
Mild Solutions and Harnack Inequality for
Functional SPDEs with Dini Drift ∗

Xing Huang a), Shao-Qin Zhang b)

a)Center for Applied Mathematics, Tianjin University, Tianjin 300072, China,

XingHuang@mail.bnu.edu.cn

b)School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China,

zhangsq@cufe.edu.cn

May 4, 2018

Abstract

The existence and uniqueness of the mild solution for a class of functional SPDEs
with multiplicative noise and a locally Dini continuous drift are proved. In addition,
under a reasonable condition the solution is non-explosive. Moreover, Harnack inequal-
ities are derived for the associated semigroup under certain global conditions, which is
new even in the case without delay.
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1 Introduction

Recently, using Zvonkin type transformation and gradient estimate, Wang [11] has proved
the existence and uniqueness of the mild solution for a class of SPDEs with multiplicative
noise and a locally Dini continuous drift. Following this, Wang and Huang [5] extend the
results to a class of functional SPDEs, where the drift without delay is assumed to be
Dini continuous, and the delayed drift is Lipschitzian in some square integrable space. In
this paper, we try to investigate the existence, uniqueness and non-explosion for functional
equations in which the drift without delay is assumed to be Dini continuous and the drift
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with delay is Lipschitzian w.r.t. some uniform norm (finite delay) or weighted uniform norm
(infinite delay). Moreover, Harnack inequalities are also established in the case of finite
delay.

Let (H, 〈, 〉, | · |) and
(
H̄, 〈, 〉H̄, | · |H̄

)
be two separable Hilbert spaces. Let L

(
H̄;H

)
(LHS

(
H̄;H

)
) be the space of bounded linear operators (Hilbert-Schmidt operators) from

H̄ to H with operator norm ‖ · ‖ (Hilbert-Schmidt norm ‖ · ‖HS). For any r ∈ [0,∞], let

C =

{
ξ
∣∣∣ ξ ∈ C(−∞, 0] ∩ [−r, 0];H), ‖ξ‖∞ := sup

s∈(−∞,0]∩[−r,0]

(es1r=∞ + 1r<∞)|ξ(s)| <∞

}
.

For any f ∈ C((−∞,∞) ∩ [−r,∞);H), t ≥ 0, let ft(s) = f(t + s), s ∈ (−∞, 0] ∩ [−r, 0].
Then ft ∈ C . {ft}t≥0 is called the segment process of f .

Let W = (W (t))t≥0 be a cylindrical Brownian motion on H̄ with respect to a complete
filtered probability space (Ω,F , {Ft}t≥0,P). More precisely, W (·) =

∑∞
n=1 W̄

n(·)ēn for
a sequence of independent one dimensional standard Brownian motions

{
W̄ n(·)

}
n≥1

with

respect to (Ω,F , {Ft}t≥0,P), where {ēn}n≥1 is an orthonormal basis on H̄.
Consider the following functional SPDE on H:

(1.1) dX(t) = AX(t)dt+ b(t,X(t))dt+B(t,Xt)dt+Q(t,X(t))dW (t), X0 = ξ ∈ C ,

where (A,D(A)) is a negative definite self-adjoint operator on H, B : [0,∞)× C → H and
b : [0,∞) × H → H are measurable and locally bounded (i.e. bounded on bounded sets),
and Q : [0,∞) × H → L

(
H̄;H

)
is measurable. Let A,B and Q satisfy the following two

assumptions:

(a1) (−A)ε−1 is of trace class for some ε ∈ (0, 1); i.e.
∑∞

n=1 λ
ε−1
n < ∞ for 0 < λ1 ≤ λ2 ≤

· · · being all eigenvalues of −A counting multiplicities. The eigenbasis of −A on H
corresponding to the eigenvalues {λi}∞i=1 is {ei}∞i=1.

(a2) (i) Q ∈ C([0,∞) × H; L (H̄;H)) and for every t ≥ 0, Q(t, ·) ∈ C2(H; L (H̄;H)).
(QQ∗)(t, x) is invertible for all (t, x) ∈ [0,∞)×H. Moreover,

2∑
j=0

∥∥[∇jQ(t, ·)](x)
∥∥+

∥∥(QQ∗)−1(t, x)
∥∥

is locally bounded in (t, x) ∈ [0,∞)×H. Furthermore, for any (t, x) ∈ [0,∞)×H,

(1.2) lim
n→∞

‖Q(t, x)−Q(t, πnx)‖2
HS := lim

n→∞

∑
k≥1

|[Q(t, x)−Q(t, πnx)]ēk|2 = 0,

where πn is the orthogonal projection map from H to Hn := span{e1, · · · , en}.
(ii) B ∈ C([0,∞)×C ;H), and there exists an increasing function CB : [0,∞)→ [0,∞)
such that for any n ≥ 1,

|B(t, ξ)−B(t, η)| ≤ CB(n)‖ξ − η‖∞, t ∈ [0, n], ξ, η ∈ C , ‖ξ‖∞ ∨ ‖η‖∞ ≤ n.
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To describe the singularity of b, we introduce

D =
{
φ : [0,∞)→ [0,∞) is increasing, φ2 is concave,

∫ 1

0

φ(s)

s
ds <∞

}
.

(a4) For any n ≥ 1, there exits φn ∈ D such that

(1.3) |b(t, x)− b(t, y)| ≤ φn(|x− y|), t ∈ [0, n], x, y ∈ H, |x| ∨ |y| ≤ n.

Remark 1.1. The condition
∫ 1

0
φ(s)
s

ds <∞ is well known as the Dini condition, due to the
notion of Dini continuity. One can check that the class D contains φ(s) := K

log1+δ(c+s−1)
for

constants K, δ > 0 and large enough c ≥ e such that φ2 is concave.

When r = 0, (a1)-(a3) imply the existence and uniqueness of the mild solution to (1.1)
by [11, Theorem 1.1 (1)]. However, when r > 0, due to some technical reasons (see Remark
3.2 for more details), extra condition on the singular drift besides (a1)-(a3) is needed to
obtain the pathwise uniqueness. Precisely,

(a4) For any n ≥ 1, there exits an ∈ AA such that

(1.4) sup
t∈[0,n],x∈H,|x|≤n

|an(−A)b(t, x)| <∞,

where

AA =

{
a ∈ B((0,∞); (0,∞)),

∫ 1

0

sup
i≥1

λie
−λis

a(λi)
ds <∞

}
with B((0,∞); (0,∞)) denoting all the Borel-measurable functions from (0,∞) to
(0,∞).

By (a3) and (a4), we mean that when t, |x| ≤ n, b(t, x) takes value in a smaller space Han

instead of H, but it is still locally Dini continuous from H to H.

Remark 1.2. We note that the values {a(λi)}∞i=1 determine the integration in the definition
of AA, and this means that AA depends on A. However, AA contains a subset which is
independent of A. Indeed, by the definition of AA, if {a(λi)}∞i=1 has a bounded subsequence
{a(λik)}k≥1, then there exists a constant c > 0 such that∫ 1

0

sup
i≥1

λie
−λis

a(λi)
ds ≥

∫ 1

0

supk≥1 λike
−λiks

supk≥1 a(λik)
ds ≥ c

supk≥1 a(λik)

∫ 1

0

1

s
ds =∞.

This means limi→∞ a(λi) = ∞ for any a ∈ AA. So we can impose some monotonicity
conditions on a, and introduce the following A ′ ⊂ AA, containing enough functions as well,
in which the condition is much easier to check than that in AA. Letting

A ′ =

{
a ∈ B((0,∞); (0,∞)), a and

x

a(x)
are non-decreasing,

∫ ∞
1

1

sa(s)
ds <∞

}
,

we claim A ′ ⊂ AA.
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Proof. For any a ∈ A ′, s ∈ (0, 1), we have

sup
x≥ 1

s

x

a(x)
e−xs ≤ sup

x≥ 1
s

x

a(1
s
)
e−xs ≤

1
s

a(1
s
)
e−1 ≤

1
s

a(1
s
)
.

On the other hand,

sup
1∧λ1≤x< 1

s

x

a(x)
e−xs ≤ sup

1∧λ1≤x< 1
s

x

a(x)
≤

1
s

a(1
s
)
.

So ∫ 1

0

sup
i≥1

λie
−λis

a(λi)
ds ≤

∫ 1

0

sup
x∈[1∧λ1,∞)

x

a(x)
e−xsds ≤

∫ 1

0

1
s

a(1
s
)
ds =

∫ ∞
1

1

sa(s)
ds <∞.

This means a ∈ AA, i.e. A ′ ⊂ AA.

Finally, we give some functions which belong to AA.

(1) a(x) := xδ for any δ ∈ (0, 1];

(2) a(x) := log1+δ(c+ x) for δ > 0 and c ≥ e1+δ;

(3) a(x) = xδ(sinx+ 2), δ ∈ (0, 1].

