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Abstract

By using the ultracontractivity of a reference diffusion semigroup, Krylov’s esti-
mate is established for a class of degenerate SDEs with singular drifts, which leads to
existence and pathwise uniqueness by means of Zvonkin’s transformation. The main
result is applied to singular SDEs on generalized Heisenberg groups.
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1 Introduction

Since 1974 when Zvonkin [29] proved the well-posedness of the Brownian motion with bound-
ed drifts, his argument (known as Zvonkin’s transformation) has been developed for more
general models with singular drifts, see [19, 13, 26, 24] and references within for non-
degenerate SDEs, and [4]-[7] and [11, 20] for non-degenerate semilinear SPDEs. In these
references only Gaussian noise is considered, see also [17, 25] for extensions to the case with
jump.

In recent years, Zvonkin’s transformation has been applied in [2, 16, 22, 23, 27] to a class
of degenerate SDEs/SPDEs with singular drifts. This type degenerate stochastic systems
are called stochastic Hamiltonian systems in probability theory. Consider, for instance, the
following SDE for (Xt, Yt) on R2d (d > 1):

(1.1)

{
dXt = Ytdt,

dYt = bt(Xt, Yt)dt+ σt(Xt, Yt)dWt,

where Wt is the d-dimensional Brownian motion, and

b : [0,∞)× R2d → Rd, σ : [0,∞)× R2d → Rd ⊗ Rd
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are measurable. According to [27, Theorem 1.1], if there exists a constant K > 1 such that

K−1|v| 6 |σtv| 6 K|v|, t > 0, v ∈ Rd,

and for some constant p > 2(1 + 2d),

sup
t>0
‖∇σt‖Lp(R2d) +

∫ ∞
0

‖(1−∆x)
1
3 bt‖pLp(R2d)

dt <∞,

then the SDE (1.1) has a unique strong solution for any initial points. By a standard
truncation argument, the existence and pathwise uniqueness up to the life time hold under
the corresponding local conditions.

In this paper, we aim to extend this result to general degenerate SDEs, in particular,
for singular diffusions on generalized Heisenberg groups. As typical models of hypoelliptic
systems, smooth SDEs on Heisenberg groups have been intensively investigated, see for
instance [1, 8, 9, 10, 14, 21] and references within for the study of functional inequalities,
gradient estimates, Harnack inequalities, and Riesz transforms. We will use these results to
establish Krylov’s estimates for singular SDEs and to prove the existence and uniqueness of
strong solutions using Zvonkin’s transformation.

In Section 2, we present a general result (see Theorem 2.1(3)) for the existence and
uniqueness of degenerate SDEs with singular drifts, and then apply this result in Section 3
to singular diffusions on generalized Heisenberg groups.

2 General results

For fixed constant T > 0, consider the following SDE on RN :

(2.1) dXt = Zt(Xt)dt+ σt(Xt)dBt, t ∈ [0, T ],

where Bt is the m-dimensional Brownian motion with respect to a complete filtered proba-
bility space (Ω,F , {Ft}t∈[0,T ],P), and

Z : [0, T ]× RN → RN , σ : [0, T ]× RN → RN ⊗ Rm

are measurable and locally bounded. We are in particular interested in the case that m < N
such that this SDE is degenerate.

Throughout the paper, we assume that for any x ∈ RN and s ∈ [0, T ), this SDE has a
unique solution (Xx

s,t)t∈[s,T ] with Xx
s,s = x; i.e. it is a continuous adapted process such that

Xx
s,t = x+

∫ t

s

Zr(X
x
s,r)dr +

∫ t

s

σr(X
x
s,r)dBr, t ∈ [s, T ].

Let (Ps,t)06s6t6T be the associated Markov semigroup. We have

Ps,tf(x) = Ef(Xx
s,t), f ∈ Bb(RN) ∪B+(RN), x ∈ RN , 0 6 s 6 t 6 T,
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where Bb (resp. B+) denotes the set of bounded (resp. nonnegative) measurable functions.
The infinitesimal generator of the solution is

Ls :=
1

2

N∑
i,j=1

(σsσ
∗
s)ij ∂i∂j +

N∑
i=1

(Zs)i ∂i.

Now, let b : [0, T ] × RN → Rm be measurable. We intend to find reasonable conditions
on b such that the following perturbed SDE is well-posed:

(2.2) dX̃t = {Zt + σtbt}(X̃t)dt+ σt(X̃t)dBt, t ∈ [0, T ].

To state the main result, we introduce two spaces Lqp,loc([0, T ]× RN) and W q
p,loc([0, T ]×

RN), for p, q > 1. A real measurable function f defined on [0, T ]×RN is said in Lqp([0, T ]×
RN), if

‖f‖Lqp :=

(∫ T

0

‖ft‖qLp(RN )
dt

) 1
q

<∞.

Next, if f ∈ Lqp([0, T ]×RN) such that ∇fs exists in weak sense for a.e. s ∈ [0, T ] and |∇f | ∈
Lqp([0, T ] × RN), where ∇ is the gradient operator on RN , we write f ∈ W q

p ([0, T ] × RN).
Consequently, we write

f ∈ Lqp,loc([0, T ]× RN)

if hf ∈ Lqp([0, T ]× RN) for any h ∈ C∞0 (RN), and

f ∈ W q
p,loc([0, T ]× RN)

if hf ∈ W q
p ([0, T ]× RN) for any h ∈ C∞0 (RN). Moreover, a vector-valued function is in one

of these spaces if so are its components.
Finally, a real function f on RN is called σt-differentiable, if for any v ∈ Rm it is differ-

entiable along the direction σtv; i.e.

∇σtvf(x) :=
d

dr
f(x+ rσt(x)v)

∣∣∣
r=0

exists for any x ∈ RN . A real function f on [0, T ] × RN is called σ-differentiable if ft is
σt-differentiable for every t ∈ [0, T ]. In this case, ∇σf : [0, T ]× RN → Rm is defined by

〈(∇σf)t(x), v〉 := ∇σtvft(x), v ∈ Rm, t ∈ [0, T ], x ∈ RN .

When ∇f exists, we have ∇σf = σ∗∇f . Let

B =
{
f ∈ Cb([0, T ]× RN) : ∇σf ∈ Cb([0, T ]× RN ;Rm)

}
.

Then B is a Banach space with

‖f‖B := ‖f‖∞ + ‖∇σf‖∞,

where ‖ · ‖∞ is the uniform norm. An Rm-valued function g is said in the space Bm, if its
components belong to B. Let

‖g‖Bm = ‖g‖∞ + ‖∇σg‖∞, g ∈ Bm.

We make the following assumptions.
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(A1) σt(x) is locally bounded in (t, x) ∈ [0, T ] × RN , and for any R > 0, there exists a
constant c > 0 such that

|σt(x)bt(x)| > c|bt(x)|, t ∈ [0, T ], |x| 6 R.

(A2) For any f ∈ C∞0 ([0, T ]× RN) and λ > 0, the function

(2.3) (Qλf)s(x) :=

∫ T

s

e−λ(t−s)Ps,tft(x)dt, s ∈ [0, T ], x ∈ RN

satisfies that ∂s(Qλf)s,Ls(Qλf)s exist and are locally bounded on [0, T ]× RN with

(2.4) (∂s + Ls − λ)(Qλf)s + fs = 0.

Assumption (A1) holds provided σ is continuous and has rank m. Assumption (A2) holds if
Zt(x) and σt(x) are regular enough in x, for instance, C2-smooth in x uniformly in t ∈ [0, T ].

For any p, q > 1, let ‖ · ‖p→q denote the operator norm from Lp(RN ; dx) to Lq(RN ; dx).
To introduce the integrability conditions for the drift b, we need the following two classes
of pairs (p, q) ∈ (1,∞]2:

K1 :=
{

(p, q) ∈ (1,∞]2 : there exists γ ∈ L
q
q−1 ([0, T ]) such that

‖Ps,t‖p→∞ 6 γ(t− s), 0 6 s < t 6 T
}
,

K2 :=
{

(p, q) ∈ (1,∞]2 : there exists γ ∈ L
q
q−1 ([0, T ]) such that

‖σ∗t∇Ps,t‖p→∞ 6 γ(t− s), 0 6 s < t 6 T
}
.

Obviously, both K1 and K2 are increasing sets; that is, if (p, q) ∈ Ki then (p′, q′) ∈ Ki for
p′ > p and q′ > q, i = 1, 2. We will also use the following class

2K1 := {(2p, 2q) : (p, q) ∈ K1}.

Clearly, 2K1 ⊂ K1. When Z = 0 and σσ∗ = IN×N , the N × N -identity matrix, we have
Ps,t = Pt−s for the standard heat semigroup Pt, so that

(2.5) ‖Ps,t‖p→∞ 6 C(t− s)−d/(2p), ‖σ∗∇Ps,t‖p→∞ 6 C(t− s)−
1
2
−d/(2p), 0 6 s < t 6 T

for some constant C > 0, then

(2.6) K1 ⊃
{

(p, q) ∈ (1,∞]2 :
1

q
+

d

2p
< 1
}
, K2 ⊃

{
(p, q) ∈ (1,∞]2 :

2

q
+
d

p
< 1
}
.

These formulas also hold for elliptic diffusions satisfying (2.5). But for degenerate diffusions
the dimension d in this display will be enlarged, see for instance the proof of Theorem 3.1
below.

