145 210 151 204 296 220 325 476 312 463 679
500.0 “–” “–” “–” 111 145 211 153 206 297 224 329 480 319 471 687
1000.0 “–” “–” “–” 111 146 212 154 207 298 226 331 482 323 475 691

numerically verified. Moreover, our preliminary numerical results show that Algorithm 1
can sometimes produce very high-accuracy solutions with few iterations; this can be hardly
achieved by the original ADMM (1.3) with a constant penalty parameter unless it is very
well tuned. In our experiments, we also show that Algorithm 1 is much less sensitive to the
initial value of the penalty parameter. Indeed, for the LASSO model, Algorithm 1 is very
robust with respect to the initial value of σ0. These features indicate that compared with
the original ADMM (1.3) with a constant penalty parameter, theoretically Algorithm 1 has
a higher order of worst-case convergence rate and numerically it performs more efficiently
and robustly. These favorable features make Algorithm 1 more attractive to a number of
applications.

24

References

[1] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory
in Hilbert spaces, Springer, New York, 2011.

[2] D. Boley, Local linear convergence of the alternating direction method of multipliers
on quadratic or linear programs, SIAM J. Optim. 23 (2013), no. 4, 2183–2207.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found. Trends
Mach. Learning 3 (2010), no. 1, 1–122.

[4] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems
with applications to imaging, J. Math. Imaging Vision 40 (2011), no. 1, 120–145.

[5] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-
dual algorithm, Math. Program. 159 (2016), no. 1, 253–287.

[6] T. F. Chan and R. Glowinski, Finite element approximation and iterative solution of
a class of mildly nonlinear elliptic equations, Technical Report, Computer Science
Department, Stanford University, CA, 1978.

[7] E. Corman and X. M. Yuan, A generalized proximal point algorithm and its conver-
gence rate, SIAM J. Optim. 24 (2014), no. 4, 1614–1638.

[8] D. Davis and W. T. Yin, Convergence rate analysis of several splitting schemes, Split-
ting Methods in Communication, Imaging, Science, and Engineering (R. Glowinski,
S. J. Osher, and W. T. Yin, eds.), Springer International Publishing, 2016, pp. 115–
163.

[9] D. Davis and W. T. Yin, Faster convergence rates of relaxed Peaceman-Rachford and
ADMM under regularity assumptions, Math. Oper. Res. 42 (2017), no. 3, 783–805.

[10] D. L. Donoho and Y. Tsaig, Fast solution of `1-norm minimization problems when the
solution may be sparse, IEEE Trans. Inform. Theory 54 (2008), no. 11, 4789–4812.

[11] J. Douglas, Jr. and H. H. Rachford, Jr., On the numerical solution of heat conduction
problems in two and three space variables, Trans. Amer. Math. Soc. 82 (1956), no. 2,
421–439.

[12] J. Eckstein, Some saddle-function splitting methods for convex programming, Optim.
Methods Softw. 4 (1994), no. 1, 75–83.

[13] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Math. Program. 55
(1992), no. 3, 293–318.

[14] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction
method of multipliers: Theoretical and computational perspectives, Pac. J. Optim. 11
(2015), no. 4, 619–644.

[15] D. Gabay, Applications of the method of multipliers to variational inequalities, Aug-
mented Lagrangian Methods: Applications to the Solution of Boundary-Valued Prob-
lems (M. Fortin and R. Glowinski, eds.), North-Holland Publishing Co., Amsterdam,
1983, pp. 299–331.

25

[16] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational
problems via finite element approximation, Comput. Math. Appl. 2 (1976), no. 1,
17–40.

[17] R. Glowinski, On alternating direction methods of multipliers: A historical perspec-
tive, Modeling, Simulation and Optimization for Science and Technology (W. Fitzgib-
bon, Y. A. Kuznetsov, P. Neittaanmäki, and O. Pironneau, eds.), Springer Netherlands,
2014, pp. 59–82 (English).

[18] R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis et la résolution
par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires,
R.A.I.R.O. R2 (1975), 41–76.

[19] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, Fast alternating direction
optimization methods, SIAM J. Imaging Sci. 7 (2014), no. 3, 1588–1623.