(1) and (2) are in A ′. As to (3), we only need to notice the fact that if a1 ∈ AA, then
a ∈ B((0,∞); (0,∞)) satisfying a(x) ≥ a1(x), x ≥ R0 for some constant R0 > 0 is also in
AA. It is clear that a(x) ≥ xδ, and (1) implies that a ∈ AA.

For simplicity, let A1 = AA ∪ {a : a ≡ 1}. For any a ∈ A1, let Ha = {x ∈ H, |a(−A)x| <
∞} equipped the norm ‖x‖a := |a(−A)x|, x ∈ Ha. Then (Ha, ‖ · ‖a) is a Banach space and
H1 = H.

In general, the mild solution (if exists) to (1.1) can be explosive, so we consider mild
solutions with life time.

Definition 1.1. A continuous H-valued process (X(t))t∈[−r,ζ)∩(−∞,ζ) is called a mild solution
to (1.1) with life time ζ, if the segment process Xt is Ft-measurable, ζ > 0 is a stopping
time such that P-a.s lim supt↑ζ |X(t)| =∞ holds on {ζ <∞}, and P-a.s

X(t) = eA(t∨0)X(t ∧ 0) +

∫ t∨0

0

eA(t−s)(b(s,X(s)) +B(s,Xs))ds

+

∫ t∨0

0

eA(t−s)Q(s,X(s))dW (s), t ∈ [−r, ζ) ∩ (−∞, ζ).

The following lemma is a crucial tool in the proof of our results, see [2, Proposition 7.9].
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Lemma 1.1. Let {S(t)}t≥0 be a C0-contractive semigroup on H. Assume there exist α ∈(
0, 1

2

)
and s > 0 such that

(1.5)

∫ s

0

t−2α‖S(t)‖2
HSdt <∞.

Then for every q ∈
(
1, 1

2α

)
, T > 0, there exists cq > 0 such that for any L

(
H̄;H

)
-valued

predictable process Φ, there exists a continuous version of
∫ ·

0
S(· − s)Φ(s)dW (s) such that

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

S(t− s)Φ(s)dW (s)

∣∣∣∣2q
]
≤ cq

[∫ T

0

t−2α‖S(t)‖2
HSdt

]q
× E

[∫ T

0

‖Φ(t)‖2qdt

]
.

(1.6)

Remark 1.4 (a1) implies that (1.5) holds for α = ε
2
:∫ s

0

t−2α‖S(t)‖2
HSdt =

∞∑
i=1

∫ s

0

t−2αe−2λitdt

≤
∞∑
i=1

λ2α−1
i

∫ ∞
0

u−2αe−2udu <∞.

2 Main results

Via Yamada-Watanabe principle and Zvonkin type transformation, we obtain the first main
result on existence, uniqueness and non-explosion of the mild solution.

Theorem 2.1. Assume (a1)-(a4).

(1) The equation (1.1) has a unique mild solution (X(t))t∈[−r,ζ)∩(−∞,ζ) with life time ζ.

(2) Let ‖Q(t)‖∞ := supx∈H ‖Q(t, x)‖ be locally bounded in t ≥ 0. If there exist two pos-
itive functions Φ, h : [0,∞) × [0,∞) → (0,∞) increasing in each variable such that∫∞

1
ds

Φt(s)
=∞ for any t ≥ 0 and

(2.1) 〈B(t, ξ + η) + b(t, (ξ + η)(0)), ξ(0)〉 ≤ Φt

(
‖ξ‖2

∞
)

+ ht(‖η‖∞), ξ, η ∈ C , t ≥ 0,

then the mild solution is non-explosive.

To apply Zvonkin type transformation, we in fact need some global conditions. However,
Theorem 2.1 can be proved by localization. For simplicity, we introduce some notations
firstly. For any a ∈ A1 and Ha-valued function f on [0, T ]×H, let

‖f‖T,∞,a = sup
t∈[0,T ],x∈H

|a(−A)f(t, x)|.
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Similarly, for a L (H,Ha)-valued or Ha-valued function f on [0, T ]×H, let

‖f‖T,∞,a = sup
t∈[0,T ],x∈H

‖a(−A)f(t, x)‖.

If a = 1, we write ‖ · ‖T,∞,a as ‖ · ‖T,∞. Moreover, for any H-valued map f on [0, T ]× C , let

‖f‖T,∞ = sup
t∈[0,T ],ξ∈C

|f(t, ξ)|.

Then we introduce that

(a2
′
) (i’) Q satisfies (a2) (i), and there exists a positive increasing function CQ : [0,∞) →

(0,∞) such that

2∑
j=0

∥∥∇jQ
∥∥
T,∞ +

∥∥(QQ∗)−1
∥∥
T,∞ < CQ(T ), T ≥ 0.

(ii’) For any t ≥ 0, ‖B‖t,∞ < ∞. B satisfies (a2) (ii), and there exists an increasing
function C

′
B : [0,∞)→ [0,∞) such that for any n ≥ 1,

|B(t, ξ)−B(t, η)| ≤ C
′

B(n)‖ξ − η‖∞, t ∈ [0, n], ξ, η ∈ C .

(a3
′
) For any T > 0, there exists φ ∈ D such that

(2.2) |b(t, x)− b(t, y)| ≤ φ(|x− y|), t ∈ [0, T ], x, y ∈ H.

(a4
′
) For any T > 0, there exists a ∈ AA such that

(2.3) ‖b‖T,∞,a <∞.

According to Theorem 2.1, under (a1), (a2
′
)-(a4

′
), the unique mild solution Xξ

t of (1.1)
is non-explosive. The associated Markov semigroup Pt of Xξ

t is defined as

Ptf(ξ) = Ef(Xξ
t ), f ∈ Bb(C ), t ≥ 0, ξ ∈ C ,

where Bb(C ) is the set of all bounded measurable functions on C . The next main result is
about Harnack inequalities. Here, we only study Harnack inequalities in the case of r <∞.
In fact, Harnack inequalities do not hold generally if r = ∞, see Remark 2.1 for details.
On the other hand, according to [13, Theorem 1.4.1], the log-Harnack inequality implies the
strong Feller property, while for T ≤ r, we have XT (s) = X(T + s) = ξ(T + s), s ∈ [−r,−T ]
which is deterministic. Thus PT is strong Feller only if T > r. So the restriction on r <∞
is essential for the study.

To obtain Harnack inequalities, we need the following stronger conditions (a3
′′
) and (a4

′′
)

instead of (a3
′
) and (a4

′
) to ensure (5.33) in Lemma 5.3:
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(a3
′′
) For any T > 0, there exists φ ∈ D such that

(2.4)
∣∣∣(−A)

1−ε
2 [b(t, x)− b(t, y)]

∣∣∣ ≤ φ(|x− y|), t ∈ [0, T ], x, y ∈ H,

where ε is in (a1).

(a4
′′
) For any T > 0,

(2.5)
∥∥∥(−A)

1
2 b
∥∥∥
T,∞

<∞.

Then we have

Theorem 2.2. Assume (a1), (a2
′
), (a3

′′
) and (a4

′′
). If for any T > 0, there exists a

constant C(T ) > 0 such that

(2.6) ‖Q(t, x)−Q(t, y)‖2
HS ≤ C(T )|x− y|2, t ∈ [0, T ], x, y ∈ H.

Then for every T > r and positive function f ∈ Bb(C ),

(1) the log-Harnack inequality holds, i.e.

(2.7) PT log f(η) ≤ logPTf(ξ) +H(T, ξ, η), ξ, η ∈ C

with

H(T, ξ, η) = C

(
|ξ(0)− η(0)|2

T − r
+ ‖ξ − η‖2

∞

)
for some constant C > 0.

(2) There exists K > 0 such that for any p > (1 +K)2, the Harnack inequality with power

(2.8) PTf(η) ≤ (PTf
p(ξ))

1
p exp Ψp(T ; ξ, η), ξ, η ∈ C

holds, where

Ψp(T ; ξ, η) = C(p)

{
1 +
|ξ(0)− η(0)|2

T − r
+ ‖ξ − η‖2

∞

}
for a decreasing function C : ((1 +K)2,∞)→ (0,∞).

Remark 2.1. If r =∞, the Harnack inequality does not hold for Pt for any t > 0. In fact,
fix x0 ∈ H, t > 0, and let g(x) = 1{x0}(x), x ∈ H. Then

ft(η) := g(η(−t)), η ∈ C

is in Bb(C ), but Ptft(ξ) = Eft(Xξ
t ) = g(ξ(0)). It is clear that the Harnack inequality does

not hold for ft.

The remainder of the paper is organized as follows: in Section 3, we prove the pathwise
uniqueness; in Section 4, combining Section 3 with a truncating argument, we prove Theorem
2.1; in Section 5, we investigate Harnack inequalities for the semigroup by finite-dimensional
approximations; in Section 6, we give [13, Theorem 4.3.1 and Theorem 4.3.2] in detail.
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3 Pathwise uniqueness

In this section, we transform (1.1) to a regular equation and then investigate its pathwise
uniqueness, which is equivalent to that of (1.1). We start from the following SPDE

(3.1) dZx
s,t = AZx

s,tdt+Q(t, Zx
s,t)dW (t), Zx

s,s = x, t ≥ s ≥ 0.