We are now ready to state the main result in this section. In particular, the first assertion
implies that if K1 ∩K2 6= ∅, then for any b ∈ C∞0 ([0, T ]×RN) and large enough λ > 0, the
equation

(2.7) us =

∫ T

s

e−λ(t−s)Ps,t
{
∇σtbtut + σtbt

}
dt, s ∈ [0, T ]

has a unique solution u =: Ξλb ∈ Bm. We write f ∈ C1,2([0, T ]× RN) if f is a function on
[0, T ]× RN such that ∂tft(x) and ∇2ft(x) exist and continuous in (t, x).
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Theorem 2.1. Assume (A1) and (A2). Then the the following assertions hold.

(1) For any (p, q) ∈ K1 ∩K2 and L > 0, there exists λ̃ > 0 such that for any λ > λ̃, and
b : [0, T ] × RN → Rm with |σb| + |b| ∈ Lqp([0, T ] × RN) and ‖|σb|‖Lqp ∨ ‖|b|‖Lqp 6 L,
the equation (2.7) has a unique solution u =: Ξλb in Bm. Moreover, there exists a
decreasing function ψ : [λ̃,∞)→ (0,∞) with ψ(∞) := limλ→∞ ψ(λ) = 0 such that for
any b, b̃ : [0, T ]× RN → Rm with ‖|σb|‖Lqp , ‖|σb̃|‖Lqp , ‖|b|‖Lqp , ‖|b̃|‖Lqp 6 L,

(2.8) ‖Ξλb− Ξλb̃‖Bm 6 ψ(λ)‖|b− b̃|+ |σ(b− b̃)|‖Lqp , λ > λ̃.

(2) If |b| ∈ Lqp([0, T ]× RN) for some p, q > 1 with (p, q) ∈ 2K1, then for any x ∈ RN the

SDE (2.2) has a weak solution (X̃t)t∈[0,T ] starting at x with respect to a probability Q
such that EQeλ

∫ T
0 |bt(X̃t)|

2dt <∞ holds for all λ > 0.

(3) Assume further that

(i) for large enough λ > 0, Ξλf ∈ C1,2([0, T ]×RN) holds for any f ∈ C∞0 ([0, T ]×RN);

(ii) there exists (p, q) ∈ 2K1 ∩ K2 such that |b| + |∇σ| ∈ Lqp,loc([0, T ] × RN), Z ∈
W q
p,loc([0, T ]× RN), and for large enough λ > 0 there hold

(2.9) ∇σΞλ(hb) ∈ W q
p,loc([0, T ]× RN), h ∈ C∞0 (RN),

(2.10) lim
λ→∞
‖h∇Ξλ(hb)‖∞ = 0, h ∈ C∞0 (RN).

Then for any x ∈ RN the SDE (2.2) has a unique strong solution X̃t starting at x up to

the life time ζ := limn→∞ T∧ζn := inf{t ∈ [0, T ] : |X̃t| > n} with
∫ T∧ζn

0
|b|2t (X̃t)dt <∞

for any n > 1.

By (2.7) and the definition of Qλ in (A2), we have

(2.11) Ξλb = Qλ

{
∇σbΞλb + σb

}
.

If (2.6) holds, Theorem 2.1 (3) ensures the strong well-posedness when |b| ∈ Lqp for some

p, q > 1 with d
p

+ 2
q
< 1, which coincides known optimal result in the elliptic setting. In

the elliptic case there exists much weaker sufficient conditions for the well-posedness, for
instance, in a recent paper by Xicheng Zhang and Guohua Zhao [28], the drift is allowed to
be distributions (not necessarily functionals).

To prove Theorem 2.1, we first investigate the Krylov estimate and the weak existence
for (2.2).

2.1 Krylov’s estimate and weak existence

Theorem 2.2. Assume (A1) and (A2). Let p, q > 1 such that (p, q) ∈ K1 and |b|2 ∈
Lqp([0, T ]× RN).

5



(1) For any (p′, q′) ∈ K1 there exists a constant κ > 0 such that for any s ∈ [0, T ) and

solution (X̃s,t)t∈[s,T ] of (2.2) from time s with
∫ T
s
|bt(X̃s,t)|2dt <∞,

(2.12) E
(∫ T

s

|ft(X̃s,t)|dt
∣∣∣∣Fs

)
6 κ‖f‖

Lq
′
p′
, f ∈ Lq

′

p′([0, T ]× RN), s ∈ [0, T ].

Consequently, for any f ∈ Lq
′

p′([0, T ] × RN) with (p′, q′) ∈ K1 and any λ > 0, there
exists a constant c(f, λ) ∈ (0,∞) such that

(2.13) E
(

eλ
∫ T
s |ft(X̃s,t)|dt

∣∣∣Fs

)
6 c(f, λ), s ∈ [0, T ].

(2) The assertion in Theorem 2.1(2) holds.

To prove this result, we need the following lemma.

Lemma 2.3. Assume (A1) and (A2).

(1) For any (p, q) ∈ K1, there exists a decreasing function ψ : [0,∞) → (0,∞) with
ψ(∞) := limλτ∞ ψ(λ) = 0 such that for any λ > 0, (Qλ, C

∞
0 ([0, T ] × RN)) in (A2)

extends uniquely to a bounded linear operator Qλ : Lqp([0, T ]×RN)→ L∞([0, T ]×RN)
with

‖Qλf‖∞ 6 ψ(λ)‖f‖Lqp , f ∈ Lqp([0, T ]× RN), λ > 0.

(2) For any (p, q) ∈ K1 ∩K2, (Qλ, C
∞
0 ([0, T ] × RN)) extends to a unique bounded linear

operator Qλ : Lqp([0, T ]× RN)→ B such that

‖Qλf‖B := ‖Qλf‖∞ + ‖∇σQλf‖∞ 6 ψ(λ)‖f‖Lqp , λ > 0, f ∈ Lqp([0, T ]× RN)

holds for some decreasing ψ : [0,∞)→ (0,∞) with ψ(∞) = 0.

Proof. We only prove (1) since that of (2) is completely similar. For any (p, q) ∈ K1, there

exists γ ∈ L
q
q−1 ([0, T ]) such that for any λ > 0 and f ∈ C∞0 ([0, T ]× RN),

‖Qλf‖∞ 6 sup
s∈[0,T ]

∫ T

s

e−λ(t−s)γ(t− s)‖ft‖Lp(RN )dt

6 sup
s∈[0,T ]

(∫ T

s

∣∣e−λ(t−s)γ(t− s)
∣∣ q
q−1 dt

) q−1
q

‖f‖Lqp , λ > 0.

So, assertion (1) holds with

ψ(λ) :=

(∫ T

0

∣∣e−λtγ(t)
∣∣ q
q−1 dt

) q−1
q

.

We will also need the following lemma which reduces the desired Krylov’s estimate to
f ∈ C∞0 ([0, T ]× RN). It can be proved using a standard approximation argument.
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Lemma 2.4. Let s ∈ [0, T ] and p, q > 1 For any two stopping times τ1 6 τ2, measurable
process (ξt)t∈[s,T ] on RN , and random variable η > 0, if the inequality

(2.14) E
(∫ T∧τ2

s∧τ1
ft(ξt)dt

∣∣∣∣Fs

)
6 ‖f‖LqpE(η|Fs)

holds for all nonnegative f ∈ C∞0 ([0, T ]×RN), it holds for all nonnegative f ∈ Lqp([0, T ]×RN).

Proof of Theorem 2.2. (1) According to the Khasminskii estimate, see [26, Lemma 5.3],
(2.13) follows from (2.12). For simplicity, we only prove for s = 0. To prove (2.12), we
first consider b = 0. Let (Xt)t∈[0,T ] solve (2.1) and let

τn = inf{t ∈ [0, T ] : |Xt| > n}, n > 1.

For 0 6 f ∈ C∞0 ([0, T ] × RN), take u(λ) = Qλf for λ > 0. By (A2) and Itô’s formula, we
obtain

0 6 E
(
u

(λ)
T∧τn(XT∧τn)

∣∣Fs

)
= u

(λ)
0 (Xs∧τn) + E

(∫ T∧τn

0

(∂t + Lt)u
(λ)
t (Xt)dt

∣∣∣∣Fs

)
6 (1 + λT )‖u(λ)‖∞ − E

(∫ T∧τn

0

−ft(Xt)dt

∣∣∣∣Fs

)
.

Noting that u(λ) = Qλf , combining this with Lemma 2.3 and Lemma 2.4, for any (p′, q′) ∈ K1

there exists decreasing ψ : [0,∞)→ (0,∞) with ψ(∞) = 0 such that

E
(∫ T∧τn

0

ft(Xt)dt

∣∣∣∣F0

)
6 ψ(λ)‖f‖

Lq
′
p′

(1 + λT ), 0 6 f ∈ Lq
′

p′([0, T ]× RN).(2.15)

Letting n → ∞ we prove (2.12) for b = 0. In general, let (X̃t)t∈[0,T ] solve (2.2) with∫ T
0
|bt(X̃t)|2dt <∞. Define

Tn = inf

{
t ∈ [0, T ] :

∫ t

0

|br(X̃r)|2dr > n

}
, n > 0,

where inf ∅ :=∞ by convention. Let

Rn = exp

[
−
∫ T∧Tn

0

〈
br(X̃r), dBr

〉
− 1

2

∫ T∧Tn

0

|br(X̃r)|2dr

]
,

B̃t = Bt +

∫ t∧Tn

0

br(X̃r)dr, t ∈ [s, T ].