[20] D. R. Han and X. M. Yuan, Local linear convergence of the alternating direction
method of multipliers for quadratic programs, SIAM J. Numer. Anal. 51 (2013), no. 6,
3446–3457.

[21] B. S. He, L.-Z. Liao, D. R. Han, and H. Yang, A new inexact alternating directions
method for monotone variational inequalities, Math. Program. 92 (2002), no. 1, 103–
118.

[22] B. S. He, Y. F. You, and X. M. Yuan, On the convergence of primal-dual hybrid
gradient algorithm, SIAM J. Imaging Sci. 7 (2014), no. 4, 2526–2537.

[23] B. S. He and X. M. Yuan, Convergence analysis of primal-dual algorithms for a
saddle-point problem: from contraction perspective, SIAM J. Imaging Sci. 5 (2012),
no. 1, 119–149.

[24] B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the Douglas-Rachford
alternating direction method, SIAM J. Numer. Anal. 50 (2012), no. 2, 700–709.

[25] B. S. He and X. M. Yuan, On non-ergodic convergence rate of Douglas-Rachford
alternating direction method of multipliers, Numer. Math. 130 (2015), no. 3, 567–
577.

[26] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969),
no. 5, 303–320.

[27] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear opera-
tors, SIAM J. Numer. Anal. 16 (1979), no. 6, 964–979.

[28] B. Martinet, Régularisation dinéquations variationnelles par approximations succes-
sives, Rev. Franç. Inform. Rech. Opér. 4 (1970), 154–158.

[29] R. D. C. Monteiro and B. F. Svaiter, Iteration-complexity of block-decomposition
algorithms and the alternating direction method of multipliers, SIAM J. Optim. 23
(2013), no. 1, 475–507.

[30] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France
93 (1965), 273–299.

[31] A. Nemirovski, Prox-method with rate of convergenceO(1/t) for variational inequal-
ities with Lipschitz continuous monotone operators and smooth convex-concave sad-
dle point problems, SIAM J. Optim. 15 (2004), no. 1, 229–251.

26

[32] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program.
140 (2013), no. 1, 125–161.

[33] Y. E. Nesterov, A method for solving the convex programming problem with con-
vergence rate O(1/k2), Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 543–547, (In
Russian. Translated in Soviet Math. Dokl., 27 (1983), pp. 372-376.).

[34] M. J. D. Powell, A method for nonlinear constraints in minimization problems, Opti-
mization (R. Fletcher, ed.), Academic Press, New York, 1969, pp. 283–298.

[35] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, NJ, 1997.

[36] R. Shefi, Rate of convergence analysis for convex nonsmooth optimization algorithms,
PhD Thesis, Tel Aviv University, Israel, 2015.

[37] M. Tao and X. M. Yuan, On the optimal linear convergence rate of a generalized
proximal point algorithm, J. Sci. Comput. 74 (2018), no. 2, 826–850.

[38] W. Y. Tian and X. M. Yuan, Convergence analysis of primal-dual based methods for
total variation minimization with finite element approximation, J. Sci. Comput. 76
(2018), no. 1, 243–274.

[39] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc.
Ser. B 58 (1996), no. 1, 267–288.

[40] X. F. Wang and X. M. Yuan, The linearized alternating direction method of multipliers
for Dantzig selector, SIAM J. Sci. Comput. 34 (2012), no. 5, A2792–A2811.

[41] J. F. Yang and X. M. Yuan, Linearized augmented Lagrangian and alternating di-
rection methods for nuclear norm minimization, Math. Comp. 82 (2012), no. 281,
301–329.

[42] K. Yang, Z. P. Cai, J. Z. Li, and G. H. Lin, A stable gene selection in microarray data
analysis, BMC Bioinformatics 7 (2006), no. 1, 228.

[43] X. Q. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework
based on Bregman iteration, J. Sci. Comput. 46 (2011), no. 1, 20–46.

27

	Introduction
	A Faster ADMM
	Convergence
	Worst-case O(1/n2) Convergence Rate
	Connection with Primal-Dual Algorithms
	(x�) Primal-Dual Scheme
	(-x-x) Primal-Dual Scheme

	Numerical Results
	Experiment Setup
	Synthetic Data
	Real Datasets
	Conclusions