Under (a1) and (a2
′
) with B = 0, (3.1) has a unique mild solution {Zx

s,t}t≥s. Let P 0
s,t be the

associated Markov semigroup.
We first consider modified gradient estimates for P 0

s,t, which will be used to study the
regularity of the solution to the equation (3.6). Before moving on, we shall recall two
gradient estimates for P 0

s,tf with any bounded Borel measurable function f on H. For η,
x ∈ H, 0 ≤ s < t ≤ T , there are, see [11, (2.12),(2.16)],

(3.2)
∣∣∇P 0

s,tf(x)
∣∣2 ≤ c

t− s
P 0
s,t|f |2(x), ‖∇2P 0

s,tf(x)‖2 ≤ c

(t− s)2
P 0
s,t|f |2(x).

Next, for f ∈ Bb(H,H), by (3.2),

P 0
s,tf(x) :=

∞∑
i=1

(
P 0
s,t〈f, ei〉(x)

)
ei, ∇ηP

0
s,tf(x) :=

∞∑
i=1

(
∇ηP

0
s,t〈f, ei〉(x)

)
ei

are well defined. Then, for any a ∈ A1 and f ∈ Bb(H,Ha), it holds that

∞∑
i=1

a(λi)
2
(
∇ηP

0
s,t〈f, ei〉(x)

)2
=
∞∑
i=1

(
∇ηP

0
s,t〈a(−A)f, ei〉(x)

)2

≤ c

t− s
P 0
s,t|a(−A)f |2(x)|η|2 <∞.

Thus ∇ηP
0
s,tf(x) belongs to the domain of a(−A) and

a(−A)∇ηP
0
s,tf(x) =

∞∑
i=1

a(λi)∇ηP
0
s,t〈f, ei〉(x)ei

=
∞∑
i=1

∇ηP
0
s,t〈a(−A)f, ei〉(x)ei

= ∇ηP
0
s,t(a(−A)f)(x).

We can define ∇2Ps,tf(x) in a similar way. Then (3.2) and the similar argument as above
imply that

(3.3) a(−A)∇η′∇ηP
0
s,tf(x) = ∇η′∇ηP

0
s,t(a(−A)f)(x).

In a word,

(3.4) a(−A)∇kP 0
s,tf = ∇kP 0

s,t(a(−A)f), f ∈ Bb(H,Ha), 0 ≤ s < t ≤ T, k = 0, 1, 2.
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Next, as in [11], to obtain the pathwise uniqueness of (1.1), formally, we need to study a
parabolic equation with terminal condition:

(3.5) ∂tu(·, x)(t) = −Ltu(t, ·)(x)− b(t, x) + λu(t, x), u(T, x) = 0, t ∈ [0, T ],

where

Lt =
1

2

∑
i,j

〈Q(t, ·)Q∗(t, ·)ei, ej〉∇ei∇ej +∇A· +∇b(t,·).

The precise meaning of (3.5) is the following integral equation, which will be solved by the
fixed-point theorem on a suitable Banach space which depends on the function a.

(3.6) u(s, x) =

∫ T

s

e−λ(t−s)P 0
s,t(∇b(t,·)u(t, ·) + b(t, ·))(x)dt, s ∈ [0, T ].

The following Lemma 3.1 is a modified version of [11, Lemma 2.3]. Set

θ(t, x) = x+ u(t, x).

Formally, taking (3.5) into account, ∂tθ(·, x)(t) = Ax−Ltθ(t, ·)(x) with θ(T, x) = x. Formally
again, Itô’s formula implies that

dθ(t,X(t)) = Aθ(t,X(t))dt+ (λ− A)u(t,X(t))dt

+∇θ(t, ·)(X(t)) {Q(t,X(t))dW (t) +B(t,Xt)dt} ,(3.7)

which is similar to [11, (2.1)] without singular term. Thus we can also obtain a regular
representation of (1.1) in the following Lemma 3.2, which is the precise meaning of the
equation (3.7).

Lemma 3.1. Assume (a1), (a2
′
) with B = 0, and (2.3) with a ∈ A1. Let T > 0 be fixed.

Then there exists a constant λ(T ) > 0 such that the following assertions hold.

(1) For any λ ≥ λ(T ), the equation (3.6) has a unique solution u ∈ C([0, T ];C1
b (H;Ha))

satisfying

(3.8) lim
λ→∞
‖u‖T,∞,a + ‖∇u‖T,∞,a = 0.

(2) If moreover (2.2) holds, then we have

(3.9) lim
λ→∞

∥∥∇2u
∥∥
T,∞ = 0.

Proof. (1) Let H = C([0, T ];C1
b (H;Ha)), which is a Banach space under the norm

‖u‖H : = ‖u‖T,∞,a + ‖∇u‖T,∞,a
= sup

t∈[0,T ],x∈H
|a(−A)u(t, x)|+ sup

t∈[0,T ],x∈H
‖a(−A)∇u(t, x)‖, u ∈H .
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For any u ∈H , define

(Γu)(s, x) =

∫ T

s

e−λ(t−s)P 0
s,t(∇b(t,·)u(t, ·) + b(t, ·))(x)dt, s ∈ [0, T ].

Then we have ΓH ⊂H . In fact, for any u ∈H , by (a2
′
), (2.3), (3.4), it holds that

‖Γu‖T,∞,a = sup
s∈[0,T ],x∈H

∣∣∣∣∫ T

s

e−λ(t−s)P 0
s,t(a(−A)∇b(t,·)u(t, ·) + a(−A)b(t, ·))(x)dt

∣∣∣∣
≤ sup

s∈[0,T ]

∫ T

s

e−λ(t−s)(‖b‖T,∞‖∇u‖T,∞,a + ‖b‖T,∞,a)dt

≤ (‖b‖T,∞‖∇u‖T,∞,a + ‖b‖T,∞,a)
∫ T

0

e−λtdt

≤ ‖b‖T,∞‖∇u‖T,∞,a + ‖b‖T,∞,a
λ

<∞.

Again by (a2
′
), (2.3) and (3.4), we have

‖∇Γu‖T,∞,a = sup
s∈[0,T ],x∈H,|η|≤1

∥∥∥∥∫ T

s

e−λ(t−s)∇ηP
0
s,t(a(−A)∇b(t,·)u(t, ·) + a(−A)b(t, ·))(x)dt

∥∥∥∥
≤ C sup

s∈[0,T ]

∫ T

s

e−λ(t−s)
√
t− s

(‖b‖T,∞‖∇u‖T,∞,a + ‖b‖T,∞,a)dt

≤ C(‖b‖T,∞‖∇u‖T,∞,a + ‖b‖T,∞,a)
∫ T

0

e−λt√
t

dt

≤ C
‖b‖T,∞‖∇u‖T,∞,a + ‖b‖T,∞,a√

λ
<∞.

So, ΓH ⊂ H . Next, by the fixed-point theorem, it suffices to show that for large enough
λ > 0, Γ is contractive on H . To do this, for any u, ũ ∈ H , similarly to the estimates of
‖Γu‖ and ‖∇Γu‖, we obtain that

‖Γu− Γũ‖T,∞,a ≤
‖b‖T,∞
λ
‖∇u−∇ũ‖T,∞,a,

‖∇(Γu− Γũ)‖T,∞,a ≤ C
‖b‖T,∞√

λ
‖∇u−∇ũ‖T,∞,a.

(3.10)

So we can find λ(T ) > 0 such that Γ is contractive on H with λ > λ(T ), by fixed-point
theorem, (3.6) has a unique solution u ∈ C([0, T ];C1

b (H;Ha)). Finally, substituting Γu = u
into (3.10) and letting ũ=0, we obtain (3.8).

(2) This is a known result in [11, Lemma 2.3 (2)].

Remark 3.1. Under the assumptions of Lemma 3.1 and a strengthened version of (2.2):

|a(−A)(b(t, x)− b(t, y))| ≤ φ(|x− y|), t ∈ [0, T ], x, y ∈ H,
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we can obtain that
lim
λ→∞

∥∥∇2(a(−A)u)
∥∥
T,∞ = 0,

see the proof of Lemma 5.2 with a(x) = x
1−ε
2 , x > 0. However, (3.9) is enough for the

pathwise uniqueness of (1.1).

Lemma 3.2. Assume (a1), (a2
′
), (a3

′
) and ‖b‖T,∞ < ∞ for any T ≥ 0. Then for any

T > 0, there exists a constant λ(T ) > 0 such that for any stopping time τ , any adapted
continuous C -valued process (Xt)t∈[0,T∧τ ] with P-a.s.

