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Abstract

By using the ultracontractivity of a reference diffusion semigroup, Krylov’s esti-
mate is established for a class of degenerate SDEs with singular drifts, which leads to
existence and pathwise uniqueness by means of Zvonkin’s transformation. The main
result is applied to singular SDEs on generalized Heisenberg groups.
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1 Introduction

Since 1974 when Zvonkin [29] proved the well-posedness of the Brownian motion with bound-
ed drifts, his argument (known as Zvonkin’s transformation) has been developed for more
general models with singular drifts, see [19, 13, 26, 24| and references within for non-
degenerate SDEs, and [4]-[7] and [11, 20] for non-degenerate semilinear SPDEs. In these
references only Gaussian noise is considered, see also [17, 25| for extensions to the case with

jump.
In recent years, Zvonkin’s transformation has been applied in [2, 16, 22, 23, 27| to a class

of degenerate SDEs/SPDEs with singular drifts. This type degenerate stochastic systems
are called stochastic Hamiltonian systems in probability theory. Consider, for instance, the

following SDE for (X;,Y;) on R* (d > 1):

(1.1)

dXt = Y;dt
dY; = b( Xy, Y)dt + 04( Xy, Yy)dW,

where W, is the d-dimensional Brownian motion, and

b:[0,00) x R* - RY o:[0,00) x R* - R @ R?
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are measurable. According to [27, Theorem 1.1}, if there exists a constant K > 1 such that
K| < |ow| < K|, t>0,0€ R,

and for some constant p > 2(1 + 2d),

o 1
sup ||v0t||Lp(R2d) +/ ||(1 — Al‘)3bt||§p(R2d)dt < 00,
0

t=0

then the SDE (1.1) has a unique strong solution for any initial points. By a standard
truncation argument, the existence and pathwise uniqueness up to the life time hold under
the corresponding local conditions.

In this paper, we aim to extend this result to general degenerate SDEs, in particular,
for singular diffusions on generalized Heisenberg groups. As typical models of hypoelliptic
systems, smooth SDEs on Heisenberg groups have been intensively investigated, see for
instance [1, 8, 9, 10, 14, 21] and references within for the study of functional inequalities,
gradient estimates, Harnack inequalities, and Riesz transforms. We will use these results to
establish Krylov’s estimates for singular SDEs and to prove the existence and uniqueness of
strong solutions using Zvonkin’s transformation.

In Section 2, we present a general result (see Theorem 2.1(3)) for the existence and
uniqueness of degenerate SDEs with singular drifts, and then apply this result in Section 3
to singular diffusions on generalized Heisenberg groups.

2 General results
For fixed constant 7' > 0, consider the following SDE on R":

(21) dXt = Zt(Xt>dt + O't<Xt)dBt, te [O,T],

where B, is the m-dimensional Brownian motion with respect to a complete filtered proba-
bility space (Q, .7, {% }eo,1), P), and

Z:0,T|xRY =R, ¢:[0,7T] x RY - RY @ R™

are measurable and locally bounded. We are in particular interested in the case that m < N
such that this SDE is degenerate.
Throughout the paper, we assume that for any x € RY and s € [0,7), this SDE has a

unique solution (X7,)efs,r) with X7, = z; i.e. it is a continuous adapted process such that

t t
X;Cat:l’—'—/ ZT(X;E,T)dT+/ O-T(X;T)dBr7 t e [S,T].

Let (Pst)o<s<t<r be the associated Markov semigroup. We have

P f(z) =Ef(XZ,), feBRHUBTRY), seRY,0<s<t<T,



where %, (resp. #1) denotes the set of bounded (resp. nonnegative) measurable functions.
The infinitesimal generator of the solution is

N

1
L= 5 ) (0:07)i5 0, +Z

1,7=1

Now, let b : [0, 7] x RY — R™ be measurable. We intend to find reasonable conditions
on b such that the following perturbed SDE is well-posed:

(2.2) dX, = {Z, + o,b }(X,)dt + 0,(X,)dB,, t € [0,T].
([0, 7] x RY) and W1

To state the main result, we introduce two spaces L] ;. o10c([0, T X
RY), for p,q > 1. A real measurable function f defined on [0,T] x R is said in L&([0, T x

RY), if
1l :=( / A% )q<oo.

Next, if f € LI([0,T] x RY) such that V f, exists in weak sense for a.e. s € [0,T] and |V f| €
Li([0,T] x RY), where V is the gradient operator on RV, we write f € WZ([0,T] x R").
Consequently, we write

J € L} 110, T] x RY)

if hf € LI([0,T] x RY) for any h € C3°(R"), and
f S quoc([ovT] X RN)

if hf € Wi([0,T] x RY) for any h € Cg°(RY). Moreover, a vector-valued function is in one
of these spaces if so are its components.

Finally, a real function f on R¥ is called o,-differentiable, if for any v € R™ it is differ-
entiable along the direction o,v; i.e.

Vof(z) = %f(x + roy(z)v)

exists for any z € RY. A real function f on [0,7] x R is called o-differentiable if f; is
o-differentiable for every ¢ € [0, T]. In this case, V,f : [0,7] x RY — R™ is defined by

(Vof)e(2),v) == Vaofi(z), veR™tec0,T],zcR".
When V [ exists, we have V,f = oc*V f. Let
B={feC(0,T] xRY): V,f € Cy([0,T] x RY;R™)}.

r=0

Then B is a Banach space with
1flle = [1flloe + Vo flloo:

where || - ||« is the uniform norm. An R™-valued function ¢ is said in the space B™, if its
components belong to B. Let

gllem = llgllec + Vo9llo, g €B™.

We make the following assumptions.



(A}) o4(x) is locally bounded in (t,z) € [0,T] x RY, and for any R > 0, there exists a
constant ¢ > 0 such that

|o(@)bu(2)] = cfby(2)], ¢ €[0,T], x| < R

(Ay) For any f € C°([0,T] x RY) and A > 0, the function

(2.3) (Qxrf)s(z) = /T e M= f(x)dt, s€[0,T),2 € RY

satisfies that 9,(Qxf)s, Zs(Qxf)s exist and are locally bounded on [0, 7] x RN with
(2'4) (as + afs - )‘)(Q/\f)s + fs = 0.

Assumption (A;) holds provided ¢ is continuous and has rank m. Assumption (As) holds if
Zy(x) and oy(x) are regular enough in z, for instance, C*-smooth in x uniformly in ¢ € [0, 7.
For any p,q > 1, let || - ||,—, denote the operator norm from LP(RY;dz) to LY(RY;dx).
To introduce the integrability conditions for the drift b, we need the following two classes
of pairs (p,q) € (1, 00]*:
4 = {(p,q) € (1,00]” : there exists v € L1 “1([0, 7)) such that
||Pst||p—>oo X (t - 3)7 0<s<t< T},
Hs = {(p,q) € (1,00]” : there exists v € L1 “1([0, 7)) such that
107V Py llpsoe <Y(E—3s), 0<s<t<T}.

Obviously, both J#] and J# are increasing sets; that is, if (p,q) € J then (p/,¢') € J%; for
p >pand ¢ > q,i=1,2. We will also use the following class

240 :={(2p,2q) : (p,q) € #1}.