Then under the probability RnP, (X̃r, B̃r)r∈[0,T∧Tn] is a weak solution to the SDE (2.2) for
b = 0. So, by the assertion for b = 0, there exists a constat c > 0 such that

(2.16) E
[
Rn

(∫ T∧Tn

0

f(r, X̃r)dr

)2∣∣∣∣F0

]
6 c‖f‖2

Lq
′
p′ (T )

.
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By Hölder inequality and (2.12) for b = 0, there exists a constant c′ > 0 such that

E
(
R−1
n

∣∣F0

)
= E

(
Rne2

∫ T∧Tn
0 〈br(X̃r),dBr〉+

∫ T∧Tn
0 |br(X̃r)|2dr

∣∣F0

)
6
√

E
(
Rne4

∫ T∧Tn
0 〈br(X̃r),dB̃r〉−8

∫ T∧Tn
0 |br(X̃r)|2dr

∣∣F0

)
×
√

E
(
Rne6

∫ T∧Tn
0 |br(X̃r)|2dr

∣∣F0

)
=

√
E
(
Rne6

∫ T∧Tn
0 |br(X̃r)|2dr

∣∣F0

)
6 c′,

where the last step follows from |b|2 ∈ Lq/2p/2([0, T ] × RN) for some (p, q) ∈ 2K1 and (2.13)
for b = 0. Then there exists a constant C > 0 such that{

E
(∫ T∧Tn

0

fr(X̃r)dr
∣∣∣F0

)}2

6 E
[
Rn

(∫ T∧Tn

0

fr(X̃r)dr

)2∣∣∣F0

]
· E
(
R−1
n

∣∣F0

)
6 C‖f‖2

Lq
′
p′ (T )

.

By letting n→∞ we prove (2.12).
(2) Assume that |b| ∈ Lqp([0, T ] × RN) for some (p, q) ∈ 2K1. Let (Xt)t∈[0,T ] solve (2.1)

with X0 = X̃0. We intend to show that it is a weak solution of (2.2) under a weighted
probability Q := RP, where R > 0 is a probability density, and thus finish the proof. Since
by (2.12) for b = 0 we have

(2.17) E
∫ T

0

|bt(Xt)|2dt 6 κ‖|b|2‖
L
q/2
p/2

= κ‖b‖2
Lqp
<∞

for some constant κ > 0. Then

Tn := inf

{
s ∈ [0, T ] :

∫ s

0

|bt|2(Xt)dt > n

}
↑ ∞ as n ↑ ∞,

where we set inf ∅ =∞ by convention. For any n > 1, let

Rn = exp

[ ∫ T∧Tn

0

〈bt(Xt), dBt〉 −
1

2

∫ T∧Tn

0

|bt(Xt)|2dt

]
.

By Girsanov’s theorem, {Rn}n>1 is a martingale and Qn := RnP is a probability measure
such that

B̃t := Bt −
∫ t∧Tn

0

bs(Xs)ds, t ∈ [0, T ]

is an m-dimensional Brownian motion. Rewriting (2.1) by

(2.18) dXt = (Zt + σtbt)(Xt)dt+ σt(Xt)dB̃t, t ∈ [0, T ∧ Tn],

we see that (Xt, B̃t)t∈[0,T∧Tn] is a weak solution of (2.2) up to time T ∧ Tn. To extend this
solution to time T , it suffices to show that the martingale (Rn)n>1 is uniformly integrable, so
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that R := limn→∞Rn is a probability density, and (Xt, B̃t)t∈[0,T ] is a weak solution of (2.2)
under the probability Q := RP. Therefore, it remains to prove

(2.19) sup
n>1

E[Rn logRn] <∞, n > 1.

Since (B̃t)t∈[0,T ] is an m-dimensional Brownian motion under probability Qn := RnP, by
(2.18) and Theorem 2.1(1), for any (p′, q′) ∈ K1 there exists a constant κ > 0 such that

EQn

∫ T∧Tn

0

ft(Xt)dt 6 κ‖f‖
Lq
′
p′
, 0 6 f ∈ Lq

′

p′([0, T ]× RN), n > 1.

Applying this estimate to f = |b|2, we arrive at

2E[Rn logRn] = EQn

∫ T∧Tn

0

|bt|2(Xt)dt 6 κ‖|b|2‖
L
q/2
p/2

, n > 1.

This implies (2.19) and EQ
∫ T

0
|bt|2(Xt)dt <∞. Then the proof is finished since by (2.13) for

f = |b|2 in Theorem 2.2 (1), ‖|b|2‖
L
q/2
p/2

<∞ implies EQeλ
∫ T
0 |bt|

2(Xt)dt <∞ for all λ > 0.

2.2 Proof of Theorem 2.1

Since Theorem 2.1(2) follows from Theorem 2.2(2), we only prove Theorem 2.1(1),(3).

Proof of Theorem 2.1(1). Let ‖|b|‖Lqp 6 L for some (p, q) ∈ K1 ∩K2. We first prove the
existence and uniqueness of Ξλb for large enough λ > 0. Consider the operator Kλ on Bm :

Kλu := Qλ

{
∇σbu + σb

}
, u ∈ Bm.

By the fixed-point theorem, it suffices to show that Kλ is contractive in Bm for large enough
λ > 0.

By Lemma 2.3, for any u, ũ ∈ Bm we have

‖Kλu−Kλũ‖Bm = ‖Qλ∇σb(u− ũ)‖Bm
6 ψ(λ)‖∇σ(u− ũ)‖∞‖|b|‖Lqp 6 ψ(λ)L‖u− ũ‖Bm .

Since ψ(λ) → 0 as λ → ∞, there exists λL > 0 such that ψ(λL) 6 1
2L

. So, when λ > λL,
the map Kλ is contractive in Bm. By the fixed point theorem, there exists a unique u ∈ Bm
such that u = Kλu, which is denoted by Ξλb.

Next, let ‖|b|‖Lqp , ‖|b̃|‖Lqp , ‖|σb|‖Lqp , ‖|σb̃|‖Lqp 6 L. By (2.11), Lemma 2.3 and ψ(λ) 6 1
2L

for λ > λL, we have

‖Ξλb− Ξλb̃‖Bm 6 ψ(λ)
(
‖∇σbΞλb−∇σb̃Ξλb̃‖Lqp + ‖σ(b− b̃)‖Lqp

)
6 ψ(λ)

(
‖∇σb(Ξλb− Ξλb̃) +∇σ(b−b̃)Ξλb̃‖Lqp + ‖σ(b− b̃)‖Lqp

)
6 ψ(λ)

(
‖σ(b− b̃)‖Lqp + ‖Ξλb̃‖Bm‖b− b̃‖Lqp

)
+ ψ(λ)‖|b|‖Lqp‖Ξλb− Ξλb̃‖Bm

6 ψ(λ)
(
‖σ(b− b̃)‖Lqp + ‖Ξλb̃‖Bm‖b− b̃‖Lqp

)
+

1

2
‖Ξλb− Ξλb̃‖Bm , λ > λL.
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Thus,

(2.20) ‖Ξλb− Ξλb̃‖Bm 6 2ψ(λ)
(
‖σ(b− b̃)‖Lqp + ‖Ξλb̃‖Bm‖b− b̃‖Lqp

)
, λ > λL.

Applying this inequality to b = 0 we obtain ‖Ξλb̃‖Bm 6 2ψ(λ)‖σb̃‖Lqp 6 1, so that (2.20)
gives

‖Ξλb− Ξλb̃‖Bm 6 2ψ(λ)
(
‖|b− b̃|‖Lqp + ‖σ(b− b̃)‖Lqp

)
, λ > λL.

Then the proof is finished.

To prove Theorem 2.1(3), we consider Zvonkin’s transformation

(2.21) θ
(λ)
t (x) := x+ (Ξλb)t(x), x ∈ RN , t ∈ [0, T ]

for large enough λ > 0. We have the following result.

Lemma 2.5. Assume (A1)-(A2) and Theorem 2.1(3)(i). If |b| ∈ Lqp,loc([0, T ]×RN) for some

(p, q) ∈ K1 ∩K2, then for large enough λ > 0, any solution (X̃t)t∈[0,T ] of the SDE (2.2) with∫ T
0
|b|2t (X̃t)dt <∞, any k > 1, and hk ∈ C∞0 (RN) such that hk|B(0,k) = 1,

(2.22) dθ
(λ,k)
t (X̃t) =

{
Zt(X̃t) + λ(Ξλhkb)t(X̃t)

}
dt+∇σt(X̃t)dBt

θ
(λ,k)
t (X̃t), t ∈ [0, T ∧ τ̃k],

where
τ̃k := inf{t ∈ [0, T ] : |X̃t| > k},

and

θ
(λ,k)
t (x) := x+ (Ξλhkb)t(x), x ∈ RN , t ∈ [0, T ].

Proof. When θ
(λ,k)
t is second-order differentiable with bounded derivatives, the desired formu-

la follows from (2.4),(2.11) and Itô’s formula. In general, we use the following approximation
argument as in [24]. Let {b(n)}n>1 ⊂ C∞0 ([0, T ]× RN) such that

(2.23) lim
n→∞

‖hkb− hkb(n)‖Lqp = 0.

Since σ is locally bounded, we have

(2.24) lim
n→∞

‖σhkb− σhkb(n)‖Lqp = 0.

Let θ(λ,n,k) be defined in (2.21) for hkb
(n) replacing b respectively, i.e.