X(t) = eAtX(0) +

∫ t

0

eA(t−s)(b(s,X(s)) +B(s,Xs))ds

+

∫ t

0

eA(t−s)Q(s,X(s))dW (s), t ∈ [0, τ ∧ T ],

and any λ ≥ λ(T ), there holds

X(t) = eAt[X(0) + u(0, X(0))]− u(t,X(t))

+

∫ t

0

(λ− A)eA(t−s)u(s,X(s))ds

+

∫ t

0

eA(t−s)[I +∇u(s,X(s))]B(s,Xs)ds

+

∫ t

0

eA(t−s)[I +∇u(s,X(s))]Q(s,X(s))dW (s), t ∈ [0, τ ∧ T ],

(3.11)

where u solves (3.6), and ∇u(s, z)v := [∇vu(s, ·)](z) for v, z ∈ H.

Proof. Since ‖B‖t,∞ < ∞ for any t ≥ 0, the claim of this lemma can be obtained just
repeating the proof of [11, Proposition 2.5]. To save space, we omit the detail here.

Now, we present a complete proof of the pathwise uniqueness to (1.1).

Proposition 3.3. Assume (a1) and (a2
′
)-(a4

′
). Let {Xt}t≥0, {Yt}t≥0 be two adapted con-

tinuous C -valued processes with X0 = Y0 = ξ ∈ C . For any n ≥ 1, let

τXn = n ∧ inf{t ≥ 0 : |X(t)| ≥ n}, τYn = n ∧ inf{t ≥ 0 : |Y (t)| ≥ n}.

If P -a.s. for all t ∈ [0, τXn ∧ τYn ], there holds :

X(t) = eAtξ(0) +

∫ t

0

eA(t−s)(b(s,X(s)) +B(s,Xs))ds+

∫ t

0

eA(t−s)Q(s,X(s))dW (s),

Y (t) = eAtξ(0) +

∫ t

0

eA(t−s)(b(s, Y (s)) +B(s, Ys))ds+

∫ t

0

eA(t−s)Q(s, Y (s))dW (s),

then P-a.s. X(t) = Y (t), for all t ∈
[
0, τXn ∧ τYn

]
. In particular, P-a.s. τXn = τYn .

11



Proof. For any n ≥ 1, let τn = τXn ∧ τYn . Then it suffices to prove that for any T > 0,

E sup
s∈[0,T ]

|X(s ∧ τn)− Y (s ∧ τn)|2p = 0(3.12)

holds for some p ∈ (1, 1
ε
). In what follows, we fix T > 0 and p ∈ (1, 1

ε
). Take λ large enough

such that assertions in Lemma 3.1 and Lemma 3.2 hold, and

(3.13)
54p−1

22p+1

(
‖∇u‖T,∞,a

∫ T

0

‖(−A)[a(−A)]−1eAs‖ds
)2p

+ ‖∇u‖T,∞ ≤
1

5
.

By (3.11) for τ = τn, we have P-a.s. for any t ∈ [0, τn ∧ T ],

[X(t) + u(t,X(t))]− [Y (t) + u(t, Y (t))]

=

∫ t

0

(λ− A)eA(t−s)[u(s,X(s))− u(s, Y (s))]ds

+

∫ t

0

eA(t−s){[I +∇u(s,X(s))]B(s,Xs)− [I +∇u(s, Y (s))]B(s, Ys)}ds

+

∫ t

0

eA(t−s){[I +∇u(s,X(s))]Q(s,X(s))− [I +∇u(s, Y (s))]Q(s, Y (s))}dW (s).

(3.14)

Then (3.13) yields that

E sup
t∈[0,q]

|X(t ∧ τn)− Y (t ∧ τn)|2p

≤ 54p−1

42p
E sup
t∈[0,q]

∣∣∣∣∫ t∧τn

0

(λ− A)eA(t−s)[u(s,X(s))− u(s, Y (s))]ds

∣∣∣∣2p
+

54p−1

42p
E sup
t∈[0,q]

∣∣∣∣∫ t∧τn

0

eA(t−s)[I +∇u(s,X(s))][B(s,Xs)−B(s, Ys)]ds

∣∣∣∣2p
+

54p−1

42p
E sup
t∈[0,q]

∣∣∣∣∫ t∧τn

0

eA(t−s)[∇u(s,X(s))−∇u(s, Y (s))]B(s, Ys)ds

∣∣∣∣2p
+

54p−1

42p
E sup
t∈[0,q]

∣∣∣∣∫ t∧τn

0

eA(t−s)[∇u(s,X(s))−∇u(s, Y (s))]Q(s,X(s))dW (s)

∣∣∣∣2p
+

54p−1

42p
E sup
t∈[0,q]

∣∣∣∣∫ t∧τn

0

eA(t−s)(I +∇u(s, Y (s)))[Q(s,X(s))−Q(s, Y (s))]dW (s)

∣∣∣∣2p
=: I1 + I2 + I3 + I4 + I5, q ∈ [0, T ].

(3.15)

First of all, let
ηq = E sup

t∈[0,q]

|X(t ∧ τn)− Y (t ∧ τn)|2p.

Then, by (3.13), there exists a constant C(p, λ, T ) > 0 such that

I1 − C(p, λ, T )

∫ q

0

ηs

12



≤ 54p−1

22p+1
E sup
t∈[0,q]

[∫ t∧τn

0

∫ 1

0

|Ae(t−s)A [∇∆su(s, ·)] (X(s) + v∆s)|dvds

]2p

≤

[
54p−1

22p+1

(
‖a(−A)∇u‖T,∞

∫ T

0

‖(−A)[a(−A)]−1eAs‖ds
)2p
]
ηq(3.16)

≤ 1

5
ηq,

where ∆s = X(s)− Y (s).
Secondly, since A is negative definite, by (3.9), (a2

′
), X0 = Y0 and Hölder inequality, it

holds that

I2 ≤ CE
∫ q∧τn

0

|B(s,Xs)−B(s, Ys)|2pds

≤ C1E
∫ q

0

sup
t∈[0,s]

|X(t ∧ τn)− Y (t ∧ τn)|2pds

≤ C1

∫ q

0

ηsds

(3.17)

for a constant C1 > 0. Similarly, combing (3.9) and ‖B‖T,∞ <∞, we obtain

(3.18) I3 ≤ C2

∫ q

0

ηsds

for a constant C2 > 0.
Finally, in view of (a2

′
), Remark 1.4 and p ∈ (1, 1

ε
), Lemma 1.1 implies that

I4 + I5 ≤ C3E
∫ q∧τn

0

|X(s)− Y (s)|2pds = C3

∫ q

0

ηsds,(3.19)

for a constant C3 > 0. Combining (3.15)-(3.19), there exits a constant C0 such that

ηl ≤
1

5
ηl + C0

∫ l

0

ηqdq, l ∈ [0, T ].

By Gronwall’s inequality, we obtain ηT = 0, i.e. (3.12) holds.

Remark 3.2. The above result for the case without delay has been proved in [11, Proposition
3.1] under (a1), (a2

′
), (a3

′
) and the condition ‖b‖T,∞ < ∞ for any T ≥ 0. Now we

explain the reason why (a4
′
) is needed in the present case. Noticing that the Itô’s formula

is unavailable in the infinite dimension case, and the last term in (3.11) called stochastic
convolution is not a local martingale, we can not apply the stochastic Gronwall Lemma [9,
Lemma 5.2] which is an important tool in proving the pathwise uniqueness of functional SDEs
in the finite dimension case. Moreover, since the drift term B is Lipschitz in C , in the proof
of Proposition 3.3, we need to take supremum instead of integration as in [11, Proposition
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3.1] and then obtain (3.15). Though we can also integrate both sides of (3.15) on [0, T ] as
[11, Proposition 3.1] does, in general,

E
∫ T

0

sup
t∈[0,q]

∣∣∣∣∫ t∧τn

0

(λ− A)eA(t−s)[u(s,X(s))− u(s, Y (s))]ds

∣∣∣∣2p dt

≥ E sup
q∈[0,T ]

∫ q

0

∣∣∣∣∫ t∧τn

0

(λ− A)eA(t−s)[u(s,X(s))− u(s, Y (s))]ds

∣∣∣∣2p dt.

So, it is not available to treat I1 in (3.15) as in [11, Proposition 3.1] by Fubini Theorem.
Noticing that

∫ t
0
‖eA(t−s)(−A)‖ds = ∞, if u(s, ·) is Lipschitz continuous uniformlly in s ∈

[0, T ] from H to some smaller space Ha with a ∈ AA, then by the definition of AA, I1 can be
treated as in (3.16). Furthermore, by Lemma 3.1 (1), (a1), (a2

′
) and (a4

′
) can also ensure

‖a(−A)∇u‖T,∞ < ∞. For more details, see the proof of the above Proposition 3.3. In fact,
the above trick is used to prove the pathwise uniqueness of the neutral functional SPDE, see
[3], where the condition [3, (H3)] is something like ‖a(−A)∇u‖T,∞ <∞ with a(x) = xδ for
some δ > 0.

4 Proof of Theorem 2.1

Proof of Theorem 2.1. (a) We first assume that (a1) and (a2
′
)-(a4

′
) hold. Consider the

following SPDE on H:

dZξ(t) = AZξ(t)dt+Q(t, Zξ(t))dW (t), Zξ(0) = ξ(0).