Clearly, 2#7 € #;. When Z = 0 and o0* = Inxn, the N x N-identity matrix, we have
P,; = P,_; for the standard heat semigroup F;, so that

(2.5)  ||Patllpsos < C(t — 8)" Y 6"V P,s|lpsoo S C(t—s) 2% 0<s<t<T

for some constant C' > 0, then

(26) D {(p,q) € (1,00]*: l—i- a4 < 1}, o D {(p,q) € (1,00]?: g—i-c—i < 1}.
q 2p q p
These formulas also hold for elliptic diffusions satisfying (2.5). But for degenerate diffusions
the dimension d in this display will be enlarged, see for instance the proof of Theorem 3.1
below.
We are now ready to state the main result in this section. In particular, the first assertion
implies that if ¢ N % # 0, then for any b € C5°([0,T] x RY) and large enough A > 0, the

equation
T
(27) u; = / e_)\(t_S)PS,t{VUtbtut ‘l— Utbt}dt7 S € [O,T]

has a unique solution u =: Z\b € B™. We write f € C1?([0,T] x RY) if f is a function on
[0, 7] x RN such that &, fi(x) and V?f;(z) exist and continuous in (¢,x).
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Theorem 2.1. Assume (Ay) and (Az). Then the the following assertions hold.

(1) For any (p,q) € N and L > 0, there exists X\ > 0 such that for any X > X\, and
b: [0,T] x RY — R™ with |ob| + [b| € Li([0,T] x RY) and [lobll[a V I[bl[l2 < L,
the equation (2.7) has a unique solution u =: Z\b in B™. Moreover, there ezists a
decreasing function 1 : [\, 00) = (0, 00) with Y(00) := limy 00 P(A) = 0 such that for
any b, b : [0, 7] x RY = R™ with ||[ob]l| 3, 1ol 1, 1Bl 5. 1Bl 3 < L.

(2.8) |Exb — Z3Bllan < $OVIl[b— Bl +o(b—B)lllsg. A > A

(2) If |b] € Li([0,T] x RY) for some p,q > 1 with (p,q) € 241, then for any v € RY the
SDE (2.2) has a weak solution (Xt)te[O,T] starting at x with respect to a probability Q
such that EgeMo (&P < o0 holds for all A > 0.

(3) Assume further that

(i) forlarge enough X > 0, Z\f € CY2([0, T]xRY) holds for any f € C°([0, T} xRYN);
(ii) there exists (p,q) € 261 N Hy such that |b| + |Veo| € LT, ([0,T] x RY), Z €

p,loc
W ([0,T] x RY), and for large enough \ > 0 there hold

p,loc
(2.9) Vo,Ex(hb) € W, ([0,T] x RY), h e C*(RY),
(2.10) Jim |RVEL(AD)|leo = 0, h € C3°(RM).
—00

Then for any x € RN the SDE (2.2) has a unique strong solution X, starting at = up to
the life time ¢ := lim, oo TAC, := inf{t € [0,T] : |X;| = n} with [ " [b[2(X;)dt < oo
for anyn > 1.

By (2.7) and the definition of @, in (As), we have
(211) EAb:Q)\{VUbE)\b—l—Ub}.

If (2.6) holds, Theorem 2.1 (3) ensures the strong well-posedness when |b| € L{ for some
p,q = 1 with % + 3 < 1, which coincides known optimal result in the elliptic setting. In
the elliptic case there exists much weaker sufficient conditions for the well-posedness, for
instance, in a recent paper by Xicheng Zhang and Guohua Zhao [28], the drift is allowed to
be distributions (not necessarily functionals).

To prove Theorem 2.1, we first investigate the Krylov estimate and the weak existence
for (2.2).

2.1 Krylov’s estimate and weak existence

Theorem 2.2. Assume (A;) and (As). Let p,q > 1 such that (p,q) € 2 and |b|* €
L4([0,T] x RY).



(1) For any (p',q') € £ there exists a constant k > 0 such that for any s € [0,T) and
solution (X ¢)eepsr) of (2.2) from time s with fsT by (X, )|2dt < oo,

T
(2.12) ]E(/ |ft<f<s,t)|dt’ys> <l FELL(0.T] xRY), s € [0,7].

Consequently, for any [ € LZi([O,T] x RY) with (p',q) € 2 and any X\ > 0, there
exists a constant c(f, \) € (0,00) such that

(213) E(e)‘ng |ft(X9,t)|dt

ys) <e(f,N), sel0,T].

(2) The assertion in Theorem 2.1(2) holds.
To prove this result, we need the following lemma.
Lemma 2.3. Assume (Ay) and (As).

(1) For any (p,q) € 1, there exists a decreasing function ¢ : [0,00) — (0,00) with
P(00) = limy,eo ¥(A) = 0 such that for any X > 0, (Qx,C5°([0,T] x RY)) in (As)
extends uniquely to a bounded linear operator Qy : L4([0,T] x RY) — L>([0,T] x RY)
with

1@+ flle < ¥ fllegs £ € LI(0.T] x BY), A0

(2) For any (p,q) € 21 N Hs, (Qx,C([0,T] x RN)) extends to a unique bounded linear
operator Qy : Li([0,T] x RY) — B such that

1@ flls = 1Qxflloe + [IVoQrflloo <O fllLg, A= 0,f € LI([0,T] x RY)
holds for some decreasing ¢ : [0, 00) — (0, 00) with 1 (oc0) = 0.

Proof. We only prove (1) since that of (2) is completely similar. For any (p,q) € J#, there
exists v € L#([O,T]) such that for any A > 0 and f € C5°([0,T] x RY),

T
||Q/\f||oo < sup / e_/\(t_s)’)/(t — S)HftHLp(RN)dt

s€[0,7T

q—

r L\
< swp ([l Pa) sl Az 0

s€[0,T7]

So, assertion (1) holds with

qg—1

o= ([ femate)Fat)

We will also need the following lemma which reduces the desired Krylov’s estimate to
f€C([0,T] x RY). It can be proved using a standard approximation argument.

[]
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Lemma 2.4. Let s € [0,T] and p,q > 1 For any two stopping times 71 < To, measurable
process (& )ees, ) ON RY, and random variable n > 0, if the inequality

(214 2 [ 7 nea].) < 1rlumeis)

AT

holds for all nonnegative f € C5°([0, T]xRYN), it holds for all nonnegative f € Li([0,T] xRY).