θ
(λ,n,k)
t (x) := x+ (Ξλhkb

(n))t(x), x ∈ RN , t ∈ [0, T ], λ > 0.(2.25)

By (A3), (2.11) and (2.25), we have

(∂s + Ls +∇σsbs)θ
(λ,n,k)
s

= Zs + σsbs +∇σsbs(Ξλhkb
(n))s + λ(Ξλhkb

(n))s −
{
∇
σshkb

(n)
s

(Ξλhkb
(n))s + σshkb

(n)
s

}
= Zs + λ(Ξλhkb

(n))s + σs(bs − hkb(n)
s ) +∇

σs(bs−hkb
(n)
s )

(Ξλhkb
(n))s.
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So, by (2.2) and Itô’s formula, we have

θ
(λ,n,k)
t∧τ̃k (X̃t∧τ̃k)− θ

(λ,n,k)
0 (X̃0)

=

∫ t∧τ̃k

0

(
Zs + λ(Ξλhkb

(n))s + σs(bs − hkb(n)
s ) +∇

σs(bs−hkb
(n)
s )

(Ξλhkb
(n))s

)
(X̃s)ds

+

∫ t∧τ̃k

0

σs(X̃s)dBs +

∫ t∧τ̃k

0

∇σs(X̃s)dBs
(Ξλhkb

(n))s(X̃s), k > 1, t ∈ [0, T ].

(2.26)

By Theorem 2.1(1) and (2.23), for large enough λ > 0,

lim
n→∞

‖θ(λ,n,k) − θ(λ,k)‖Bm = lim
n→∞

‖Ξλhkb− Ξλhkb
(n)‖Bm = 0.

Then

lim
n→∞

{
θ

(λ,n,k)
t∧τk (X̃t∧τk)− θ

(λ,n,k)
0 (X̃0)

}
= θ

(λ,k)
t∧τk (X̃t∧τk)− θ

(λ,k)
0 (X̃0),

lim
n→∞

∫ T∧τ̃k

0

|(Ξλhkb
(n) − Ξλhkb)s|(X̃s)ds = 0.

Since hk|B(0,k) = 1, combining these with (2.12) and the local boundedness of σ, we may find
out a constant C > 0 such that

lim
n→∞

E
∫ T∧τ̃k

0

(
|∇σs(Ξλhkbs − Ξλhkb

(n)
s )|2

+ |∇
σs(bs−hkb

(n)
s )

(Ξλhkb
(n))s|+ |σs(bs − hkb(n)

s )|
)

(X̃s)ds

6 C lim
n→∞

(
‖Ξλhkb− Ξλhkb

(n))‖2
Bm + ‖hkb− hkb(n)‖Lqp

)
= 0.

Therefore, letting n→∞ in (2.26), we obtain

θ
(λ,k)
t∧τ̃k (X̃t∧τ̃k)− θ

(λ,k)
0 (X̃0) =

∫ t∧τ̃k

0

(
Zs + λ(Ξλhkb)s

)
(X̃s)ds

+

∫ t∧τ̃k

0

σs(X̃s)dBs +

∫ t∧τ̃k

0

∇σs(X̃s)dBs
(Ξλhkb)s(X̃s), k > 1, t ∈ [0, T ].

This means that (2.22) holds for t 6 T ∧ τ̃k.

By Lemma 2.5, the uniqueness of the SDE (2.2) follows from that of (2.22). As in [13, 26],
to prove the uniqueness of (2.22) we will use the following result for the maximal operator:
for any N > 1,

Mh(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

h(y)dy, h ∈ L1
loc(RN), x ∈ RN ,

where B(x, r) := {y : |x− y| < r}, see [3, Appendix A].
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Lemma 2.6. There exists a constant CN > 0 such that for any continuous and weak differ-
entiable function f ,

(2.27) |f(x)− f(y)| 6 CN |x− y|(M |∇f |(x) + M |∇f |(y)), a.e. x, y ∈ RN .

Moreover, for any p > 1, there exists a constant CN,p > 0 such that

(2.28) ‖M f‖Lp 6 CN,p‖f‖Lp , f ∈ Lp(RN).

Proof of Theorem 2.1(3). It suffices to prove that for any h ∈ C∞0 (RN), (2.2) with hb re-
placing b has a unique solution. So, without loss of generality, we may and do assume that
b has a compact support. Then hnb = b with hn ∈ C∞0 (RN) such that hn|B(0,n) = 1 for
large n > 1. By Theorem 2.1(2) and the Yamada-Watanabe principle, it suffices to prove
the pathwise uniqueness. Let X̃t, Ỹt be two solutions of (2.2) with X̃0 = Ỹ0, life times ξ, η

respectively, and
∫ T∧ξn

0
|b|2t (X̃t)dt+

∫ T∧ηn
0

|b|2t (Ỹt)dt <∞, where

ξn := inf{t ∈ [0, T ] : |X̃t| > n}, ηn := inf{t ∈ [0, T ] : |Ỹt| > n}, n > 1.

Let Tn = ξn ∧ ηn. It remains to prove P-a.s.

(2.29) |X̃t∧Tn − Ỹt∧Tn | = 0, n > 1, t ∈ [0, T ].

Let hn ∈ C∞0 (RN) such that hn|B(0,n) = 1. Then, up to time T ∧ Tn, X̃t and Ỹt solve the
SDE (2.2) for hnb replacing b.

By (2.10), we take large enough λ > 0 such that

sup
t∈[0,T ]

‖hn∇Ξλ(hnb)t‖∞ 6
1

2
.

Simply denote u = Ξλ(hnb) and θs(x) = x+ us(x). Then

(2.30)
1

2
|θt(x)− θt(y)| 6 |x− y| 6 2|θt(x)− θt(y)|, t ∈ [0, T ], x, y ∈ B(0, n).

By Lemma 2.5 and Itô’s formula, we have

|θt∧Tn(X̃t∧Tn)− θt∧Tn(Ỹt∧Tn)|2

= 2

∫ t∧Tn

0

〈
Zs(X̃s)− Zs(Ỹs) + λ(us(X̃s)− us(Ỹs)), θs(X̃s)− θs(Ỹs)

〉
ds

+

∫ t∧Tn

0

∥∥∥[∇σs(X̃s)
θs(X̃s)−∇σs(Ỹs)

θs(Ỹs)]
∥∥∥2

HS
ds

+ 2

∫ t∧Tn

0

〈
∇σs(X̃s)(θs(X̃s)−θs(Ỹs))θs(X̃s)−∇σs(Ỹs)(θs(X̃s)−θs(Ỹs))θs(Ỹs), dBs

〉
=

∫ t

0

βn(s)|θs(X̃s)− θs(Ỹs)|2ds+

∫ t

0

〈αn(s)|θs(X̃s)− θs(Ỹs)|2, dBs〉, t ∈ [0, T ],

(2.31)

where

βn(s) :=
1{s<Tn}1{X̃s 6=Ỹs}

|θs(X̃s)− θs(Ỹs)|2
(∥∥∥∇σs(X̃s)

θs(X̃s)−∇σs(Ỹs)
θs(Ỹs)

∥∥∥2

HS
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+ 2
〈
Zs(X̃s)− Zs(Ỹs) + λ(us(X̃s)− us(Ỹs)), θs(X̃s)− θs(Ỹs)

〉)
,

αn(s) :=
21{s<Tn}1{X̃s 6=Ỹs}

|θs(X̃s)− θs(Ỹs)|2
(
∇σs(X̃s)(θs(X̃s)−θs(Ỹs))θs(X̃s)−∇σs(Ỹs)(θs(X̃s)−θs(Ỹs))θs(Ỹs)

)
.

Since hn|B(0,n) = 1, βn and αn do not change if Z,∇σθ, and u are replaced by hnZ, hn∇σθ
and hnu respectively. So, letting

Φs = ‖∇(hnZ)s‖+ ‖∇(hnu)s‖+ ‖∇(hn∇σsθs)‖2,

by Lemma 2.6 we may find a constant C1 > 0 such that

(2.32) |αn(s)|2 + |βn(s)| 6 C11{s<Tn}(M Φs(X̃s) + M Φs(Ỹs)), s ∈ [0, T ].

Applying Theorem 2.2(1) for hnb replacing b and using (2.32), we obtain

E
(∫ T

s

(|αn(s)|2 + |βn(s)|)ds
∣∣∣∣Fs

)
6 κ‖M Φ‖Lqp , s ∈ [0, T ]

for some constant κ > 0. Since Lemma 2.6 and our conditions in Theorem 2.1(3) imply

‖M Φ‖Lqp 6 κ′‖Φ‖Lqp <∞

for some constant κ′ > 0, using the Khasminskii estimate as in (2.13) we conclude that

E exp

[
c

∫ T

0

(|αn(s)|2 + |βn(s)|)ds
]
<∞, c > 0.

So, by Dolèans-Dade’s exponential formula, (2.31) implies

|θt∧Tn(X̃t∧Tn)−θt∧Tn(Ỹt∧Tn)|2 = |θ0(X̃0)−θ0(Ỹ0)|2e2
∫ t
0 〈αn(s),dBs〉+

∫ t
0

(
βn(s)−2|αn(s)|2

)
ds, t ∈ [0, T ].

Since X̃0 = Ỹ0, we have proved (2.29).

3 Singular SDEs on generalized Heisenberg groups

3.1 Framework and main result

Consider the following vector fields on Rm+d, where m > 2, d > 1:

(3.1) Ui(x, y) =
m∑
k=1

θki∂xk +
d∑
l=1

(Alx)i∂yl , 1 6 i 6 m,

where (x, y) = (x1, · · · , xm, y1, · · · , yd) ∈ Rm+d, Θ := (θij) and Al(1 6 l 6 d) are m × m-
matrices satisfying the following assumption:
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(H) α is invertible, Gl := Alα− α∗A∗l 6= 0(1 6 l 6 d), and there exists ε ∈ [0, 1) such that

ε
d∑
l=1

a2
l |Glu|2 >

∑
16l 6=k6d

|alak〈Glu,Gku〉|, a ∈ Rd, u ∈ Rm.

