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ABSTRACT 18 
 19 
The rapid increase of fully sequenced prokaryotic genomes provides unprecedented 20 

information for discovery of novel biological knowledge. The organization and function 21 

of genes and genomes can be revealed by mining these data with appropriate 22 

computational technologies. Here we present the Database of prOkaryotic OpeRons 23 

(DOOR), which contains 6,975,454 conserve operons in 2,072 complete genomes. 24 

Based on these identified operons and other omic data (e.g., RNA-seq and ChIP-seq 25 

data), we have also developed multiple algorithms and tools that can identify 26 

transcription units (TUs) under a specific condition/environment, analyze co-expression 27 

relationship among operons, and de-novo predict cis-regulatory motifs. Based on above 28 

functionalities, more advanced insights have been derived: the global arrangement of 29 

operons in a bacterial genome is largely influenced by the tendency with which a 30 

bacterium keeps its operons encoding the same biological pathways in genomic vicinity. 31 
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Bacterial genomes are partitioned into a set of folding domains such that the total 32 

unfolding/refolding events of these domains is minimal. These results establish a strong 33 

link between the global genomic arrangement of encoded biological pathways and 34 

transcriptional activation efficiency.  35 

 36 
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 39 

INTRODUCTION 40 
 41 
The number of fully sequenced prokaryotic genomes has been increasing rapidly in the 42 

past decades. In the NCBI Genome database, there has been a total of 6,917 complete 43 

genomes and 40,257 draft genomes as of February 9, 2017. In the Integrated Microbial 44 

Genome and Microbiome Samples of Joint Genome Institute (JGI IMG/M), there are 45 

5,415 complete prokaryotic (bacterial and archaeal) genomes along with 43,348 draft 46 

genomes (https://img.jgi.doe.gov/cgi-bin/m/main.cgi) as of January 25, 2017 [1]. Based 47 

on the JGI IMG/M, there are over 175 million predicted genes, including ca. 171 million 48 

(97.7%) protein-coding genes and ca. four million (2.3%) RNA-coding genes. A major 49 

challenge in knowledge discovery from these genomes is gene functional annotation, 50 

only about 60% gene in a microbial genome are assigned with functions [2-4]. Current 51 

gene annotation is mainly based on homology search, using, e.g., BLAST [5] or Hmmer 52 

[6, 7] and relies on a repertoire of well-characterized genes, proteins, and probabilistic 53 

hidden Markov models (HMMs) as reference from a dozen model organisms. Given the 54 

limitation of these methods, further improvement will be needed to explore information 55 

beyond sequence level. Following radiative evolution from common ancestors, the 56 

genes the genes of similar functions are evolutionarily conserved in sequence homology 57 

(e.g., Clusters of Orthologous Groups (COGs) [8]) or statistical sequence models (e.g., 58 

HMMs in Pfam [9]), but also the genes of associated but different functions may be 59 

physically constrained in the genomes (e.g., gene linkage [10]). These functionally 60 

related genes may be organized into clusters in different positions of the genomes [11], 61 

which can be used in gene function inference/annotation. 62 
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 63 

The basic type of such gene clusters is operon, a static unit consisting of one or more 64 

consecutive genes in the genomes, which share one promoter upstream of the first 65 

gene and are usually transcribed into a single transcription unit (TU) (Figure 1A) [12]. In 66 

the review, to differentiate the terms operon and TU, TUs are only used to represent 67 

transcriptional units of mRNA while operons represent all non-TU organizations. 68 

Besides these basic transcriptional components, prokaryotic genomes also consist of 69 

regulatory elements such as transcription start sites, untranslated regions (UTRs), and 70 

terminators [13]. These functional information can be used for gene function annotation, 71 

as most functionally related genes tend to be placed in the same operons and share 72 

regulatory landscape (Figure 1B) [14]. Beside main promoters, there may be secondary 73 

promoters leading to alternative TUs, providing a dynamic structure of operon (Figure 74 

1B) [13]. Given this dynamic expression of operons into TUs, TUs may overlap each 75 

other and share common genes, giving rise to overlapping TU clusters in bacteria 76 

(Figure 1C) [15]. Functionally, genes within a TU are more related than those within a 77 

cluster of TUs and likely to be more frequently co-expressed under certain conditions 78 

(Figure 1D). therefore, the organization of operon are not only evolutionarily conserved 79 