Proof of Theorem 2.2. (1) According to the Khasminskii estimate, see [26, Lemma 5.3,
(2.13) follows from (2.12). For simplicity, we only prove for s = 0. To prove (2.12), we
first consider b = 0. Let (X3)icp,r) solve (2.1) and let

1, =inf{t € [0,7]: |X¢| >n}, n>1

For 0 < f € Cg°([0,T] x RY), take u™ = Q,f for A > 0. By (A,) and Itd’s formula, we
obtain

0 <E(ul), (Xram)| %)

TNATn
= ul (Xopr,) +E < / 0 + L)uM (Xt)dt'ﬁs>
0
TATh
<O+MWWWM—E(/ <M&M+%)
0

Noting that u») = @, f, combining this with Lemma 2.3 and Lemma 2.4, for any (p', ¢') € %
there exists decreasing 1 : [0,00) — (0, 00) with ¥ (c0) = 0 such that

TNy,
219 5[ [ mxmﬂaﬁ<wuwmﬂm+wn,o<fegﬂaﬂme-
0 P

Letting n — oo we prove (2.12) for b = 0. In general, let (Xt)te[O,T] solve (2.2) with
T Iby(X,)2dt < co. Define

t
T, = inf {t €0,7]: / b, (X,)|?dr > n} n >0,
0
where inf () := oo by convention. Let
TAT, ~ 1 [TATn 3
R, = exp [— / <bT(Xr), dBr> - 5/ \br(Xr)Pdrl,
0 0
B tATn B
Bt = Bt +/ b7«<XT)dT, te [3, T]
0

Then under the probability R,P, (X,, Br)rE[O,T/\Tn] is a weak solution to the SDE (2.2) for
b = 0. So, by the assertion for b = 0, there exists a constat ¢ > 0 such that

(2.16) E[Rn< /0 R X,)dr)Q

7

Fo| <ellf gy
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By Hélder inequality and (2.12) for b = 0, there exists a constant ¢ > 0 such that

E(R;Y| %) = E(Rye? o orEn dBr b [y [br (X Pdr | g7y

< \/ E(R, A Jo T (br(Xr) dBr) =8 [T ‘bT(XT)FdT‘fo)
\/IE Rycbdo ™ oK) Par| 2y

_ \/E(RnerOTAT" Ibr(Xr)Pdr‘yo) </,

where the last step follows from |b|? € LZ@([O,T] x RYN) for some (p,q) € 2% and (2.13)
for b = 0. Then there exists a constant C' > 0 such that

TNAT, 2
E +(X,)d
G reeln))
TAT, ~ 2
< E[Rn(/o fr(X,,)dr) ’90} E(R;'|%) < CHinZ,(T)

By letting n — oo we prove (2.12).

(2) Assume that |[b| € Li([0, T] x RY) for some (p,q) € 2. Let (Xy)iepo,r] solve (2.1)
with Xy = X,. We intend to show that it is a weak solution of (2.2) under a weighted
probability Q := RP, where R > 0 is a probability density, and thus finish the proof. Since
by (2.12) for b = 0 we have

T
(2.17) E/ |bt(Xt)|2dt < I€|||b|2||Lq§2 = /{||b||%g < 00
0 p/2
for some constant k > 0. Then
T, := inf {s €[0,7]: / b, [2(X;)dt > n} 1 oo as n 1 oo,
0

where we set inf ) = co by convention. For any n > 1, let

TNy 1 TNy,
R, = exp [/ (by(Xy),dBy) — 5/ |bt(Xt)|2dt} .
0 0

By Girsanov’s theorem, {R,},>1 is a martingale and Q,, := R,P is a probability measure
such that

3 ATy
Bt = Bt — / bS(XS)dS, t e [O,T]
0
is an m-dimensional Brownian motion. Rewriting (2.1) by
(218) dXt = (Zt —+ O'tbt)(Xt)dt -+ O't(Xt>dBt, te [O, TA Tn],

we see that (X, Bt)te[O,T/\Tn] is a weak solution of (2.2) up to time 7' A T},. To extend this
solution to time 7', it suffices to show that the martingale (R,,),>1 is uniformly integrable, so



that R := lim, , R, is a probability density, and (X, Bt)te[o,T] is a weak solution of (2.2)
under the probability Q := RP. Therefore, it remains to prove

(2.19) supE[R,log R,] < oo, n > 1.
n>1
Since (Bt>te[0,T} is an m-dimensional Brownian motion under probability Q, := R,P, by

(2.18) and Theorem 2.1(1), for any (p',q’) € J# there exists a constant x > 0 such that
TAT, /
]E@n/o FAX)d < Hlfll g, 0< T € 0. TI X RY)n > 1.
Applying this estimate to f = |b|?, we arrive at
TAT,
2]E[Rn log Rn] = EQn /0 ‘thQ(Xt)dt < HlePHLZg’ nz 1l

This implies (2.19) and Eq fOT |b:|?(X;)dt < co. Then the proof is finished since by (2.13) for
f = Ib* in Theorem 2.2 (1), [|[b[?|| 4> < co implies Egeto PeP(X0dt < o6 for all A > 0. O
p/2

2.2 Proof of Theorem 2.1
Since Theorem 2.1(2) follows from Theorem 2.2(2), we only prove Theorem 2.1(1),(3).

Proof of Theorem 2.1(1). Let [|[bl[|,2 < L for some (p,q) € J#1 N . We first prove the
existence and uniqueness of =,b for large enough A\ > 0. Consider the operator /£, on B™ :

Jou = Q,\{Vobu + Jb}, ueB™.

By the fixed-point theorem, it suffices to show that #) is contractive in B™ for large enough
A > 0.
By Lemma 2.3, for any u,u € B™ we have

[Aau — Au|gn = [[QxVop(u — 1) [pn
S PN [Vo(u—a)|llfblllzy < (M) Lllu—1

B™ .

Since ¥(A) — 0 as A — oo, there exists A, > 0 such that ¢¥(A;) < 57. So, when A > Ay,
the map 7, is contractive in B™. By the fixed point theorem, there exists a unique u € B™
such that u = Jju, which is denoted by Z,b.
Next, let [|[b|[|s. [[[b][lzg, |lobll|z, lloblllLg < L. By (2.11), Lemma 2.3 and ¢(}) < 57

for A > A\, we have

|E2xb — Zxbllsm < Y(A) (I[VobErb — V 5Zxb|l s + [lo(b — b)||19)

<) (IVon(Exb = Z3B) + V5, Zabllzg + 1o (b = B)ll)

< YN ([lo(b =Db)|lzg + Exbllen b = bll1g) + L(M)I[b]Ls]|Exb — Zxb||gm

_ - _ 1 _ -
<YV (llob=b)llzg + [1Exbllsn b = bllg) + S1Zxb = Exbllsm, A > Ar.
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Thus,
(2.20) IExb — E3blzn < 20(A)([lo(b = b)|[zs + [Exbllen|b = bllzz), A > Ar.

Applying this inequality to b = 0 we obtain [|[Z3b|jz» < 2¢/(A)[|ob|[zs < 1, so that (2.20)
gives

IExb — Zxbllzn < 20N ([I[b = bll|zg + [lo(b = b)l|zg). A= Ar.
Then the proof is finished. O]

To prove Theorem 2.1(3), we consider Zvonkin’s transformation
(2.21) 0N (z) := z + (Exb)y(z), z RN tel0,T]
for large enough A > 0. We have the following result.