As showing in the beginning of [21, §1], this assumption implies

(3.2)
m∑

i,j=1

∣∣∣∣ d∑
l=1

(Gl)ijal

∣∣∣∣2 > (1− ε)
(

inf
16l6d

‖Gl‖2
HS

)
|a|2, a ∈ Rd.

Consequently, {Ui, [Ui, Uj]}16i,j6m spans the tangent space of Rm+d. Since divUi = 0, the
operator

L :=
1

2

m∑
i=1

U2
i

is subelliptic and symmetric in L2(Rm+d), and the associated diffusion process solves the
SDE for (Xt, Yt) ∈ Rm+d:

(3.3) d(Xt, Yt) =
m∑
i=1

Ui(Xt) ◦ dBi
t = Zdt+ σ(Xt)dBt,

where Bt := (Bi
t)16i6m is the m-dimensional Brownian motion, and

σ(x) := (Θ, A1x, · · · , Adx), Z :=
m∑
i=1

∇UiUi =
d∑
l=1

tr(ΘAl)∂yl .

We now consider the following SDE with a singular drift b : [0, T ]× Rm+d → Rm:

(3.4) d(X̃t, Ỹt) =
{
σ(X̃t)bt(X̃t, Ỹt) + Z

}
dt+ σ(X̃t)dBt.

Remark 3.1. Take d = m− 1,Θ = Im×m and for some constants al 6= βl,

(Al)ij =


al, if i = 1, j = l + 1,

βl, if i = l + 1, j = 1,

0, otherwise.

Then G∗lGk = 0 for l 6= k, so that (H) holds with ε = 0. In particular, for al = −βl = 1
2
, L

is the Kohn-Laplacian operator on the (2m− 1)-dimensional Heisenberg group. In general,
Rm+d is a group under the action

(3.5) (x, y) • (x′, y′) := (x+ x′, y + y′ + 〈(Θ∗)−1A·x, x
′〉), (x, y), (x′, y′) ∈ Rm+d,

and Ui, 1 6 i 6 m are left-invariant vector fields. So, we call (3.4) a singular SDE on the
generalized Heisenberg group.
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For two nonnegative functions F1, F2, we write F1 � F2 if there exists a constant C > 0
such that F1 6 CF2, and write F1 � F2 if F1 � F2 and F2 � F1.

Let ∆y =
∑d

l=1 ∂
2
yl

. Then (∆y,W
2,2(Rd)) is a negative definite operator in L2(Rd). For

any α > 0 and λ > 0, we consider the operator (λ−∆y)
α defined on domain D((−∆y)

α) :=
W 2α,2(Rd). This operator extends naturally to a measurable function f on the produce space
Rm+d such that f(x, ·) ∈ D((−∆y)

α) for x ∈ Rm:

(λ−∆y)
αf(x, y) := (λ−∆y)

αf(x, ·)(y).

For any β > 0, p > 1, let Hα,p
y be the space of measurable functions on Rm+d such that

‖f‖Hβ,py := ‖(1−∆y)
β
2 f‖p � ‖f‖p + ‖(−∆y)

β
2 f‖p <∞.

Recall that for β ∈ (0, 2), we have

−(−∆y)
β
2 f(z) :=

∫
Rd

(f(z + (0, y′))− f(z))|y′|−(m+β)dy′, z ∈ Rm+d.(3.6)

For any β > 0, p, q > 1, let Hβ,p,q
y be the completion of C∞0 ([0, T ] × Rm+d) with respect

to the norm
‖f‖Hβ,p,qy

:= ‖(1−∆y)
β
2 f‖Lqp � ‖f‖Lqp + ‖(−∆y)

β
2 f‖Lqp .

Applying Theorem 2.1 to the present model, we will prove the following result.

Theorem 3.1. Assume (H) and let p, q > 1 satisfy

(3.7)
2

q
+
m+ 2d

p
< 1.

(1) If |b| ∈ Lqp([0,∞] × RN), then for any initial value x ∈ Rm+d, the SDE (3.4) has a

weak solution (Xt)t∈[0,T ] starting at x with Eeλ
∫ T
0 |bt(Xt)|

2dt <∞ for all λ > 0.

(2) If (hb) ∈ H
1
2
,p,q

y holds for any h ∈ C∞0 (Rm+d), then for any initial value x ∈ Rm+d,
the SDE (3.4) has a unique strong solution X̃t starting at x up to the life time ζ :=

limn→∞ T ∧ ζn := inf{t ∈ [0, T ] : |X̃t| > n} with
∫ T∧ζn

0
|b|2t (X̃t)dt <∞ for any n > 1.

3.2 Proof of Theorem 3.1

To apply Theorem 2.1, we first collect some known assertions about L and the associated
Markov semigroup Pt. Let ‖ · ‖p→q denote the operator norm from Lp(Rm+d) to Lq(Rm+d),
and let ‖ · ‖p = ‖ · ‖p→p. For any α > 0, p > 1, let Hα,p

σ be the completion of C∞0 (Rm+d) with
respect to the norm

‖f‖Hα,pσ := ‖(1−L )
α
2 f‖p � ‖f‖p + ‖(−L )

α
2 f‖p.

It is classical that

‖(−∆y)
1
2f‖p � ‖∇yf‖p,(3.8)
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and for any β > 0,

‖f‖Hβ,py � ‖f‖p + ‖(−∆y)
β−[β]

2 ∇[β]
y f‖p,(3.9)

where [β] := sup{k ∈ Z+ : k 6 β} is the integer part of β.
Moreover, by the interpolation inequality, for any 0 6 α < β <∞ we have

‖f‖Hα,py � ‖f‖
β−α
β

p ‖f‖
α
β

Hβ,py
.(3.10)

Lemma 3.2. Assume (H).

(1) There exists a constant C > 0 such that

(3.11) ‖Pt‖L1→L∞ 6 Ct−
m+2d

2 , t > 0.

Moreover, for any p > 1 there exists a constant cp > 0 such that

(3.12) |∇σPtf | 6
cp√
t
(Pt|f |p)

1
p , f ∈ Bb(Rm+d), t > 0.

(2) For any r > 0, p ∈ (1,∞),

‖(1−L )r+
1
2f‖p � ‖(1−L )rf‖p + ‖(1−L )r∇σf‖p, f ∈ H1+2r,p

σ ,

and
‖(−L )r+

1
2f‖p � ‖(−L )r∇σf‖p, f ∈ H1+2r,p

σ .

(3) For any r > 0 and p ∈ (1,∞),

‖(1−L )rf‖p � ‖f‖p + ‖(−L )rf‖p, f ∈ H2r,p
σ .

(4) For any r ∈ (0, 1) and p > m+2d
2r

,

‖f‖∞ � ‖(1−L )rf‖p, f ∈ H2r,p
σ .

(5) For any p ∈ (1,∞), α1, α2 > 0, θ ∈ (0, 1), and f ∈ H2α2,p
σ ∩H2α1,p

y ,

‖(1−∆y)
θα1(1−L )(1−θ)α2f‖p � ‖(1−∆y)

α1f‖θp‖(1−L )α2f‖1−θ
p ,

‖(−∆y)
θα1(−L )(1−θ)α2f‖p � ‖(−∆y)

α1f‖θp‖(−L )α2f‖1−θ
p .

Proof. The inequalities in (1) follow from Lemma 2.4 and Corollary 1.2 in [21] respectively.
Assertion (2) is due to [12, Theorem 4.10]. Since Pt is contractive in Lp(Rm+d) and

(3.13) (1−L )−α = c

∫ ∞
0

e−ttα−1Ptdt

16



for some constant c > 0, (1 −L )−α is bounded in Lp(Rm+d) for all p > 1. Combining this
with the closed graph theorem that

‖f‖p + ‖(−L )αf‖p � ‖f‖p + ‖(1−L )αf‖p,

we prove assertion (3). By the first inequality in assertion (1) and using (3.13), we have

‖(1−L )−
r
2f‖∞ � ‖f‖p

∫ ∞
0

e−t
‖Pt‖p→∞
t1−r

dt 6 C‖f‖p

for some constant C > 0. So, assertion (4) holds. Finally, let

A = (1−∆y)
α1(1−L )−α2 .

By the interpolation theorem (see [15, Theorem 6.10]), we have

‖A θg‖p � ‖g‖1−θ
p ‖A g‖θp.

Applying this inequality to g = (1−L )α2f , we obtain

‖(1−∆y)
θα1(1−L )(1−θ)α2f‖p = ‖A θg‖p � ‖(1−L )α2‖1−θ

p ‖(1−∆y)
α1‖θp.

Proof of Theorem 3.1. We first estimate K1 and K2. Let Ps,t = Pt−s. By (3.11) and using
the interpolation theorem, we have

(3.14) ‖Ps,tf‖∞ � (t− s)−
m+2d

2p ‖f‖p, t > s > 0, p > 1.

So,

(3.15) K1 ⊃
{

(p, q) ∈ (1,∞]2 :
1

q
+
m+ 2d

2p
< 1
}
.

Combining (3.14) with (3.12), we see that for any ε ∈ (0, p− 1),

(3.16) ‖∇σPs,tf‖∞ � (t− s)−
1
2‖Ps,t|f |1+ε‖

1
1+ε
∞ � (t− s)−

1
2
− (m+2d)(1+ε)

2p ‖f‖p, t > s > 0.