(Figure 1A and 1D) but also functionally constrained (Figure 1E). For example, the 80 

current arrangement of operons in most of the bacterial genomes tend to minimize the 81 

overall distance between consecutive operons of a same pathway across all pathways 82 

encoded in the genomes [14]. Such optimization also minimizes the total number of 83 

supercoil unfolding events in the folded chromosomes, needed to transcriptionally 84 

activate all the obligatory pathways between growth conditions (Figure 1E) [16]. In 85 

summary, the rich genome resources can be mined to gain biology on gene 86 

organization and genome functions. 87 

 88 

 89 
 90 
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91 
Figure 1. The prokaryotic operon database DOOR and derived analysis of genome organization92 
and function. DOOR contains 2,072 prokaryotic genomes and the operons in which are 93 
associated through orthologous relationship and form uber operons (uber operons are explained 94 
in the text). For example, the two genomes in (A) each has four (O1-O4) and five (O1’-O5’) 95 
operons. Their orthologous associations are indicated by solid edges and paralogous 96 
associations are indicated by dotted lines. Uber operon 1 and 2 are only connected through one 97 
paralogous link (dotted line). We have developed a program (DIMINDA) that can predict cis-98 
regulatory motifs (B). Combined with RNA-seq data, TUs and TU clusters can also be identified 99 
(C). These TU clusters suggest that genes in operons can be expressed in different100 
combinations, leading to starting, internal, or terminal TUs. Genes and operons can be co-101 
expressed under some but not all the tested conditions and can be identified by biclustering 102 
tools such as QUBIC we developed (D). These TUs and co-expressed modules results from 103 
optimized gene regulation. This regulatory mechanism we found to be that the global 104 
organization of operons in the prokaryotic chromosomes tends to minimize the events of 105 
unfolding and refolding chromosomes (E). C+ is a function representing the partition of a 106 
genome into a set of folding domains (a.k.a., supercoils), which is minimized to optimize the 107 
folding and unfolding events and facilitate transcription efficiency. 108 

109 

Besides local variations in the composition of structural genes and dynamic expression110 

of operons, operon organization are also constrained at the global level: the location of 111 

one operon also depends on the locations of other operons in the same biological 112 

pathways, and together they tend to form proximate clusters so as to maximize 113

transcription efficiency [16]. Such functionally related organization also contributes to 114 
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the overall organization of prokaryotic chromosome [17], which is also a key target of 115 

selection revealed by long-term evolution [18]. In this review, we introduce our database 116 

for prokaryotic operons—DOOR—and its computational functionalities of operon 117 

prediction and analysis, as an example of how to make knowledge discovery from 118 

rapidly increasing genome sequences. Based on these resources and derived insights 119 

on operon organization, advanced applications in revealing global operon organization 120 

and optimization are also addressed. 121 

 122 

DEVELOPMENT OF THE DOOR DATABASE 123 
 124 

Operon databases and DOOR 125 

Given its central importance in many fields of microbiology, operon as a basic 126 

transcription unit has attracted substantial attention. For example, there are several 127 

operon databases built by different research groups: OperonDB [19], ProOpDB [20], 128 

ODB [21], rrnDB [22], etc. Our DOOR database not only stores curated operons in 129 

prokaryotic genomes, but also has a set of programs that performs a series of analyses 130 

on operon organization and expression. When first developed in 2006, DOOR has 131 

operon information for only 675 complete prokaryotic genomes predicted by our own 132 

algorithm, which was ranked as the best [23] in terms of its outperforming accuracy 133 

(greater than 90% in Bacillus subtilis and Escherichia coli) [24]. Besides curating 134 

predicted operons and providing general statistic summary for each genome and 135 

associated literature, DOOR allows users to search for operons by the genes (e.g., 136 

gene name lacZ) they contain, an operon ID (e.g., operon ID = 4015) or similar operons. 137 

The selected operons can be further used to predict cis-regulatory motif with embedded 138 

MEME [25] or CUBIC [26] programs upon request. Lastly, DOOR has an operonWiki 139 

(http://ecoliwiki.net/colipedia/index.php/Database_of_prOkaryotic_OpeRons) to facilitate 140 

interactions between users and the developers. 141 

 142 

DOOR2: 2,072 genomes and RNA-seq datasets 143 

As more complete genomes became available, we updated DOOR to DOOR2, which 144 

now has a total of 2,072 complete genomes (three times of what were initially included): 145 
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1,939 bacteria and 133 archaea, with 2,205 chromosomes and 1,645 plasmids [27]. For 146 

these genomes, a total of 1,323,902 multi-gene operons are predicted, averaging 583 147 

such operons per chromosome and 24 operons per plasmid, along with 2,578,949 148 

single-gene operons. Besides, 6,408 verified transcription factor-binding sites (TFBS) 149 

for 203 prokaryotic genomes, 3,456,718 Rho-independent terminators for 2,072 150 

genomes, and 6,975,454 conserved operons are also predicted. Given the availability of 151 

RNA-seq data for some complete genomes, TUs are also predicted which can contain 152 

part of the genes in an operon or span at least two operons [13, 28]. All these operons, 153 

TUs, and regulatory elements are stored in the relational MySQL DOOR2 database, 154 

which can be queried with multiple terms such as species name, operon ID, or gene 155 

name, etc. A genome browser is also created to support visualization of selected 156 

operon data along with dynamic TU structures under multiple conditions if the RNA-seq 157 

datasets are available [27]. 158 

 159 

DOOR2 is implemented as a web portal server with a multi-layer architecture. 160 

Technically, our online operon prediction requires three input files, specifying gene 161 

locations in a genome (e.g., .gff or .gtf files), protein sequences (.faa files), and 162 

nucleotide sequences (.fna files) of an entire genome, respectively. The representation 163 

and the logic layers are implemented using the Web 2.0 technology (HTML5, CSS3 and 164 