Lemma 2.5. Assume (A;)-(Az) and Theorem 2.1(3)(i). If b| € LY ([0, T] xR") for some
(p,q) € H1 N A, then for large enough X > 0, any solution (X;)icjor) of the SDE (2.2) with
fOT Ib|2(X;)dt < oo, any k =1, and hy, € CP(RN) such that hy|por = 1,

(222)  dIPM(Xy) = {Zu(X0) + AEatub)e(Xo) At + Y, 505, 00" (Xe), €0, T AR,

where .
=inf{t € [0,7T] : | Xy| > k},

and

0 (2) == 2 + (Exhib)i(z), =RV, te[0,T].

Proof. When Oﬁ’\’k) is second-order differentiable with bounded derivatives, the desired formu-
la follows from (2.4),(2.11) and I1td’s formula. In general, we use the following approximation
argument as in [24]. Let {b™},-; € C3°([0,T] x RY) such that

(2.23) lim || Agb — ™|l g = 0.

Since o is locally bounded, we have

(2.24) lim [lohyb — ohib™]| s = 0.

Let k) be defined in (2.21) for hyb(™ replacing b respectively, i.e.
(2.25) 0" (1) := x4 (Exhib™)y(z), = € RNt €[0,T],A > 0.
By (As3), (2.11) and (2.25), we have

(00 + L+ Vo JOO
= Zy 4 0Dy + Vo,b, (Eahib™)s + AED™)s = {V o (Exhub™), + o hyb(V )
= Zs + AEhb™); + 0, (b, — hib(") + st(bs—hkbgn))(E)\hkb(n))s~

10



So, by (2.2) and Itd’s formula, we have

t/\Tk

tATE ~
(2.26) ~ /0 <Zs * MEAhkb(n))S +0s(bs — hkbgn)) T vas(brhkbé"))GAhkb(n))S) (Xs)ds
tATL _ tATLE B
+/ 0y(X,)dB, + V. xoas, Eabeb™) (X)), k=1t €[0,T).
0 0

By Theorem 2.1(1) and (2.23), for large enough A > 0,

lim |[§*™F) — gAK)||5, = lim || Z\hib — Exheb™ ||gm = 0.
n—oo

n—00
Then
Tim {007 (Xinn) — 06" (Xo)} = 043, (Xine,) — 6057 (Xo),
T ATy _
lim |(Exhib™ — Z3hb),| (X, )ds = 0.
n—oo 0

Since hk|B(07k) = 1, combining these with (2.12) and the local boundedness of o, we may find
out a constant C' > 0 such that

n—oo

T'N\Ty,
lim E / <|VC,S(EAhka RN ANONE
0

+|V (Exhib™),| + |oy(bs — hkbg”))]) (X,)ds

os(bs—hib{™)

< C lim (||EAhkb — Shb ™)1 + (b — hkb(")||Lg> _0
n—o0

Therefore, letting n — oo in (2.26), we obtain

_ tATE _
0D (Xins,) — 05" (Xo) = / (ZS + )\(EAhkb)s) (X,)ds
0
tATy 5 tATE N
—|—/ os(Xs)dB; + V ooz, (Exlb)s(Xs), k=1, €[0,T].
0 0
This means that (2.22) holds for ¢t < T A 7. O

By Lemma 2.5, the uniqueness of the SDE (2.2) follows from that of (2.22). Asin [13, 26],
to prove the uniqueness of (2.22) we will use the following result for the maximal operator:
for any N > 1,

A h(x) :=sup !

S h(y)dy, he€ L. (RY) zecRY,
r>0 ’B(ZL’,T’)| B(z,r) (> l ( )

where B(z,r) :={y : |z —y| <r}, see [3, Appendix A].
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Lemma 2.6. There exists a constant C'y > 0 such that for any continuous and weak differ-
entiable function f,

(2.27) [f(x) = f(y)| < Onlz — yl(A|V fl(x) + AV f|(y), ae z,yeRY.
Moreover, for any p > 1, there exists a constant Cx,, > 0 such that
(2.28) |4 flle < Onpll fllee, f € LP(RY).

Proof of Theorem 2.1(3). Tt suffices to prove that for any h € C°(RY), (2.2) with hb re-
placing b has a unique solution. So, without loss of generality, we may and do assume that
b has a compact support. Then h,b = b with h, € C{°(RY) such that h,|peo. = 1 for
large n > 1. By Theorem 2.1(2 ) and the Yamada-Watanabe principle, it sufﬁces to prove
the pathwise uniqueness. Let X;,Y; be two solutions of (2.2) with X, = Y, life times &, 7

respectively, and fTAg" b|2(X,)dt + fTM'" |b|2(Y;)dt < oo, where

£ = inf{t € [0,T) : | X;| = n}, n, :=inf{t €[0,T]:|Yy| >n}, n>1.
Let T,, = &, A my,. It remains to prove P-a.s.
(2.29) | Xint, = Yiar,| =0, n>1,t€[0,T].

Let h, € C°(RY) such that hulBony = 1. Then, up to time T"A T, X, and Y; solve the
SDE (2.2) for h,b replacing b.
By (2.10), we take large enough A > 0 such that

sup ||haVEx(hnb)i||eo <

te[0,T]

N | =

Simply denote u = =Z,(h,b) and 0s(z) = x + us(x). Then
1
(2.30) 510:(@) = 0uy)l < |z =yl < 200:(2) = Ouly)l, ¢ €[0.T], 2,y € B(O,n).

By Lemma 2.5 and [to’s formula, we have

Ot (Xent,) — Ounr, (Yinz, )|

ZQAAHQUXJ—%G®+AmA&)—%G®L@@g_@@QwS

tATy,
(2.31) + /0

tAT, 3 3
+ 2/ (Voo (2000 (%0)0s5:)05(X5) = Vo 9y (00(%) 02 (7)) Is (Ys), ABs)

/ﬁn|9 0.(V. W@+A&M@%@Q—%ﬁWﬂ&%t€Mﬂ,

~ - 2
[VUS(XS)QS(XS) -V, ¥ )QS(Y;)]

Os ()/s

ds

HS

where

Lisery Lz, 29 .
W(s) = — S (g g (R,) =V, 50V
) = 5 o) =0, T80 = Vo 7
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+ 2<ZS<XS) - ZS(?S) + )\(115<X5) - us({/s)% 05(X5> - Qs(ffs)>)’

13

21{S<Tn}1{)~(s7éf/.s} ~
an(s) 1= === 2(Vasws)(osws)—esmn98(Xs>—Vam)(es(Xs>—es<?s>>98(
0.(%.) — 6.(V2)

).

Since hy|pon) = 1, B and o, do not change if Z, V,0, and u are replaced by h,Z, h,V,0
and h,u respectively. So, letting

O = | V(haZ)s|| + |V (haa)s || + IV (2 Vo, 0) |17,
by Lemma 2.6 we may find a constant C; > 0 such that
(2.32) | (8)]2 4 180(8)] < Cilisery (A Ps(X,) + A DY), s€[0,T).

Applying Theorem 2.2(1) for h,b replacing b and using (2.32), we obtain

B [ au(o) + (o)

7.) <ol s€ .1

for some constant £ > 0. Since Lemma 2.6 and our conditions in Theorem 2.1(3) imply
|22y < K| @] g < o0

for some constant £’ > 0, using the Khasminskii estimate as in (2.13) we conclude that
T
E exp {c/ (|an(3)]? + 18n(s))ds| < 00, ¢> 0.
0

So, by Doleans-Dade’s exponential formula, (2.31) implies

|9t/\Tn (XtATn)_etATn (Y/tATn)|2 _ ‘90(X0>_90<}7())|262 Jo {an(s),dBs)+ [y (ﬁn(s)f2\an(s)|2)ds’ te [07 T}

Since X, = Yj, we have proved (2.29).