So,

(3.17) K2 ⊃
{

(p, q) ∈ (1,∞]2 :
2

q
+
m+ 2d

p
< 1
}
.

Therefore, the first assertion follows from Theorem 2.1(2).
Next, we verify (A1), (A2) and the assumption in Theorem 2.1(3). Since Θ is invertible,

there exists a constant λ > 0 such that

|σv| > |Θv| > λ|v|, v ∈ Rm.
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So, (A1) holds. Next, since Ui are smooth vector fields with constant or linear coefficients,
∂tPtf = L Ptf for f ∈ C∞0 (RN) and

‖∇Ptf‖∞ 6 C‖∇f‖∞, t ∈ [0, T ], f ∈ C1
b (RN)

for some constant C > 0. So, (A2) and the assumption in Theorem 2.1(3) (i) hold. So, for
(p, q) satisfy (3.7), by (3.15) and (3.17) we have (p, q) ∈ K1 ∩K2. According to Theorem
2.1(3), it remains to prove that for h ∈ C∞0 (Rm+d),

(3.18) lim
λ→∞
‖∇{hΞλ(hb)}‖∞ = 0,

(3.19) lim sup
λ→∞

‖∇{h∇σΞλ(hb)}‖Lqp <∞.

We leave the proofs to the following subsection.

3.3 Proofs of (3.18) and (3.19)

We first investigate the regularity of the solution to the following PDE:

∂tut = (λ−L )ut − ft, uT = 0.(3.20)

For this, we need some preparations.
The following interpolation theorem comes from [12, 18].

Lemma 3.3. Let p ∈ (1,∞), 0 < α < β and f ∈ H2α,p
σ ∩ H2β,p

σ . For any θ ∈ (0, 1), let
γ = θα + (1− θ)β. Then f ∈ H2γ,p

σ and

‖(−L )γf‖p 6 C‖(−L )αf‖θp‖(−L )βf‖1−θ
p ,

‖(1−L )γf‖p 6 C‖(1−L )αf‖θp‖(1−L )βf‖1−θ
p ,

where C only depends on α, β, γ.

Next, let Pt be the diffusion semigroup associated with the SDE (3.3). We estimate
derivatives of Pt by following the line of [21].

Lemma 3.4. Let p > 1, t > 0. Then the following assertions hold.

(1) There exists a constant cp > 0 such that for any f ∈ Bb(Rm+d),

|∇yPtf | 6
cp
t

(Pt|f |p)
1
p ,(3.21)

and

|∇σ∇σPtf | 6
cp
t

(Pt|f |p)
1
p .(3.22)

(2) For any α ∈ (0, 1), there exists a constant C = C(p, α) such that for all f ∈ Lp(Rm+d),

‖∇σPtf‖Hα,pσ + ‖(−∆y)
1
4Ptf‖Hα,pσ 6 Ct−

α
2
− 1

2‖f‖p.(3.23)
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Proof. (3.21) follows from [21, Theorem 1.1] for u = 0. Moreover, combining (3.21) with
(3.8) and (3.10), we obtain

(3.24) ‖(−∆y)
β
2Ptf‖p �

1

tβ
(Pt|f |p)

1
p , β ∈ (0, 1), p > 1, t > 0.

Then we can claim that that it suffices to prove (3.22) holds. Indeed, by (3.22), (3.12) and
Lemma 3.3 we obtain

‖∇σPtf‖Hα,pσ � t−
α
2
− 1

2‖f‖p
for α ∈ (0, 1). On the other hand, by Lemma 3.2(5), (3.22) and (3.24), we have

‖(−∆y)
1
4 (−L )

α
2 Ptf‖p = ‖(−∆y)

1
4(1−α2 )

(1−α
2

)
(−L )

α
2 Ptf‖p

� ‖(−∆y)
1

4(1−α2 )Ptf‖
1−α

2
p ‖(−L )Ptf‖

α
2
p

� t−
1
2 t−

α
2 ‖f‖p.

Therefore, (3.23) holds.
We now prove (3.22) by using the derivative formula in [21, Theorem 1.1]. Let Qt =

(qkl(t))16k,l6d with

qlk(t) :=

∫ t

0

〈
G∗lGk

(
Bs −

1

t

∫ t

0

Bsds

)
,

(
Bs −

1

t

∫ t

0

Bsds

)〉
ds.

Then Qt is invertible for t > 0. Next, for x,w ∈ Rm and v ∈ Rd, let

(3.25) (α̃t,w,v,x)l := vl − 〈Θ−1w,Alx〉 −
1

t

∫ t

0

〈G∗l Θ−1w,Bs〉ds, 1 6 l 6 d.

Then for the functional (x, y) 7→ α̃t,w,v,x we have

(3.26) ∇(w′,v′)(α̃t,w,v,x)l = −〈Θ−1w,Alw
′〉, (w′, v′) ∈ Rm+d, 1 6 l 6 d.

Next, the solution of (3.3) starting at (x, y) is given by

Xt = x+ αBt, (Yt)l = yl + 〈Alx,Bt〉+

∫ t

0

〈AlαBs, dBs〉, 1 6 l 6 d.

Then

∇(w′,v′)(Xt, (Yt)l) = (w′, (v′)′l + 〈Alw′, Bt〉), 1 6 l 6 d.(3.27)

According to [21, Theorem 1.1(3)], we have the Bismut derivative formula

∇w,vPtf = E[f(Xt, Yt)Mt],(3.28)

where by the formulation of h̃′ given in [21, Theorem 1.1],

Mt := D∗h̃ =
1

t
〈Θ−1w,Bt〉+

d∑
k=1

(Q−1
t α̃t,w,v,x)k

∫ t

0

〈GkBs, dBs〉

−
d∑

k=1

Dβk(Q
−1
t α̃t,w,v,x)k −

d∑
k=1

(Q−1
t α̃t,w,v,x)k

t

〈∫ t

0

GkBsds, Bt

〉

+
d∑

k=1

m∑
i=1

Dhi(Q
−1
t α̃t,w,v,x)k
t

∫ t

0

(GkBs)ids+
d∑

k=1

m∑
i=1

t

2
(Q−1

t α̃t,w,v,x)k(Gk)ii,

(3.29)
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for hi(s) := sei, βk(s) :=
∫ s

0
GkBrdr, s ∈ [0, t], and {ei}i=1,··· ,m being the orthonormal basis

of Rm. According to step (1) in the proof of [21, Theorem 1.1], for any p > 1, we have

{E|Mt|p}1/p � (|v|+ |w|(|x|+
√
t))

t
.(3.30)

Moreover, by (3.29) we have

∇(w′,v′)Mt =
d∑

k=1

(Q−1
t ∇(w′,v′)α̃t,w,v,x)k

∫ t

0

〈GkBs, dBs〉

−
d∑

k=1

Dβk(Q
−1
t ∇(w′,v′)α̃t,w,v,x)k −

d∑
k=1

(Q−1
t ∇(w′,v′)α̃t,w,v,x)k

t

〈∫ t

0

GkBsds, Bt

〉

+
m∑
i=1

d∑
k=1

Dhi(Q
−1
t ∇(w′,v′)α̃t,w,v,x)k

t

∫ t

0

(GkBs)ids

+
d∑

k=1

m∑
i=1

t

2
(Q−1

t ∇(w′,v′)α̃t,w,v,x)k(Gk)ii.

Combining this with (3.26) we prove

{E|∇(w′,v′)Mt|p}1/p � |w||w
′|

t
, (w′, v′) ∈ Rm+d.(3.31)

By the Markov property and (3.28), we derive

∇(w,v)Ptf = ∇(w,v)P t
2
(P t

2
f) = E[(P t

2
f)(X t

2
, Y t

2
)M t

2
],

and by the chain rule,

∇(w′,v′)∇(w,v)Ptf = ∇(w′,v′)E[(P t
2
f)(X t

2
, Y t

2
)M t

2
]

= E
[(
∇∇(w′,v′)(X t

2
,Y t

2
)P t

2
f
)

(X t
2
, Y t

2
)M t

2

]
+ E

[
(P t

2
f)(X t

2
, Y t

2
)∇(w′,v′)M t

2

]
.

(3.32)

By (3.27), (3.30) and using Hölder’s inequality, we obtain

E
∣∣∣(∇∇(w′,v′)(X t

2
,Y t

2
)P t

2
f
)

(X t
2
, Y t

2
)M t

2

∣∣∣
� (Pt|f |p)1/p (|v′|w′(|x|+

√
t))(|v|+ w(|x|+

√
t))

t2
,

while by (3.31) and Hölder’s inequality,

E
∣∣∣(P t

2
f)(X t

2
, Y t

2
)∇(w′,v′)M t

2

∣∣∣ � (Pt|f |p)1/p |u||u′|
t

.

Therefore, it follows from (3.26) that

|∇(w′,v′)∇(w,v)Ptf |(x, y)

� (Pt|f |p)1/p

(
(|w′|+ v′(|x|+

√
t))(|v|+ w(|x|+

√
t))

t2
+
|w| · |v′|

t

)
.

(3.33)
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Finally, by the definition of Ui, we have

UiUj =

(
m∑
k=1

θki∂xk +
d∑
l=1

(Alx)i∂yl

)(
m∑
k=1

θkj∂xk +
d∑
l=1

(Alx)j∂yl

)

=
m∑
k=1

m∑
l=1

θkiθlj∂xk∂xl +
m∑
k=1

d∑
l=1

θki(Al)jk∂yl +
m∑
k=1

d∑
l=1

θki(Alx)j∂xk∂yl

+
d∑
l=1

m∑
k=1

(Alx)iθkj∂yl∂xk +
d∑
l=1

d∑
k=1

(Alx)i(Akx)j∂yl∂yk .