By (a1) and (a2
′
), the above equation has a uniqueness non-explosive mild solution:

Zξ(t) = eAtξ(0) +

∫ t

0

eA(t−s)Q(s, Zξ(s))dW (s), t ≥ 0.

Letting Zξ
0 = ξ (i.e. Zξ(θ) = ξ(θ) for θ ∈ [−r, 0] ∩ (−∞, 0)), and taking

W ξ(t) = W (t)−
∫ t

0

ψ(s)ds,

ψ(s) =
{
Q∗(QQ∗)−1

}
(s, Zξ(s))

{
b(s, Zξ(s)) +B(s, Zξ

s )
}
, s, t ∈ [0, T ],

we have

Zξ(t) = eAtξ(0) +

∫ t

0

eA(t−s)B(s, Zξ
s )ds

+

∫ t

0

eA(t−s)b(s, Zξ(s))ds+

∫ t

0

eA(t−s)Q(s, Zξ(s))dW ξ(s), t ∈ [0, T ].

Since ‖B‖T,∞ + ‖b‖T,∞ < ∞, Girsanov theorem implies that {W ξ(t)}t∈[0,T ] is a cylindrical
Brownian motion on H̄ under probability dQξ = RξdP, where

Rξ := exp

[∫ T

0

〈
ψ(s), dW (s)

〉
H̄ −

1

2

∫ T

0

∣∣ψ(s)
∣∣2
H̄ds

]
.

14



Then, under the probability Qξ, (Zξ(t),W ξ(t))t∈[0,T ] is a weak mild solution to (1.1). On
the other hand, by Proposition 3.3, the pathwise uniqueness holds for the mild solution to
(1.1). So, by the Yamada-Watanabe principle, the equation (1.1) has a unique mild solution.
Moreover, in this case the solution is non-explosive.

(b) In general, take ψ ∈ C∞b ([0,∞)) such that 0 ≤ ψ ≤ 1, ψ(v) = 1 for v ∈ [0, 1] and
ψ(v) = 0 for v ∈ [2,∞). For any m ≥ 1, let

b[m](t, z) = b(t ∧m, z)ψ(|z|/m), (t, z) ∈ [0,∞)×H,
B[m](t, ξ) = B(t ∧m, ξ)ψ(‖ξ‖∞/m), (t, ξ) ∈ [0,∞)× C ,

Q[m](t, z) = Q(t ∧m, z)ψ(|z|/m)), (t, z) ∈ [0,∞)×H.

By (a3)-(a4) and the local boundedness of B, we know B[m], Q[m] and b[m] satisfy (a2
′
) −

(a4
′
). Then by (a), (1.1) for B[m], Q[m] and b[m] in place of B, Q, b has a unique mild solution

X [m](t) starting at X0 which is non-explosive. Let

ζ0 = 0, ζm = m ∧ inf{t ≥ 0 : |X [m](t)| ≥ m}, m ≥ 1.

Then, since B[m](s, ξ) = B(s, ξ), Q[m](s, ξ(0)) = Q(s, ξ(0)) and b[m](s, ξ(0)) = b(s, ξ(0))
hold for s ≤ m and ‖ξ‖∞ ≤ m with any m ≥ 1, we can obtain that for any n, m ≥ 1,
X [m](t) = X [n](t) for t ∈ [0, ζm ∧ ζn] by Proposition 3.3. In particular, ζm is increasing in m.
Let ζ = limm→∞ ζm and

X(t) =
∞∑
m=1

1[ζm−1,ζm)X
[m](t), t ∈ [0, ζ).

Then X(t)t∈[0,ζ) is a mild solution to (1.1) with life time ζ and, due to Proposition 3.3, the
mild solution is unique. So we prove Theorem 2.1 (1).

(c) Next, we prove the non-explosion.
Let Φ, h satisfy (2.1), and let {X(t)}t∈[0,ζ) be the mild solution to (1.1) with lifetime ζ.

Set M(t) =
∫ t

0
eA(t−s)Q(s,X(s))dW (s), t ∈ [0, ζ) and M(t) = 0, t ∈ [−r, 0]∩ (−∞, 0). Then,

taking into account that ‖Q‖t,∞ is locally bounded in t, Y (t) := X(t) −M(t) is the mild
solution to the following equation up to ζ,

dY (t) = (AY (t) + b(t, Y (t) +M(t)) +B(t, Yt +Mt))dt, Y0 = X0.

Hence, (2.1) implies that for any T > 0,

d|Y (t)|2 ≤ 2〈Y (t), b(t, Y (t) +M(t)) +B(t, Yt +Mt))〉dt
≤ 2

(
Φζ∧T (‖Yt‖2

∞) + hζ∧T (‖Mt‖∞)
)

dt.
(4.1)

Let

(4.2) ΨT (s) =

∫ s

1

dv

2Φζ∧T (v)
, αT = 2‖X0‖2

∞ + 2

∫ ζ∧T

0

hζ∧T (‖Ms‖∞))ds.
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Since
||Yq||2∞ ≤ sup

t∈[0,q]

|Y (t)|2 + ||Y0||2∞,

it follows from (4.1) that

||Yq||2∞ ≤ ||X0||2∞ + 2

∫ ζ∧T

0

hζ∧T (‖Ms‖∞))ds

+ 2

∫ q

0

Φζ∧T
(
||Ys||2∞

)
ds, q ∈ [0, ζ ∧ T ).

(4.3)

By Bihari-LaSalle inequality, (4.3) implies

(4.4) ||Yt||2∞ ≤ Ψ−1
T (ΨT (αT ) + t), t ∈ [0, ζ ∧ T ).

Moreover, (a1), ‖Q‖T,∞ <∞ and Lemma 1.1 yield

(4.5) E sup
t∈[0,ζ∧T )

|M(t)|2 <∞.

So by the definition of ζ and Y , on the set {ζ <∞}, we have P-a.s.

(4.6) lim sup
t↑ζ

|Y (t)| = lim sup
t↑ζ

|X(t)| =∞.

Moreover on the set {ζ ≤ T}, P-a.s. αT < ∞. Combining the property of Φ and (4.6), it
holds that on the set {ζ ≤ T}, P-a.s.

∞ = lim sup
t↑ζ

|Y (t)|2 ≤ Ψ−1
T (ΨT (αT ) + T ) <∞.

So for any T > 0, P{ζ ≤ T} = 0. Therefore,

P{ζ <∞} = P

(
∞⋃
m=1

{ζ ≤ m}

)
≤

∞∑
m=1

P{ζ ≤ m} = 0,

which implies the solution of (1.1) is non-explosive.

5 Proof of Theorem 2.2

In Section 3, we have transform (1.1) into an equation with regular coefficients, so we study
the Harnack inequalities for the new equation instead. To do this, we decompose the proof
into two steps:

(1) In the finite dimension, using coupling by change of measure, Harnack inequalities were
obtained by Lemma 6.1. Thus, we only need to check the condition (A) in Lemma
6.1.
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(2) We can prove the desired result from step (1) by finite dimension approximation, since
Harnack inequalities in Lemma 6.1 are dimension-free.

In this section, we fix T > r. Under (a1), (a2
′
), (a3

′
) and (a4

′
) with a(x) = x

1
2 , by

Lemma 3.1, we can take λ(T ) > 0 large enough such that for any λ ≥ λ(T ), the unique
solution u to (3.6) satisfies

‖∇2u‖T,∞ ≤
1

8
, ‖(−A)

1
2∇u‖T,∞ ≤

√
λ1

8
.(5.1)

To treat the delay part, set u(s, ·) = u(0, ·) for s ∈ [−r, 0] and still set θ(t, x) = x +
u(t, x), (t, x) ∈ [−r, T ] × H. By (5.1), {θ(t, ·)}t∈[−r,T ] is a family of diffeomorphisms on H.
For simplicity, we write θ−1(t, x) = [θ−1(t, ·)](x), ∇θ(t, x) = [∇θ(t, ·)](x) and ∇θ−1(t, x) =
[∇θ−1(t, ·)](x), (t, x) ∈ [−r, T ]×H. By (5.1), we have

(5.2)
7

8
≤ ‖∇θ(t, x)‖ ≤ 9

8
,

8

9
≤ ‖∇θ−1(t, x)‖ ≤ 8

7
, (t, x) ∈ [−r, T ]×H.

Since u ∈ C([0, T ], C1
b (H,Ha)), θ(t+ ·, ξ(·)) is continuous for any t ∈ [0, T ], ξ ∈ C . Then we

can define θt : C → C as

(5.3) (θt(ξ))(s) = θ(t+ s, ξ(s)), ξ ∈ C , s ∈ [−r, 0].