]

3 Singular SDEs on generalized Heisenberg groups
3.1 Framework and main result
Consider the following vector fields on R™*¢, where m > 2,d > 1:

m d
(3.1) U(z,y) = O, + > _(Ai)idy,, 1<i<m,

k=1 =1
where (xvy) = (':le" » Ly Y1, 00 7yd> € Rm—l—d, O = (61]) and Al(l <l < d) are m x m-

matrices satisfying the following assumption:

13



(H) «ais invertible, G; := Aja — a* A} # 0(1 < [ < d), and there exists € € [0,1) such that

d
€ZG?|GZU|2 > Z layar(Gru, Gru)|, a € R, u € R™.
=1

1<I£k<d

As showing in the beginning of [21, §1], this assumption implies

(3.2) > 1D (G

i,j=1" [=1

U

2
> (1—e)(inf [Gillyis)laf, a R

1<i<d

Consequently, {U;, [Ui, Uj] }1<ij<m spans the tangent space of R™*%. Since divU; = 0, the

operator
1=, 5
=5 U
i=1

is subelliptic and symmetric in L*(R™9), and the associated diffusion process solves the
SDE for (X;,Y;) € R™+;

(3.3) d(X;,Y;) = Y Ui(X;) o dB;} = Zdt + o(X,)dB,,

i=1

where B; := (B})1<i<m is the m-dimensional Brownian motion, and
o(z):=(0,A1x, -, Agx), Z:= ZVU Ui = Ztr (©A;)0,,.

We now consider the following SDE with a singular drift b : [0, T] x R™4 — R™:

(34) d(Xt,Y/;) = {U(Xt)bt()?bﬁ) + Z}dt"— U(Xt)dBt.
Remark 3.1. Taked=m — 1,0 = [,,,«,, and for some constants a; # [,

a, ifi=1j7=1+1,
(Al)ij: 6[, leIl+1,j:1,
0, otherwise.

Then G;Gy, = 0 for | # k, so that (H) holds with € = 0. In particular, for ¢, = —;, = %, A

is the Kohn-Laplacian operator on the (2m — 1)-dimensional Heisenberg group. In general,
R™+4 is a group under the action

(3.5) (z,y) o (z',y) = (x+ 2",y +y + () 'Ax,2)), (z,y),(y) e R

and U;,1 < i < m are left-invariant vector fields. So, we call (3.4) a singular SDE on the
generalized Heisenberg group.

14



For two nonnegative functions F}, F5, we write F; < Fy if there exists a constant C' > 0
such that F} < CF,, and write F} < Fy if F} < F5 and Fy < Fy.

Let A, = 3¢, 92 . Then (A,, W??(R?)) is a negative definite operator in L*(R?). For
any o > 0 and A > 0, we consider the operator (A —A,)* defined on domain Z((—A,)%) :=

W22(R4). This operator extends naturally to a measurable function f on the produce space
R™* such that f(x, ) € 2((—A,)?) for x € R™:

(A= A8y) (@) == (A= By)* f (2, ) ().

For any 8 > 0,p > 1, let HJ*? be the space of measurable functions on R™*4 such that

1l = 11C1 = )% Flly =< 1 £l + (=2, £l < oo

Recall that for 5 € (0,2), we have

3O ~AHE) = [ (et O~ Iy, e R

For any 8 > 0,p,q > 1, let ]ng’p’q be the completion of C°([0,T] x R™4) with respect
to the norm

8 8
[ g == (1= Ay)2 fllzg < [ fllg + 11(=2y)2 fllzg.
Applying Theorem 2.1 to the present model, we will prove the following result.
Theorem 3.1. Assume (H) and let p,q > 1 satisfy
2 m+2d

(3.7) 54— »

< 1.

(1) If |b] € LY([0,00] x RN), then for any initial value x € R™?, the SDE (3.4) has a

weak solution (Xi)iep,r) starting at x with Ee I3 BeXOPdt — oo for qll X > 0.

2) If (hb) € H%’p’q holds for any h € C°(R™*?), then for any initial value x € R™+,
y 0

the SDE (3.4) has a unique strong solution X, starting at x up to the life time ¢ =
lim, oo T A G, i= inf{t € [0, 7] : | X| > n} with fOTM" |b|?(X;)dt < oo for any n > 1.

3.2 Proof of Theorem 3.1

To apply Theorem 2.1, we first collect some known assertions about .Z and the associated
Markov semigroup P;. Let || - ||,—, denote the operator norm from LP(R™*?) to L9(R™*+),
and let || ||, = || - [lp=p- For any a > 0,p > 1, let H%? be the completion of Cg°(R™) with
respect to the norm

1 Fllgr = 1L = L)% fllp < (1l + 1(=2)% £l

It is classical that

(3.8) 1(=20)2 fllp = 1V, f Il
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and for any g > 0,

£-18]
(3.9) 1 llgze = 11 £l + 1(=2y) ="V £,

where [(] ;= sup{k € Z, : k < (} is the integer part of .
Moreover, by the interpolation inequality, for any 0 < a < 8 < oo we have

B—a a
(3.10) 1 e = AL W™ 11F 1 g

Lemma 3.2. Assume (H).

(1) There exists a constant C' > 0 such that

m+2d

(3.11) 1Pz~ < O™ £ 0.

Moreover, for any p > 1 there exists a constant ¢, > 0 such that

(3.12) IV, P.f| < %(pt\fv))é, f € BR™) ¢ > 0.

(2) For anyr > 0,p € (1,00),
(1= 2)*2fllp = (L= 2) fllp + 1L = 2) Vo fllp, feHF,

and .
(=) 2 fllpy < (L) Vo fllp feHP.

(3) For anyr >0 and p € (1,00),

11 =) fllp < £l + 1(=2) fllp, f € HG™.

m+2d
(4) For anyr € (0,1) and p > ™32¢,

1flloo N =2) fllp, f € HT™.