Combining this with (3.21) and (3.33) with (x, y) = (0, 0), we arrive at

|UiUjPtf(0, 0)| � 1

t
(Pt|f |p(0, 0))1/p, 1 6 i, j 6 m, p > 1, t > 0.

As explained in the proof of [21, Proof of Corollary 1.2], by the left-invariant property of Ui
and ∂yl under the group action in (3.5), this is equivalent to (3.22).

The next lemma due to [12, Theorem 5.15] generalizes the classical Sobolev embedding
theorem.

Lemma 3.5. Suppose p ∈ (1,∞) and α > m+2d
p

, then

(3.34) ‖f‖Γγ 6 C(p,m+ 2d, α)‖f‖Hα,pσ , γ ∈ [0, α− (m+ 2d)/p],

where

‖f‖Γγ := ‖f‖∞ + |f |γ, |f |γ := sup
x∈Rd+m,y 6=0

|f(x • y)− f(x)|
|y|γ

.

Finally, we introduce the following lemma.

Lemma 3.6. Let p > m+ 2d. For any β ∈ (0, 1] and α ∈ (m+2d
p
, 1], there exists a constant

C = C(α, β,m + 2d, p) > 0 such that for Rm-valued function b ∈ Hβ,p
y and real function

u ∈ Lp(Rm+d) with (−L )
1
2

+α
2 u ∈ Hβ,p

y ,

‖∇σbu‖Hβ,py � ‖b‖Hβ,py
(
‖(−∆y)

β
2∇σu‖Hα,pσ + ‖∇σu‖Hα,pσ

)
.

Proof. By the definition of ‖ · ‖Hβ,py and noting that ∇σbu = 〈∇σu,b〉, we have

‖∇σbu‖Hβ,py � ‖〈∇σu,b〉‖p + ‖(−∆y)
β
2 〈∇σu,b〉‖p

� ‖∇σu‖∞‖b‖p + ‖(−∆y)
β
2 〈∇σu,b〉‖p.

(3.35)

According to [27, (2.5)],∫
Rd
|f(x, y + y′)− f(x, y)|pdy 6 ‖(1−∆y)

β
2 f(x, ·)‖pp(|y′|pβ ∧ 1), f ∈ Hβ,p

y .
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Then

‖(f(·+ (0, y′))− f(·))‖pp =

∫
Rm+d

|f(x, y + y′)− f(x, y)|pdxdy

6 ‖f‖p
Hβ,py

(|y′|pβ ∧ 1).

Combining this with Lemma 3.5, for any γ ∈ (0, α− m+2d
p

), we obtain

‖〈(∇σu)(·+ (0, y′))− (∇σu)(·),b(·+ (0, y′))− b(·)〉‖pp

=

∫
Rm+d

|〈(∇σu)(x, y + y′)− (∇σu)(x, y),b(x, y + y′)− b(x, y)〉|p dxdy

6
∫
Rm

(
sup
y∈Rd
|(∇σu)(x, y + y′)− (∇σu)(x, y)|p

∫
Rd
|b(x, y + y′)− b(x, y)|p dy

)
dx

�‖∇σu‖pHα,pσ (|y′|γp ∧ 1)

∫
Rm+d

|b(x, y + y′)− b(x, y)|p dxdy

�‖∇σu‖pHα,pσ (|y′|γp ∧ 1)‖b‖p
Hβ,py

(|y′|pβ ∧ 1).

By (3.6), Minkovskii inequality and Lemma 3.5, we have

‖(−∆y)
β
2 〈∇σu,b〉‖p

� ‖〈(−∆y)
β
2∇σu,b〉‖p + ‖〈∇σu, (−∆y)

β
2 b〉‖p

+

∫
Rd
‖〈(∇σu)(·+ (0, y′))− (∇σu)(·),b(·+ (0, y′))− b(·)〉‖p |y

′|−β−ddy′

� ‖b‖p‖(−∆y)
β
2∇σu‖∞ + ‖(−∆y)

β
2 b‖p‖∇σu‖∞ + ‖∇σu‖Hα,pσ ‖b‖Hβ,py

� ‖b‖p‖(−∆y)
β
2∇σu‖Hα,pσ + ‖b‖Hβ,py ‖∇σu‖Hα,pσ .

Substituting this into (3.35), we finish the proof.

It is now ready to prove the following regularity estimates for solutions of (3.20).

Theorem 3.7. Let p, q > 1 satisfy

(3.36)
2

q
+
m+ 2d

p
< 1.

For any f ∈ C∞0 ([0, T ] × Rm+d) and λ > 0, (3.20) has a unique solution uλ = Qλf , where
Qλf is in (2.3) for Ps,t = Pt−s. Moreover:

(1) There exists a constant C > 0 such that

‖∇σ∇σu
λ‖Lqp + ‖∇yu

λ‖Lqp + ‖(−∆y)
1
4∇σu

λ‖Lqp
6 C‖f‖Lqp , f ∈ C

∞
0 ([0, T ]× Rm+d).

(3.37)

For any α ∈ (0, 1) with α < 1− 2
q
,

‖(−∆y)
1
4uλt ‖Hα,pσ + ‖∇σu

λ
t ‖Hα,pσ

6 φ(λ)‖f‖Lqp , t ∈ [0, T ], f ∈ C∞0 ([0, T ]× Rm+d)
(3.38)

holds for some decreasing function φ : (0,∞)→ (0,∞) with limλ→∞ φ(λ) = 0.
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(2) There exists a constant C > 0 such that

‖∇y∇σu
λ‖Lqp 6 C‖f‖

H
1
2 ,p,q
y

, f ∈ C∞0 ([0, T ]× Rm+d).(3.39)

For any α ∈ (0, 1) with α < 1− 2
q
,

‖∇yu
λ
t ‖Hα,pσ + ‖(−∆y)

1
4∇σu

λ
t ‖Hα,pσ

6 φ(λ)‖f‖
H

1
2 ,p,q
y

, t ∈ [0, T ], f ∈ C∞0 ([0, T ]× Rm+d)
(3.40)

holds for some decreasing function φ : (0,∞)→ (0,∞) with limλ→∞ φ(λ) = 0.

Proof. (a) By (A2) and Lemma 2.3, (3.20) has a unique solution uλ = Qλf such that

‖uλ‖B := ‖uλ‖∞ + ‖∇σu
λ‖∞ 6 ψ(λ)‖f‖Lqp , λ > 0,

holds for some decreasing function ψ : (0,∞) → (0,∞) with limλ→∞ ψ(λ) = 0. Let
g ∈ C∞0 (Rm+d). By (A2), the heat equation ∂tPtg = L Ptg, and the contraction of Pt
in Lp(Rm+d), we have

‖L uλ‖Lqp � ‖f‖Lqp .(3.41)

Since (∇σg)i = Uig, (∇σ∇σg)ij = UiUjg, 1 6 i, j 6 m, Lemma 3.2(2) gives

‖∇σ∇σg‖p � ‖(−L )
1
2∇σg‖p � ‖(−L )g‖p.(3.42)

Combining this with (3.41), we obtain

‖UiUjuλ‖Lqp � ‖f‖Lqp , 1 6 i, j 6 m.(3.43)

Since (3.1) implies UiUj =
∑d

l=1(Gl)ij∂yl , i 6= j, it follows from (3.2) that

d∑
l=1

|∂ylg|2 �
m∑

i,j=1

|UiUjg|2(3.44)

This together with (3.43) leads to

‖∇yu
λ‖Lqp � ‖f‖Lqp .(3.45)

On the other hand, (3.8) implies

‖(−∆y)
1
2uλ‖Lqp � ‖f‖Lqp .(3.46)

Applying Lemma 3.2(5) with θ = 1
2

and Young’s inequality, we have

‖(−∆y)
1
4∇σu

λ‖Lqp � ‖(−∆y)
1
2uλ‖Lqp + ‖(−L )uλ‖Lqp � ‖f‖Lqp .

Combining this with (3.43) and (3.45), we prove (3.37).
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Next, recall that

uλs = (Qλf)s :=

∫ T

s

e−λ(t−s)Pt−sftdt.

By (3.23), Hölder’s inequality, and noticing that α < 1 − 2
q

implies q
q−1

(−α
2
− 1

2
) > −1, we

obtain

‖∇σu
λ
s‖Hα,pσ + ‖(−∆y)

1
4uλs‖Hα,pσ

�
∫ T

s

e−λ(t−s)(t− s)−
α
2
− 1

2‖ft‖pdt

�
(∫ T

0

e−λ
q
q−1

(t−s)(t− s)
q
q−1

(−α
2
− 1

2
)dt

) q−1
q

‖f‖Lqp

=: φ(λ)‖f‖Lqp ,

where φ is decreasing with limλ→∞ φ(λ) = 0. Therefore, assertion (1) is proved.

(b) Let wλ = (−∆y)
1
4uλ, where uλ := Qλf is the unique solution of (3.20). We have

∂tw
λ
t = (λ−L )wλt − (−∆y)

1
4ft, wλT = 0.(3.47)

Applying (3.8) and (3.37) for (−∆y)
1
4f replacing f , we obtain

‖∇y∇σu
λ‖Lqp � ‖(−∆y)

1
2∇σu

λ‖Lqp =‖(−∆y)
1
4∇σw

λ‖Lqp � ‖(−∆y)
1
4f‖Lqp � ‖f‖H 1

2 ,p,q
y

.