On the other hand, (5.2) and (5.3) yield that

|θ−1(t+ s+ ∆s, ξ(s+ ∆s))− θ−1(t+ s, ξ(s))|
≤ |θ−1(t+ s+ ∆s, ξ(s))− θ−1(t+ s, ξ(s))|

+ |θ−1(t+ s+ ∆s, ξ(s+ ∆s))− θ−1(t+ s+ ∆s, ξ(s))|
≤ |θ−1(t+ s+ ∆s, ξ(s))− θ−1(t+ s+ ∆s, θ(t+ s+ ∆s, θ−1(t+ s, ξ(s)))|

+ ||∇θ−1(t+ s+ ∆s, ·)||∞ · |ξ(s+ ∆s)− ξ(s)|
≤ ||∇θ−1(t+ s+ ∆s, ·)||∞ · |ξ(s)− θ(t+ s+ ∆s, θ−1(t+ s, ξ(s)))|

+ ||∇θ−1(t+ s+ ∆s, ·)||∞ · |ξ(s+ ∆s)− ξ(s)|

≤ 8

7

{
|ξ(s+ ∆s)− ξ(s)|+ |ξ(s)− θ(t+ s+ ∆s, θ−1(t+ s, ξ(s)))|

}
.

Then θ−1(t+ ·, ξ(·)) is also continuous, and {θt}t∈[0,T ] is a family of homeomorphisms on C
with

(5.4) (θ−1
t (ξ))(s) = θ−1(t+ s, ξ(s)), ξ ∈ C , s ∈ [−r, 0], t ∈ [0, T ].

Furthermore, it follows from (5.2) and (5.3) that

‖θt(ξ)− θt(η)‖∞ ≤
9

8
‖ξ − η‖∞, t ∈ [0, T ], ξ, η ∈ C .(5.5)

Similarly, we have

(5.6) ‖θ−1
t (ξ)− θ−1

t (η)‖∞ ≤
8

7
‖ξ − η‖∞, t ∈ [0, T ], ξ, η ∈ C .
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Fix λ ≥ λ(T ). Let {Xξ(t)}t∈[−r,T ] solve (1.1) with Xξ
0 = ξ ∈ C . Then, by (3.11),

{Y ξ(t) = θ(t,Xξ(t))}t∈[−r,T ] with Y ξ
t = θt(X

ξ
t ) satisfies

Y ξ(t) = eAtY ξ(0) +

∫ t

0

eA(t−s)(λ− A)u
(
s, θ−1

(
s, Y ξ(s)

))
ds

+

∫ t

0

eA(t−s)∇θ
(
s, θ−1

(
s, Y ξ(s)

))
B
(
s, θ−1

s

(
Y ξ
s

))
ds

+

∫ t

0

eA(t−s)∇θ
(
s, θ−1

(
s, Y ξ(s)

))
Q
(
s, θ−1

(
s, Y ξ(s)

))
dW (s), t ∈ [0, T ].

(5.7)

Set

b̄(t, x) = (λ− A)u
(
t, θ−1(t, x)

)
, t ∈ [0, T ], x ∈ H.(5.8)

B̄(t, ξ) = ∇θ
(
t, θ−1(t, ξ(0))

)
B
(
t, θ−1

t (ξ)
)
, t ∈ [0, T ], ξ ∈ C .(5.9)

Q̄(t, x) = ∇θ
(
t, θ−1(t, x)

)
Q
(
t, θ−1(t, x)

)
, t ∈ [0, T ], x ∈ H.(5.10)

Then, {X̄ξ(t) := Y θ−1
0 (ξ)(t)}t∈[−r,T ] is a mild solution to the equation

(5.11) dX̄ξ(t) =
[
AX̄ξ(t) + b̄

(
t, X̄ξ(t)

)
+ B̄

(
t, X̄ξ

t

)]
dt+ Q̄

(
t, X̄ξ(t)

)
dW (t), X̄ξ

0 = ξ.

Define
P̄tf(ξ) = Ef(X̄ξ

t ), t ∈ [0, T ], f ∈ Bb(C ).

Then

Ptf(ξ) : = Ef(Xξ
t ) = E(f ◦ θ−1

t )(Y ξ
t ) = E(f ◦ θ−1

t )(X̄
θ0(ξ)
t )

= P̄t(f ◦ θ−1
t )(θ0(ξ)), ξ ∈ C , t ∈ [0, T ], f ∈ Bb(C ),

(5.12)

and we shall turn to investigate the Harnack inequalities for P̄t.
To apply the method of coupling by change of measure, we will use the finite dimension

approximation argument. More precisely, let {X̄n,ξn(t)}t∈[−r,T ] solves the finite-dimensional
equation on Hn := span{e1, · · · , en} (n ≥ 1):

dX̄(n,ξn)(t) =
[
AX̄(n,ξn)(t) + b̄n

(
t, X̄(n,ξn)(t)

)
+ B̄n

(
t, X̄

(n,ξn)
t

)]
dt

+ Q̄n
(
t, X̄(n,ξn)(t)

)
dW (t), X̄

(n,ξn)
0 = ξn ∈ C (Hn) := C([−r, 0];Hn),

(5.13)

where b̄n = πnb̄, B̄
n = πnB̄, Q̄n = πnQ̄. Then we shall prove the convergence of the

approximation

(5.14) lim
n→∞

E
∥∥∥X̄ξ

t − X̄
(n,πnξ)
t

∥∥∥γ
∞

= 0, t ∈ [0, T ].

Lemma 5.1. Assume (a1), (a2
′
), (a3

′
) and (a4

′′
), then there exists a constant λ̃(T ) ≥ λ(T )

such that for any λ ≥ λ̃(T ) and γ ∈ (2, 2
ε
), (5.14) holds.
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Proof. For simplicity, we omit ξ and πnξ from the subscripts, i.e. we write (X̄t, X̄
(n)
t ) instead

of (X̄ξ
t , X̄

(n,πnξ)
t ). Fix γ ∈ (2, 2

ε
). For any t ∈ [0, T ], let

βn(t) = E sup
s∈[−r,t]

|X̄(s)− X̄(n)(s)|γ, β(t) = lim sup
n→∞

βn(t).

By (a1), (a2
′
) and (a4

′′
), b̄n, B̄n and Q̄n are bounded uniformly in n. Thus Lemma 1.1 and

γ ∈ (2, 2
ε
) imply

E sup
t∈[0,T ],n≥1

(‖X̄t‖γ∞ + ‖X̄(n)
t ‖γ∞) <∞,

so that β(t) <∞ for any t ∈ [0, T ].
Combining (5.11) with (5.13), it holds that

βn(t) ≤ c(γ)‖ξ − πnξ‖γ∞

+ c(γ)E sup
q∈[0,t]

∣∣∣∣∫ q

0

eA(q−s)[b̄n(s, X̄(s))− b̄n(s, X̄(n)(s))]ds

∣∣∣∣γ
+ c(γ)E sup

q∈[0,t]

∣∣∣∣∫ q

0

eA(q−s)[b̄(s, X̄(s))− b̄n(s, X̄(s))]ds

∣∣∣∣γ
+ c(γ)E sup

q∈[0,t]

∣∣∣∣∫ q

0

eA(q−s)[B̄n(s, X̄s)− B̄n(s, X̄(n)
s )]ds

∣∣∣∣γ
+ c(γ)E sup

q∈[0,t]

∣∣∣∣∫ q

0

eA(q−s)[B̄(s, X̄s)− B̄n(s, X̄s)]ds

∣∣∣∣γ
+ c(γ)E sup

q∈[0,t]

∣∣∣∣∫ q

0

eA(q−s)[Q̄(s, X̄(s))− Q̄n(s, X̄(s))]dW (s)

∣∣∣∣γ
+ c(γ)E sup

q∈[0,t]

∣∣∣∣∫ q

0

eA(q−s)[Q̄n(s, X̄(s))− Q̄n(s, X̄(n)(s))]dW (s)

∣∣∣∣γ
=: Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6 + Γ7, t ∈ [0, T ].

(5.15)

First of all, for any ξ ∈ C , n ≥ 1, by the definition of πn, we have ‖ξ − πnξ‖∞ < ‖ξ‖∞
and |(ξ − πnξ)(s1) − (ξ − πnξ)(s2)| ≤ |ξ(s1) − ξ(s2)| for any s1, s2 ∈ [−r, 0]. Since for any
s ∈ [−r, 0], |(ξ − πnξ)(s)| → 0 as n→∞, it follows from Arzela-Ascoli theorem that

(5.16) lim
n→∞

Γ1 = 0.

Similarly to the estimate of I1 in Proposition 3.3, there exists a constant λ̃(T ) ≥ λ(T ) such
that for any λ ≥ λ̃(T ),

Γ2 ≤ C(λ, T )

∫ t

0

βn(s)ds+
1

5
Eβn(t).(5.17)

Next, by Hölder inequality and (a4
′′
), for any δ ∈ (0, 2), it holds that

Γ3 ≤ CeλT
{∫ t

0

∥∥∥(λ− A)
1
2 e−(λ−A)s

∥∥∥δ ds

} γ
δ
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× E
{∫ t

0

∣∣∣(λ− A)
1
2 (u− πnu)

(
s, θ−1

(
s, X̄(s)

))∣∣∣ δ
δ−1

ds

} γ(δ−1)
δ

≤ C(λ, T, δ)E
{∫ t

0

∣∣∣(λ− A)
1
2 (u− πnu)

(
s, θ−1

(
s, X̄(s)

))∣∣∣ δ
δ−1

ds

} γ(δ−1)
δ

.