(5) For anyp € (1,00), 1,0 > 0,60 € (0,1), and f € H;**>? NHZ“P,

11 = A" (1 =) fl, 2 (1= A FIRIE = 2) £l
I(=ay)" (=)D fll, < (=A)™ Flpll (=) fll,~°

Proof. The inequalities in (1) follow from Lemma 2.4 and Corollary 1.2 in [21] respectively.
Assertion (2) is due to [12, Theorem 4.10]. Since P, is contractive in LP(R™) and

(3.13) 1-2)*= c/ e I Pdt
0
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for some constant ¢ > 0, (1 — %)~ is bounded in LP(R™) for all p > 1. Combining this
with the closed graph theorem that

1 llp + 1 (=2) Fllp = ANl + (1= -2)* Flp,

we prove assertion (3). By the first inequality in assertion (1) and using (3.13), we have

Pillp—oo
oIl gy < g,

)
0 tlfr

=2yl < 51, |

for some constant C' > 0. So, assertion (4) holds. Finally, let
g =(1—A,)"(1—-2L) .
By the interpolation theorem (see [15, Theorem 6.10]), we have
1%l < Nlgll, "l g1l
Applying this inequality to g = (1 — Z)*2 f, we obtain
(1= Ay (1 = 2) 022 f||, = (L%l < [[(1 = 2)2], (1= A,)™ [l
O

Proof of Theorem 3.1. We first estimate .#; and J#5. Let P, = P,_,. By (3.11) and using
the interpolation theorem, we have

(3.14) Psiflloo = (t—8)""% || fllpst>s>0,p> 1.
So,

1 2d
(3.15) #5 {(pa) € (1,00 §+m;p <1}

Combining (3.14) with (3.12), we see that for any € € (0,p — 1),

1 (m42d)(1+¢)
2

o ok L1 tmanare
(3.16)  IVoPurfllow =< (¢ — 8) | Pul fI7EIRT < (t—8) 22 || fll,, t>s5>0.

So,

2 m+2d
3.17 Hy D 3(p,q) € (1,00 : =+ <1,
(3.17) R A A

Therefore, the first assertion follows from Theorem 2.1(2).
Next, we verify (A4;), (Az) and the assumption in Theorem 2.1(3). Since O is invertible,
there exists a constant A > 0 such that

ov] > [00] = M|, veR™

17



So, (Ay) holds. Next, since U; are smooth vector fields with constant or linear coefficients,
0P, f = £P,f for f € CP(RY) and

IVPflloo < ClIVfllso, t€10,T],f € Cy(RY)

for some constant C' > 0. So, (Ay) and the assumption in Theorem 2.1(3) (i) hold. So, for
(p, q) satisty (3.7), by (3.15) and (3.17) we have (p,q) € 1 N ;. According to Theorem
2.1(3), it remains to prove that for h € C5°(R™4),

(3.18) lim [[V{hZx(hb)}Hao = 0,
A—00
(3.19) limsup [[V{hV,Zx(hb)}|[1s < 0.
A—00
We leave the proofs to the following subsection. O]

3.3 Proofs of (3.18) and (3.19)
We first investigate the regularity of the solution to the following PDE:

(320) (9tut == (/\ - f)ut - ft, ur = 0.

For this, we need some preparations.
The following interpolation theorem comes from [12; 18].

Lemma 3.3. Let p € (1,00), 0 < a < 8 and f € H2*P NHZ?. For any 0 € (0,1), let
v=0a+ (1—0)3. Then f € H*'* and

(=) flly < CN=L) FII NI (=) £, 77
(1 =2 fll, < CI(L =)l = 2)° £l
where C' only depends on o, 3,7.

Next, let P, be the diffusion semigroup associated with the SDE (3.3). We estimate
derivatives of P, by following the line of [21].

Lemma 3.4. Letp > 1,t > 0. Then the following assertions hold.
(1) There exists a constant ¢, > 0 such that for any f € %B,(R™9),

C 1
(3.21) VyBfI < S (BIfP),
and
C 1
(3.22) VoVoPifl < F(PIfP)7.

(2) For any « € (0,1), there exists a constant C' = C(p,«) such that for all f € LP(R™+?),

1 _a_ 1
(3.23) IVoPfllugr + [[(=Ay)3 P fllugr < Ct7272 | fl,-
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Proof. (3.21) follows from [21, Theorem 1.1] for u = 0. Moreover, combining (3.21) with
(3.8) and (3.10), we obtain

(324) I(~80)8 Pufll, < 5 (PAFP)

Then we can claim that that it suffices to prove (3.22) holds. Indeed, by (3.22), (3.12) and
Lemma 3.3 we obtain

3 =

, Be(0,1),p>1,t>0.

IVoPuf g = 5211 f1ly
for a € (0,1). On the other hand, by Lemma 3.2(5), (3.22) and (3.24), we have
1 & ﬁ(l—g) &
1(=8y)1(=2L)2 Pifllp = [(=4y)* 2 2 (=2Z)> B fll,
< (=2 B Pl 2 (L) Pl
1
<2t | £

Therefore, (3.23) holds.
We now prove (3.22) by using the derivative formula in [21, Theorem 1.1]. Let Q; =
(qri(t)) 1<k 1<a With

t 1 t 1 t
qQu(t) == / <G2‘Gk (BS — —/ Bsds) , (BS — —/ Bsds) > ds.
0 tJo tJo

Then Q; is invertible for ¢t > 0. Next, for z,w € R™ and v € R?, let
1 t
(3.25) (o)t = v — (O hw, Ayw) — ;/ (Gro~'w, B,)ds, 1<1<d.
0

Then for the functional (x,y) — 4w We have
(3.26) v(w’,v’)(&t,w,v,z)l = —(@_lw, Alw’>, (w', Ul) - Rm+d, 1 < l < d
Next, the solution of (3.3) starting at (x,y) is given by

t
Xi=z+aB, (Yo)i=uy+ (Axz,B) +/ (AiaBg,dBs), 1<1<d.
0
Then
(3.27) Viw o) (Xe, Ya)) = (W', (V') + (Aw', By)), 1<1<d.
According to [21, Theorem 1.1(3)], we have the Bismut derivative formula
(328) Vw,vptf - ]E’[f(Xta K)Mt]v
where by the formulation of 7’ given in [21 Theorem 1.1],
~ t
Mt ]'L = <@ w, Bt +Z Qt O-/twvar) / <GkBS,dB5>
k=1 0
d d 15
(329) - ZDﬁk (Q;I&t,w,v,x)k — twvx F </ GkBst, Bt>
k=1 0
d m
Dh Qt atwvx)k/ t
a w,V,T G )
+ Z Z 0 s+ 2.2 5 nnale(G)



for hi(s) := se;, Br(s) = fos GiB,dr,s € [0,t], and {e;};=1... mm being the orthonormal basis
of R™. According to step (1) in the proof of [21, Theorem 1.1], for any p > 1, we have

([o] + [wl(l=] + V)

(3.30) {E[M,[P}/P < " :
Moreover, by (3.29) we have
d t
v(111’,1)’)]\425 - Z(Qt_lv(w’,v’)&t,w,v@)k/ <GkBS7 st>
k=1 0

d d

_ ~ Q_lv w’ v’ a aw,,x )k !
- Z Dﬁk(Qt 1v(w’,v’)gt,w,v,m)k - Z ( L ( t i ) / GkBsdsa Bt
k=1 k= 0

1

m d

Dhi(Qilv w’ v’ Q ,w,v,x)k: t
ryy PGt [ angas

=1 k=1

=]

d m

b, -
+ Z Z §(Qt lv(w’,v’)at,w,v,x)k(Gk)ii~
k=1 i=1
Combining this with (3.26) we prove
|w]|w'|

(3.31) {E|V () My |P}/P < .