So, (3.39) holds.

Finally, applying (3.39) to (wλ, (−∆y)
1
4f) replacing (uλ, f), we prove (3.40).

We now investigate the regularity of the solution to the following singular equation for
Rm+d-valued ut = (u1

t , · · · , um+d
t ):

∂tut = (λ−L )ut −∇σbtut − σbt, uT = 0.(3.48)

Theorem 3.8. Let p, q > 1 satisfy (3.36).

(1) Assume b ∈ C∞0 ([0, T ]×Rm+d;Rm). Then there exists a constant λ0 > 0 such that for
any λ > λ0, the equation (3.48) has a unique solution (denoted by Ξλb) satisfying

‖∇σ∇σΞλb‖Lqp � ‖b‖
2
Lqp

+ ‖b‖Lqp‖σb‖Lqp + ‖σb‖Lqp .(3.49)

(2) There exists a constant λ1 > λ0 such that for any λ > λ1,

‖∇y∇σΞλb‖Lqp � ‖σb‖
H

1
2 ,p,q
y

+ ‖σb‖
H

1
2 ,p,q
y

‖b‖
H

1
2 ,p,q
y

.(3.50)

Moreover, for any α ∈ (m+2d
p
, 1− 2

q
),

sup
t∈[0,T ]

‖∇y(Ξλb)t‖Hα,pσ � φ(λ)

(
‖σb‖

H
1
2 ,p,q
y

+ ‖σb‖
H

1
2 ,p,q
y

‖b‖
H

1
2 ,p,q
y

)
(3.51)

holds for some decreasing function φ : (0,∞)→ (0,∞) with limλ→∞ φ(λ) = 0.
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Proof. (1) By Lemma 2.3 and Theorem 2.1, there exists a constant λ0 > 0 such that for any
λ > λ0, the equation (3.48) has a unique solution uλ(=: Ξλb). By (3.37), we have

‖∇σ∇σΞλb‖Lqp � ‖∇σbΞλb + σb‖Lqp
� ‖b‖Lqp‖∇σΞλb‖∞ + ‖σb‖Lqp
� ‖b‖2

Lqp
+ ‖b‖Lqp‖σb‖Lqp + ‖σb‖Lqp ,

(2) Let H be the space of measurable functions u : [0, T ]× Rm+d → Rm+d such that

‖u‖H := sup
t∈[0,T ]

(
‖∇σut‖Hα,pσ + ‖(−∆y)

1
4∇σut‖Hα,pσ

)
<∞.

Then H is a Banach space with the norm ‖ · ‖H defined above. For any u ∈ H, let Φu be
the solution to the following equation:

∂t(Φu)t = (λ−L )(Φu)t −∇σbtut − σbt, uT = 0.(3.52)

By (2.4), we have Φu = Qλ(∇σbu− σb). By Lemma 3.6 with β = 1
2
, we have

‖∇σbu‖
H

1
2 ,p,q
y

� ‖b‖
H

1
2 ,p,q
y

(
sup
t∈[0,T ]

‖(−∆y)
1
4∇σut‖Hα,pσ + sup

t∈[0,T ]

‖∇σut‖Hα,pσ

)
.(3.53)

Combining this with (3.38) and (3.40), we obtain

‖Φu‖H � φ(λ)‖∇σbu+ σb‖
H

1
2 ,p,q
y

� φ(λ)

(
‖σb‖

H
1
2 ,p,q
y

+ ‖b‖
H

1
2 ,p,q
y

‖u‖H
)
<∞.(3.54)

So, Φu ∈ H for u ∈ H. Moreover, for any u, ũ ∈ H, (3.52) and (3.54) imply

‖Φu− Φũ‖H � φ(λ)‖∇σb(u− ũ)‖
H

1
2 ,p,q
y

� φ(λ)‖b‖
H

1
2 ,p,q
y

‖u− ũ‖H .

Since φ(λ) → 0 as λ → ∞, there exists a constant λ1 > 0 such that φ(λ)‖b‖
H

1
2 ,p,q
y

< 1
2

for

λ > λ1. Then by the fixed point theorem, for any λ > λ1, the equation (3.48) has a unique
solution Ξλb ∈ H. Furthermore, (3.54) implies

‖Ξλb‖H � φ(λ)‖σb‖
H

1
2 ,p,q
y

, λ > λ1.(3.55)

This together with (3.53) gives

‖∇σbΞλb‖
H

1
2 ,p,q
y

� ‖σb‖
H

1
2 ,p,q
y

‖b‖
H

1
2 ,p,q
y

, λ > λ1.(3.56)

Then (3.39) and (3.56) imply

‖∇y∇σΞλb‖Lqp � ‖∇σbu
λ + σb‖

H
1
2 ,p,q
y

� ‖σb‖
H

1
2 ,p,q
y

+ ‖σb‖
H

1
2 ,p,q
y

‖b‖
H

1
2 ,p,q
y

.

Similarly, (3.40) and (3.56) yield

sup
t∈[0,T ]

‖∇y(Ξλb)t‖Hα,pσ � φ(λ)‖∇σbu
λ + σb‖

H
1
2 ,p,q
y

� φ(λ)

(
‖σb‖

H
1
2 ,p,q
y

+ ‖σb‖
H

1
2 ,p,q
y

‖b‖
H

1
2 ,p,q
y

)
.

Then the proof is finished.
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We are now ready to prove (3.18) and (3.19).

Proof of (3.18) and (3.19). We first consider smooth b then extend to the situation of The-
orem 3.1.

(a) Let b ∈ C∞([0, T ] × Rm+d,Rm). Then for any h ∈ C∞0 (Rm+d), hb ∈ C∞([0, T ] ×
Rm+d,Rm). Applying Theorem 3.8, we obtain that

‖∇σ∇σΞλhb‖Lqp � ‖hb‖2
Lqp

+ ‖hb‖Lqp‖σhb‖Lqp + ‖σhb‖Lqp(3.57)

and

‖∇y∇σΞλhb‖Lqp � ‖σhb‖
H

1
2 ,p,q
y

+ ‖σhb‖
H

1
2 ,p,q
y

‖hb‖
H

1
2 ,p,q
y

(3.58)

for any λ > λ1. Next, by Lemma 3.2(4), (3.51), and Theorem 2.1(1),

‖∇y(Ξλhb)‖∞ � φ(λ)

(
‖σhb‖

H
1
2 ,p,q
y

+ ‖σhb‖
H

1
2 ,p,q
y

‖hb‖
H

1
2 ,p,q
y

)
(3.59)

and

‖∇σ(Ξλhb)‖∞ 6 φ(λ)(‖σhb‖Lqp + ‖hb‖Lqp)(3.60)

hold for large λ > 0 and some decreasing function φ : (0,∞)→ (0,∞) with limλ→∞ φ(λ) = 0.
Moreover, for any R > 0, there exists a constant c(R) > 0 such that

|∇f |2(x) 6 c(R)

(
m∑
i=1

|Uif |2(x) +
d∑
i=1

|∂yif |2(x)

)
= c(R)

(
|∇σf |2(x) + |∇yf |2(x)

)
, |x| 6 R, f ∈ C1(Rm+d).

(3.61)

Combining (3.59)-(3.61), we conclude that for large λ > 0,

‖h∇(Ξλhb)‖∞ 6 Cσ,h‖h‖∞φ(λ)(‖hb‖
H

1
2 ,p,q
y

+ ‖hb‖2

H
1
2 ,p,q
y

),(3.62)

where Cσ,h > 0 is a constant depending on supph and ‖σ1supph‖∞. Similarly, (3.57), (3.58)
and (3.61) imply

‖∇h∇σ(Ξλhb)‖Lqp 6 Cσ,h

(
‖h‖∞ + ‖h′‖∞)(‖hb‖

H
1
2 ,p,q
y

+ ‖hb‖2

H
1
2 ,p,q
y

)
(3.63)

for large λ > 0 and some constant Cσ,h > 0 depending on supph and ‖σ1supph‖∞. Therefore,
(3.18) and (3.19) are proved.

(b) Now, assume that for any h ∈ C∞0 (Rm+d) we have

(3.64) ‖hb‖
H

1
2 ,p,q
y

= ‖(1−∆y)
1
4 (hb)‖Lqp <∞.

Let ρ be a non-negative smooth function with compact support in Rm+d and
∫
Rm+d ρ(z)dz =

1. For any n ∈ N, let

ρn(z) = nm+dρ(nz), bn = ρn ∗ (hb), z ∈ Rm+d.(3.65)
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Then
lim
n→∞

‖bn − hb‖
H

1
2 ,p,q
y

= 0.

Combining this with (3.62) and (3.63) for bn replacing hb, and by an approximation method,
we may find out a constant λ1 > 0 not depending on n, such that for any λ > λ1, the unique
solution uλ(=: Ξλhb) of (3.48) satisfies

‖h∇(Ξλhb)‖∞ � (1 + Cσ,h)‖h‖∞φ(λ)
(
‖hb‖

H
1
2 ,p,q
y

+ ‖hb‖2

H
1
2 ,p,q
y

)
,(3.66)

and

‖∇h∇σ(Ξλhb)‖Lqp � (1 + Cσ,h)(‖h‖∞ + ‖h′‖∞)
(
‖hb‖

H
1
2 ,p,q
y

+ ‖hb‖2

H
1
2 ,p,q
y

)
,(3.67)

here, Cσ,h, φ are in (3.62) and (3.63). Combining these with (3.64), we finish the proof.
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