Combing the definition of πn and Lemma 3.1 (1) for a(x) = x
1
2 , it follows from dominated

convergence theorem that

(5.18) lim
n→∞

Γ3 = 0.

Moreover, (a2
′
), Hölder inequality and ‖B‖T,∞ <∞ yield that

Γ4 ≤ C(λ, T )

∫ t

0

βn(s)ds.(5.19)

Again using ‖B‖T,∞ <∞, Hölder inequality and dominated convergence theorem, we obtain

(5.20) lim
n→∞

Γ5 = 0.

Furthermore, combining (a2
′
) with Lemma 1.1 and γ ∈ (2, 2

ε
), applying dominated conver-

gence theorem, we have

(5.21) lim
n→∞

Γ6 = 0.

Finally, combining (a2
′
) with Lemma 1.1 and γ ∈ (2, 2

ε
), we have

Γ7 ≤ C(λ, T )

∫ t

0

βn(s)ds.(5.22)

Combining (5.15)-(5.22), applying dominated convergence theorem, it holds that

β(t) ≤ C

∫ t

0

β(s)ds, t ∈ [0, T ].

Since β(t) <∞, Gronwall inequality yields β(t) = 0, t ∈ [0, T ], which implies (5.14).

Lemma 5.2. Assume (a1), (a2
′
) with B = 0, (a3

′′
) and (a4

′′
). Then for any λ ≥ λ(T ),

there exists a constant C(T ) > 0 such that

(5.23) ‖∇u(t, x)−∇u(t, y)‖HS ≤ C(T )|x− y|, x, y ∈ H, t ∈ [0, T ].

Proof. In order to prove (5.23), by (a1), it suffices to prove

(5.24)
∥∥∥(−A)

1−ε
2 [∇u(t, x)−∇u(t, y)]

∥∥∥ ≤ C(T )|x− y|, x, y ∈ H, t ∈ [0, T ].
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In fact, if (5.24) holds, then

‖∇u(t, x)−∇u(t, y)‖2
HS =

∥∥∥(−A)
ε−1
2 (−A)

1−ε
2 [∇u(t, x)−∇u(t, y)]

∥∥∥2

HS

≤ C(T )
∥∥∥(−A)

ε−1
2

∥∥∥2

HS
|x− y|2, x, y ∈ H, t ∈ [0, T ].

Define

(Rλ
s,tf)(x) =

∫ t

s

e−(q−s)λ[P 0
s,qf(q, ·)](x)dq, x ∈ H, λ ≥ 0, t ≥ s ≥ 0, f ∈ Bb([0,∞)×H;H).

Firstly, by (2.5) and (5.1), we have

(5.25) ‖(−A)
1
2 (∇bu+ b)‖T,∞ <∞

for any λ ≥ λ(T ).
Secondly, due to (3.4), (3.6) and (5.25), [11, Lemma 2.2 (1)] implies that for any λ ≥ λ(T ),∥∥∥(−A)

1
2 [∇u(t, x)−∇u(t, y)]

∥∥∥
=
∥∥∥∇(Rλ

t,T

(
(−A)

1
2 (∇bu+ b)

))
(x)−∇

(
Rλ
t,T

(
(−A)

1
2 (∇bu+ b)

))
(y)
∥∥∥

≤C|x− y| log

(
e +

1

|x− y|

)
x, y ∈ H, t ∈ [0, T ]

(5.26)

holds for some constant C > 0. Combining this with (5.26) and (2.4), for any λ ≥ λ(T ), we
obtain that

(5.27)
∣∣∣(−A)

1−ε
2 (∇bu+ b)(t, x)− (−A)

1−ε
2 (∇bu+ b)(t, y)

∣∣∣ ≤ φ̃(|x−y|), t ∈ [0, T ], x, y ∈ H,

where φ̃(s) = c
√
φ2(s) + s with a constant c > 0.

Finally, by (3.4), (3.6), (5.27), and [11, Lemma 2.2 (3)], we conclude that, for any λ ≥
λ(T ), ∥∥∥(−A)

1−ε
2 [∇u(t, x)−∇u(t, y)]

∥∥∥
=
∥∥∥∇(Rλ

t,T

(
(−A)

1−ε
2 (∇bu+ b)

))
(x)−∇

(
Rλ
t,T

(
(−A)

1−ε
2 (∇bu+ b)

))
(y)
∥∥∥

≤C(T )|x− y|, x, y ∈ H, t ∈ [0, T ].

(5.28)

for a constant C(T ) > 0. Thus (5.24) holds, and we complete the proof.

Lemma 5.3. Assume (a1), (a2
′
), (a3

′′
) and (a4

′′
). If in addition

(5.29) ‖Q(t, x)−Q(t, y)‖2
HS ≤ C(T )|x− y|2, t ∈ [0, T ], x, y ∈ H,
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where C(T ) is a positive constant. Then for any λ ≥ λ(T ), there exists K1 ≥ 0, K2 ≥ 0,
K3 > 0 and K4 ≥ 0 (K1, K2, K3, K4 only depend on T) such that

(5.30)
∣∣(Q̄∗(Q̄Q̄∗)−1)(t, η(0)){B̄(t, ξ)− B̄(t, η)}

∣∣
H̄ ≤ K1‖ξ − η‖∞;

(5.31)
∥∥Q̄(t, x)− Q̄(t, y)

∥∥ ≤ K2(1 ∧ |(x− y|);

(5.32)
∥∥(Q̄∗(Q̄Q̄∗)−1)(t, x)

∥∥ ≤ K3

hold for t ∈ [0, T ], ξ, η ∈ C , and x, y ∈ H. Moreover, for any t ∈ [0, T ], x, y ∈ H∞ :=
∪n≥1Hn, it holds that

(5.33)
∥∥Q̄(t, x)− Q̄(t, y)

∥∥2

HS
+ 2

〈
x− y, Ax− Ay + b̄(t, x)− b̄(t, y)

〉
≤ K4|x− y|2.

Proof. Fix λ ≥ λ(T ).
(a) Since ∇θ(t, ·) = I + ∇u(t, ·), t ∈ [0, T ], (5.1) yields that for any λ ≥ λ(T ) and

(t, x) ∈ [0, T ] × H, ∇θ(t, x), (∇θ(t, x))∗ ∈ L (H,H) are invertible. Then from (5.10), we
obtain (

Q̄∗(Q̄Q̄∗)−1
)

(t, x) =
(
Q∗(QQ∗)−1

) (
t, θ−1(t, x)

) [
∇θ
(
t, θ−1(t, x)

)]−1
.(5.34)

Combining this with (a2
′
) (i

′
), (5.32) holds with K3 = 8

7
(CQ(T ))2.

(b) Due to (a), in order to prove (5.30), we only need to estimate
∣∣B̄(t, ξ)− B̄(t, η)

∣∣.
From (5.9), (a2

′
) (ii

′
), (5.1), (5.2) and (5.6), we have

|B̄(t, ξ)− B̄(t, η)|
=
∣∣∇θ(t, θ−1(t, ξ(0)))B(t, θ−1

t (ξ))−∇θ(t, θ−1(t, η(0)))B(t, θ−1
t (η))

∣∣
≤
∣∣∇θ(t, θ−1(t, ξ(0)))B(t, θ−1

t (ξ))−∇θ(t, θ−1(t, ξ(0)))B(t, θ−1
t (η))

∣∣
+
∣∣∇θ(t, θ−1(t, ξ(0)))B(t, θ−1

t (η))−∇θ(t, θ−1(t, η(0)))B(t, θ−1
t (η))

∣∣
≤8

7
sup

(t,z)∈[0,T ]×H
‖∇θ(t, z)‖C ′B(T )‖ξ − η‖∞

+ sup
(t,z)∈[0,T ]×H

‖∇2θ(t, z)‖ sup
(t,z)∈[0,T ]×H

‖∇θ−1(t, z)‖‖B‖T,∞|ξ(0)− η(0)|

≤K‖ξ − η‖∞, K > 0.