, (W' v) € R™H

By the Markov property and (3.28), we derive
v(w,v)Ptf = v(w,v)P%<P%f) = E[(P%f)(ngx/l)Mf

t
2 2

],
and by the chain rule,
Viw o)V wo) Pef = Vi o B[P f) (X1, Yi)Mi]

(3.32)
—E (V900w Pyf ) (X Y My | + B [(Py)(Xy, Y2) V) My

By (3.27), (3.30) and using Holder’s inequality, we obtain

E ’ <Vv(w’,v’)(XLvYL)P§f> (X%, Y%)M%
2 2
yp (V1 (2] + VD) (0] + w(lz] + V)

t2 ’

= (P fIP)

while by (3.31) and Hoélder’s inequality,

[ul|v]
E‘(ng)( %,Y%)V(w/m/)j\/[% j(Pt’ﬂp)l/pT-

2

Therefore, it follows from (3.26) that

IV )V w) P | (2, )

= (ppys (LG4 VN wlll £ VD) ol Y,

(3.33)
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Finally, by the definition of U;, we have

U;U; = (Z OriOz), + Z (Arx); yz) (Z OrjOr, + Z (Aiz); yz)
= Z Z gkieljazkaxl + Z Z eki(Al)jkayl + Z Z eki(Alx)jaxkayz

k=1 =1 k=1 =1 k=1 =1
d m d d

YO (A)ibi0y,0u, + > ) (Aw)i(Ag);0,,0,,
=1 k=1 =1 k=1

Combining this with (3.21) and (3.33) with (z,y) = (0,0), we arrive at

UUPF(0,0)] 2 H(BIFPO,0)'7, 1<) <mp> 1.t >0,

~+ | =

As explained in the proof of [21, Proof of Corollary 1.2], by the left-invariant property of U;
and 0, under the group action in (3.5), this is equivalent to (3.22). O

The next lemma due to [12, Theorem 5.15] generalizes the classical Sobolev embedding
theorem.

Lemma 3.5. Suppose p € (1,00) and o > m;%, then

(330 Flle. < O+ 24, @) fllmsrs 7 € [0, — (m + 2d) ],
where Fwey) - fo)]
reoy)— f(x
e, = 1l +1fhs 1l = sup — /@l

zERI+™ y=£0) \3/’

Finally, we introduce the following lemma.

Lemma 3.6. Let p > m +2d. For any B € (0,1] and « € (m;Qd, 1], there exists a constant
C = C(a,B,m + 2d,p) > 0 such that for R™-valued function b € Hg’p and real function
u € LP(R™) with (—%L)2+5u € HE?,

B
IVobtlhgs < Dl (I1(=20)F Voullugs + [ Voulzgs )

Proof. By the definition of || - ||H5,p and noting that V,,u = (V,u,b), we have

B
2

IVobullysr = [{(Vou, b)|lp + [[(=Ay) 2 (Vou, b) |,
B
= I Voullsolbllp + [[(=Ay) 2 (Vou, b)[|,.

(3.35)

According to [27, (2.5)],

B
2

/Rd |2,y +y) = fla,y)Pdy < (1= Ay)2 f(a, )5y "7 A1), f € H?.
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Then
1(fC+(0,97) = fFODIE = /Rm |f(z,y+y) = f(z,y)[Pdady

<M (PP A D).

Combining this with Lemma 3.5, for any v € (0, @ — 2424

), we obtain

(V) + (0,5) — (To)(), (- + (0, ) = b
= [T+ 4) ~ (o), by + o) — bl ) ey

< / m <sup (Vou)(z,y + o) — (Vou)(zp)P / by + /)~ bl ) dy> du

y€Rd

< IVaullen (77 A1) [ (bl 3/) = blavy)l dody

Rm+d

<[ Voullger (117 ADIDIL,, (577 A1),
By (3.6), Minkovskii inequality and Lemma 3.5, we have

(-4, >§<v w, b

< 1(=4,)? Vub>||p+||<w< A,)?

2b)llp
/ K(Vau)(- + (0,4) = (Vou) (), b(- + (0,)) = b)), [y |77~ *dy’
< bl ll(—2)) % Voulloo + (= Ay) # bl | Vottlloo + [ Voullges Bl
< bl (=22 Voullizr + [Bllygzs [IVou g
Substituting this into (3.35), we finish the proof. O
It is now ready to prove the following regularity estimates for solutions of (3.20).

Theorem 3.7. Let p,q > 1 satisfy

2 24
(3.36) .7
q b

For any f € C5°([0,T] x R™™) and A > 0, (3.20) has a unique solution u* = Q,f, where
Qxf isin (2.3) for Psy = P,_s. Moreover:

(1) There exists a constant C' > 0 such that
1
IVo Vol og + 11V og + 11(=2)1Vou| g
< Cllflleg, f € C5o([0,T] x R™*).
For any o € (0,1) with o < 1 — 2,

< 1.

(3.37)

||(— )50 laze + [ Voud g
( )”fHLgv te [O>T]7f € Cgo([O?T] X Rerd)

holds for some decreasing function ¢ : (0,00) — (0,00) with limy_, ¢(A) = 0.

(3.38)

22



(2) There exists a constant C > 0 such that

(3.39) IVyVoullly < CIAN gpar € CE2([0,T] x R™™),
For any a € (0,1) with a < 1 — %,

1
IVyud g e + 1(=Ay) T Voup ug

(3-40) SOOI e 1€ 10,T],f € CR(0,T) x R™)

holds for some decreasing function ¢ : (0,00) — (0,00) with limy_, ¢(A) = 0.
Proof. (a) By (Ay) and Lemma 2.3, (3.20) has a unique solution u* = Q, f such that
[u*ls == [ oo + [ Vourfloo < LM fllg, X =0,

holds for some decreasing function ¢ : (0,00) — (0,00) with limy . ¥(A\) = 0. Let
g € CP(R™). By (Ay), the heat equation 9,P,g = £P,g, and the contraction of P,
in LP(R™*?), we have

(3.41) 1-Z2uM g =1 fllg-

Since (V,9)i = Uig, (VoVe9)ij = UiUjg, 1 < 4,5 < m, Lemma 3.2(2) gives
(3.42) IVoVodlly < (=2)2Vogllp < 11(=L)gllp-
Combining this with (3.41), we obtain

(3.43) WUt g 2 W flleg, 1< i <m

Since (3.1) implies U;U; = 3¢ (G)40,,, # 7, it follows from (3.2) that

d m
(3.44) > 10,97 =D [UU9)?
=1

ij=1
This together with (3.43) leads to
(3.45) IVyutllzg < N1 fllzg-
On the other hand, (3.8) implies
1
(3.46) 1(=Ay)2uM g < (1125
Applying Lemma 3.2(5) with § = 1 and Young’s inequality, we have
1 1
1(=2y) 1 Vout|lrg < (=Ay)2uMpg + [(—L)uMlg < [1£]]zg-

Combining this with (3.43) and (3.45), we prove (3.37).
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Next, recall that
T
u) = (Qrf)s = / e MO, fdt.