(5.35)

Combining (5.35) with (5.32), we prove (5.30).
(c) Similarly, from(5.10), again using (a2

′
) (i

′
), (5.1), (5.2), we arrive at∥∥Q̄(t, x)− Q̄(t, y)

∥∥
=
∥∥∇θ(t, θ−1(t, x))Q(t, θ−1(t, x))−∇θ(t, θ−1(t, y))Q(t, θ−1(t, y))

∥∥
≤
∥∥∇θ(t, θ−1(t, x))Q(t, θ−1(t, x))−∇θ(t, θ−1(t, x))Q(t, θ−1(t, y))

∥∥
+
∥∥∇θ(t, θ−1(t, x))Q(t, θ−1(t, y))−∇θ(t, θ−1(t, y))Q(t, θ−1(t, y))

∥∥
≤ sup

(t,z)∈[0,T ]×H
‖∇θ(t, z)‖‖∇Q‖T,∞ sup

(t,z)∈[0,T ]×H
‖∇θ−1(t, z)‖|x− y|

+ sup
(t,z)∈[0,T ]×H

‖∇2θ(t, z)‖‖Q‖T,∞ sup
(t,z)∈[0,T ]×H

‖∇θ−1(t, z)‖|x− y|

≤K ′ |x− y|, K
′
> 0,

(5.36)
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and

‖Q̄(t, x)− Q̄(t, y)‖ ≤ 2 sup
(t,z)∈[0,T ]×H

‖∇θ(t, z)‖‖Q‖T,∞ ≤ K
′′
, K

′′
> 0.(5.37)

Then (5.36) and (5.37) yield (5.31).
(d) Applying (a2

′
) (i

′
), (5.1), (5.2), (5.29) and Lemma 5.2, we obtain∥∥Q̄(t, x)− Q̄(t, y)

∥∥
HS

=
∥∥∇θ(t, θ−1(t, x))Q(t, θ−1(t, x))−∇θ(t, θ−1(t, y))Q(t, θ−1(t, y))

∥∥
HS

≤
∥∥∇θ(t, θ−1(t, x))Q(t, θ−1(t, x))−∇θ(t, θ−1(t, x))Q(t, θ−1(t, y))

∥∥
HS

+
∥∥∇θ(t, θ−1(t, x))Q(t, θ−1(t, y))−∇θ(t, θ−1(t, y))Q(t, θ−1(t, y))

∥∥
HS

≤ sup
(t,z)∈[0,T ]×H

‖∇θ(t, z)‖
∥∥Q(t, θ−1(t, x))−Q(t, θ−1(t, y)

∥∥
HS

+‖Q‖T,∞
∥∥∇u(t, θ−1(t, x))−∇u(t, θ−1(t, y))

∥∥
HS

≤C(T )

[
sup

(t,z)∈[0,T ]×H
‖∇θ(t, z)‖+ ‖Q‖T,∞

]
sup

(t,z)∈[0,T ]×H

∥∥∇θ−1(t, z)
∥∥ |x− y|

≤K0|x− y|, K0 > 0.

(5.38)

Moreover, for any x, y ∈ H∞, by (5.8), (5.1) and (5.2), we obtain

〈A(x− y), x− y〉+
〈
(−A)[u(t, θ−1(t, x))− u(t, θ−1(t, y))], x− y

〉
+
〈
λ[u(t, θ−1(t, x))− u(t, θ−1(t, y))], x− y

〉
=−

∣∣∣(−A)
1
2 (x− y)

∣∣∣2 +
〈

(−A)
1
2

[
u
(
t, θ−1(t, x)

)
− u

(
t, θ−1(t, y)

)]
, (−A)

1
2 (x− y)

〉
+
〈
λ[u(t, θ−1(t, x))− u(t, θ−1(t, y))], x− y

〉
≤− |(−A)

1
2 (x− y)|2 + c(λ)|x− y|2 +

1

2

∣∣∣(−A)
1
2 (x− y)

∣∣∣2
≤c(λ, λ1)|x− y|2

(5.39)

for a constant c(λ) ≥ 0 depending on λ, λ1. Combining (5.38) with (5.39), we obtain (5.33).

Proof of Theorem 2.2. In what follows, we only prove Theorem 2.2 (2), for (1) is completely
the same with (2).

For any n ≥ 1, let X̄
(n,ξn)
t be the solution to (5.13) with X̄

(n,ξn)
0 = ξn ∈ C (Hn), and set

P̄ n
T f(ξn) = Ef(X̄

(n,ξn)
T ) for any f ∈ Bb(C (Hn)). Combining Lemma 5.3 and Lemma 6.1 (2),

for any λ ≥ λ̃(T ) (λ̃(T ) is introduced in Lemma 5.1), we obtain Harnack inequalities with
power for P̄ n

T , i.e. for every p > (1 +K2K3)2,

(5.40) P̄ n
T f(πnη) ≤

(
P̄ n
T f

p(πnξ)
) 1
p exp Φ̃p(T ; πnξ, πnη), ξ, η ∈ C , f ∈ C1

b (C (Hn)),
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where

Φ̃p(T ; ξ, η) = C̃(p)

{
1 +
|ξ(0)− η(0)|2

T − r
+ ‖ξ − η‖2

∞

}
, ξ, η ∈ C (Hn)

and C̃ : ((1 +K2K3)2,∞)→ (0,∞) is a decreasing function independent of n and f .
Letting n→∞ in (5.40), by Lemma 5.1 and C1

b (C ) ⊂
⋂
n≥1C

1
b (C (Hn)), we have

(5.41) P̄Tf(η) ≤
(
P̄Tf

p(ξ)
) 1
p exp Φ̃p(T ; ξ, η), ξ, η ∈ C , f ∈ C1

b (C ).

By an approximation method or monotone class theorem, (5.41) holds for any non-negative
function f ∈ Bb(C ). Thus from (5.12), we obtain that for every p > (1 + K2K3)2 and
non-negative function f ∈ Bb(C ),

PTf(η) = P̄T (f ◦ θ−1
T )(θ0(η))

≤ {P̄T (fp ◦ θ−1
T )(θ0(ξ))}

1
p exp Φ̃p(T ; θ0(ξ), θ0(η))

= {PTfp(ξ)}
1
p exp Φ̃p(T ; θ0(ξ), θ0(η)) ξ, η ∈ C

(5.42)

Taking into account of (5.5), we have

Φ̃p(T ; θ0(ξ), θ0(η)) ≤ 81

64
C̃(p)

{
1 +
|ξ(0)− η(0)|2

T − r
+ ‖ξ − η‖2

∞

}
=: Ψp(T ; ξ, η).

Taking K = K2K3, C = 81
64
C̃, (2.8) follows from (5.42) and the definition of Ψp. Similarly,

we can obtain Theorem 2.2 (1). Thus, we finish the proof.

6 Appendix

In this section, we give [13, Theorem 4.3.1 and Theorem 4.3.2] in detail as follows.
Fix a constant r0 > 0. Let C (Rd) := C([−r0, 0],Rd). For simplicity, we denote C d =

C (Rd). Consider the functional SDE on Rd:

dZ(t) = {a(t, Z(t)) + c(t, Zt)}dt+ σ(t, Z(t))dw(t),(6.1)

where w is a standard m-dimensional Brownian motion, a : [0,∞) × Rd → Rd, c : [0,∞) ×
C d → Rd, and σ : [0,∞)×Rd → Rd⊗Rm are measurable and locally bounded (i.e. bounded
on bounded sets).

To establish the Harnack inequality, we shall need the following assumption:

(A) For any T > r0, there exist constants K1, K2 ≥ 0, K3 > 0 and K4 ∈ R (K1, K2, K3,
K4 only depend on T) such that

(6.2)
∣∣(σ∗(σσ∗)−1)(t, η(0)){c(t, ξ)− c(t, η)}

∣∣ ≤ K1‖ξ − η‖∞;
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(6.3) ‖σ(t, x)− σ(t, y)‖ ≤ K2(1 ∧ |(x− y)|;

(6.4)
∥∥(σ∗(σσ∗)−1)(t, x)

∥∥ ≤ K3;

(6.5) ‖σ(t, x)− σ(t, y)‖2
HS + 2 〈x− y, a(t, x)− a(t, y)〉 ≤ K4|x− y|2

hold for t ∈ [0, T ], ξ, η ∈ C d, and x, y ∈ Rd.

(A) implies [13, (A4.1)], so by [13, Corollary 4.1.2], for any ξ ∈ C d, (6.1) has a unique
strong solution Zξ

t with Z0 = ξ. Let PT be the associated Markov semigroup defined as

PTf(ξ) = Ef(Zξ
T ), f ∈ Bb(C

d), ξ ∈ C d.

Lemma 6.1. Assume (A). Then for any T > r0, every positive function f ∈ Bb(C ),

(1) the log-Harnack inequality holds, i.e.

(6.6) PT log f(η) ≤ logPTf(ξ) +H(T, ξ, η), ξ, η ∈ C d

with

H(T, ξ, η) = C

(
|ξ(0)− η(0)|2

T − r
+ ‖ξ − η‖2

∞

)
for some dimension-free constant C > 0.

(2) For any p > (1 +K2K3)2, the Harnack inequality with power

(6.7) PTf(η) ≤ (PTf
p(ξ))

1
p exp Ψp(T ; ξ, η), ξ, η ∈ C d

holds, where

Ψp(T ; ξ, η) = C(p)

{
1 +
|ξ(0)− η(0)|2

T − r
+ ‖ξ − η‖2

∞

}
for a dimension-free decreasing function C : ((1 +K2K3)2,∞)→ (0,∞).
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