By (3.23), Holder’s inequality, and noticing that o < 1 — % implies qqu(—% —3) > —1, we
obtain

1
IVougllmgr + 1(=Ay) Fug g

T
= / e M=t — 5)7E 72| ] dt

T
0

= oMy

where ¢ is decreasing with limy_,o ¢(\) = 0. Therefore, assertion (1) is proved.
(b) Let w* = (—Ay)%u)‘, where u* := @, f is the unique solution of (3.20). We have

q—

1
q
1/ 11z

(3.47) o} = (A — L)w} — (A1 fi, wh=0.
Applying (3.8) and (3.37) for (—Ay)if replacing f, we obtain
1 1 1
IVyVoutllzg < 1(=Ay)2 Voullg =l(=2y) 1 Vow’llg < (=2y)3 fllg = NFNspa-

So, (3.39) holds.
Finally, applying (3.39) to (w?, (—Ay)if) replacing (u?, f), we prove (3.40). O

We now investigate the regularity of the solution to the following singular equation for
R™ 4 valued u, = (u},- -, uf"™):

(348) 8tut = ()\ — Z}Ut - ngtut — O'l)t7 ur = 0.
Theorem 3.8. Let p,q > 1 satisfy (3.36).

(1) Assume b € C°([0,T] x R™4 R™). Then there exists a constant \g > 0 such that for
any A = Ao, the equation (3.48) has a unique solution (denoted by Z\b) satisfying

(3.49) IVaVaZEblry < [Ibll7g + bl globllg + llobl|g.

(2) There exists a constant Ay = Ao such that for any A > Ay,

bl

(3.50) IV, VoEab||z < ||ab||H§7p’q + ||gb||H§’p,q ahme
Moreover, for any o € (%Qd, 1— %),
(3.51) S IVy(Exb)illagr = &(A) (||ab||H§,,,,q + ||ab||H§,p,q||b||Hy%7p’q)

holds for some decreasing function ¢ : (0,00) — (0,00) with limy . ¢(A) = 0.
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Proof. (1) By Lemma 2.3 and Theorem 2.1, there exists a constant A\g > 0 such that for any
A = Ao, the equation (3.48) has a unique solutlon u*(=: Z\b). By (3.37), we have

IVoVeE\Db Ly 2 [VobErb + obl| g
= bllLg[VoZrblle + [lob][ g
= by + Il globlly + llobl g,
(2) Let H be the space of measurable functions u : [0, 7] x R™T4 — R™+4 such that

ullir = sup (¥t + 1(~29) Votullizg ) < o0.
t€[0,T]

Then H is a Banach space with the norm || - || defined above. For any u € H, let ®u be
the solution to the following equation:

(352) (9t(q)u)t = ()\ - g)(q)'ll)t - Vobtut - O'bt, ur = 0.

By (2.4), we have du = Q\(V,pu — ob). By Lemma 3.6 with § = %, we have

(3.53) [Vobul|_ 1 ghra = = bl g (Sup 1(=Ay) i Voul|ger + sup [V, ut”H"”) :
te(0,7) te[0,7

Combining this with (3.38) and (3.40), we obtain

(3.54)  [|Pullg X ¢(M)[[Vou + ob] ghra = ¢(A) <||0bHH;,p,q + IIbHH;,p,qHUHH) < 00.

So, du € H for u € H. Moreover, for any u, @ € H, (3.52) and (3.54) imply
19w = @ulu 2 oM Von(u = Dll 350 2 SNy gl =l

y

Since ¢(A) — 0 as A — oo, there exists a constant \; > 0 such that ¢(A\)||b|| 1 1 for

qu

A = A1. Then by the fixed point theorem, for any A > A;, the equation (3.48) has a unique
solution =Zyb € H. Furthermore, (3.54) implies

(3.55) IZ3bllr 2 ¢Mllobll g par A2 Mo

This together with (3.53) gives

(3.56) IVosZabll 100 2 Mobll g sallPll g rar A= 0
Then (3.39) and (3.56) imply
IV, VoZrbllzg = [[Vobu® + ob]| e e P L R L] P e
Similarly, (3.40) and (3.56) yield
S IV, (Exb)ellizr = ¢(N)[Vonu® bl

< 6(A >(||abu o+ llob] Wnan;,p,q)-
Y

Then the proof is finished. O
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We are now ready to prove (3.18) and (3.19).

Proof of (3.18) and (3.19). We first consider smooth b then extend to the situation of The-
orem 3.1.

(a) Let b € C([0,T] x R™*4 R™). Then for any h € C°(R™), hb € C>([0,T] x
R™T4 R™). Applying Theorem 3.8, we obtain that

(3.57) IVoVoErhbll g < ||hb]|7a + [|hb| g [|ohb] g + [|ohb]| g
and

= ¢ <
(358) ||vyv0 Ahb”Lp - ||0-hb||H%,p,q + ||0-hb||H%,p,q||hb||H%,p,q

Y Yy Y

for any A > A;. Next, by Lemma 3.2(4), (3.51), and Theorem 2.1(1),

359 IVEmD) =000 (Iohbl .+ [kl Ay, )
and
(3.60) Vs (Z2xhb)]|oe < @(A)([lohbl| 12 + [|hb]|g)

hold for large A > 0 and some decreasing function ¢ : (0, 00) — (0, 00) with limy_,o, ¢(A) = 0.

Moreover, for any R > 0, there exists a constant ¢(R) > 0 such that
d

VfI*(z) < e(R) (Z Uif[P(x) + ) 10y.f 2(»”E))
i=1 i=1

= ¢(R) (|VafP(x) + |V, /(@) . || < R.f € CH(R™).

m

(3.61)

Combining (3.59)-(3.61), we conclude that for large A > 0,

(3.62) [PV (Exhb)lloo < ConllbllacdA 17D 350 + IIhbeﬂé,p,q),

where Cyp, > 0 is a constant depending on supph and ||olsuppnlleo- Similarly, (3.57), (3.58)
and (3.61) imply

(363 IVAVo(Enhb) g < Con(Illoo + 11 ls) DIy, + I1BIE, ., )
Yy Hy

for large A > 0 and some constant C, 5 > 0 depending on supph and || 1suppn||o. Therefore,
(3.18) and (3.19) are proved.
(b) Now, assume that for any h € C5°(R™) we have

(3.64) 1Bbl 450 = (1 = Ay)1(Ab)] g < 0.

2
Yy

Let p be a non-negative smooth function with compact support in R™** and [o,... p(z)dz =
1. For any n € N, let

(3.65) pn(2) = n™Tp(nz), b" = p, x (hb), z € R™™
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Then

lim ||b" —hb|| 1,,=0.

n—00 HZ™
Combining this with (3.62) and (3.63) for b™ replacing hb, and by an approximation method,
we may find out a constant A; > 0 not depending on n, such that for any A > A, the unique

solution u*(=: Zyhb) of (3.48) satisfies

(3.66) AV (Zxhb) [ = (1 + Ca,h)||h||m¢()‘)(th”H%,p,q + ||hb||§ﬂ%,p,q),
and
(3.67) VRV, (Z2xhb)| g = (1 + Cop)([[h]loo + |Ih’\|oo)(\|hb||H%,p,q + thHfm%,p,q)?

here, Cy p, ¢ are in (3.62) and (3.63). Combining these with (3.64), we finish the proof. [J
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