Javascript language along with jQuery library) and PHP server-side scripting language. 165 

The keyword-based search engine is implemented based on the Sphinx Open Source 166 

Search Server (http://sphinxsearch.com), and the genome browser is implemented 167 

based on JBrowse Genome Browser (http://jbrowse.org) [29]. To this point, DOOR2 has 168 

become a real integrated database and tool for identification of one-stop operon 169 

prediction and analysis webserver (Figure 1). 170 

 171 

KEY OPERON-RELATED COMPUTATIONAL FUNCTIONALITIES 172 
 173 
To make discoveries from genomic and transcriptomic data, appropriate algorithms and 174 

tools need to be designed and developed. Here we summarize the in-house available 175 
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programs in DOOR, which can be potentially used to facilitate related objectives through 176 

data mining (Figure 1B-1E). 177 

 178 

Computational prediction of operons 179 

This operon prediction program was developed through training genomic features in a 180 

classification model and achieves an average accuracy of 90% and viewed as the most 181 

accurate for operon prediction [23] (Figure 1A). A total of five features are included for 182 

prediction: intergenic distance, conserved gene neighborhood, phylogenetic distances 183 

between adjacent genes, length ratio of two adjacent genes, and frequencies of specific 184 

DNA motifs in the intergenic regions [30]. Our analyses showed that the length of the 185 

intergenic region between a pair of adjacent genes is the most reliable indicator of 186 

whether it is an operon pair or a boundary pair. For genomes with a substantial number 187 

of operons, our (non-linear) decision tree-based classifier can predict operons in a 188 

prokaryotic genome with a high accuracy level. For example, the prediction accuracy of 189 

our program can reach 90.2 and 93.7% on Bacillus subtilis and Escherichia coli 190 

genomes, respectively. Without known operon information, our (linear) logistic function-191 

based classifier can reach the prediction accuracy at 84.6 and 83.3% for E. coli and B. 192 

subtilis, respectively. 193 

 194 

TU prediction based on high-throughput RNA-seq data 195 

TUs are the basic transcriptional units. Therefore, identifying TUs under different 196 

conditions offers insight into the gene regulatory strategies in prokaryotes. For that, we 197 

have developed a program called SeqTU (Figure 1B), when RNA-seq data is provided 198 

[31]. Compared to the static structure of operons, TUs are more dynamic in terms of 199 

their composition, with constituent genes being expressed condition-specifically [31, 32]. 200 

SeqTU predicts TUs based on two features in a machine learning model measuring the 201 

RNA-seq expression patterns across the genome: expression-level continuity and 202 

variance, which has been developed into a web server [33]. In Clostridium thermocellum, 203 

2590 TUs are predicted based on four RNA-seq datasets using SeqTU; 44% of the TUs 204 

have multiple genes. The high precision of SeqTU is also validated with RNA-seq data 205 

in E. coli. 206 
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Cis-regulatory motif analysis and prediction 207 

Elucidating gene regulation in response to environmental stimuli and cellular changes is 208 

one of the fundamental goals in biology. Identification of cis-regulatory motifs in 209 

genomic sequences for operons and TUs is a key step in computational genomics 210 

toward complete understanding of the global regulatory network in microbes. With the 211 

availability of operon/TU, we can then identify the regulatory motifs, particularly cis-212 

regulatory motifs that bind with transcription factors (Figure 1B). The first program we 213 

developed in this regard is called BOBRO, which substantially improves the prediction 214 

accuracy compared to existing programs [34]. It identifies significant motifs in promoters 215 

in two steps: it first assesses the possibility for each position in a given promoter to be 216 

the (approximate) start of a conserved sequence motif using a highly effective method; 217 

and identifies actual motifs from the accidental ones based on the concept of ‘motif 218 

closure’ [34]. These two key ideas are embedded in a classical framework for motif 219 

finding by identifying cliques in a graph but have made this framework substantially 220 

more sensitive and more selective in a very noisy background. In an updated version, 221 

BoBro2.0, prediction and analysis of cis-regulatory motifs are integrated. Besides 222 

reliably identification of cis-regulatory motifs at a genome scale, it can accurately scan 223 

for all motif instances of a query motif in specified genomic regions and provide reliable 224 

comparisons and clustering of identified motifs, which takes into consideration the weak 225 

signals from the flanking regions of the motifs. Additionally, it can analyze co-occurring 226 

motifs in the regulatory regions, in support of elucidation of co-regulation by multiple 227 

transcription factors [35]. Finally, we implement all these tools and algorithms in a web 228 

server called DMINDA for identification and analysis of regulatory DNA motifs of 229 

operons/TUs [36]. Recently, we have developed a phylogenetic footprinting method for 230 

cis-regulatory motifs identification in prokaryotic genomes, which produces improved 231 

results over BOBRO and similar programs [37]. Based on these identified cis-regulatory 232 

motifs, bacterial regulons can be predicted on a genome-scale [38], which is important 233 

in knowledge discovery from genomes. 234 

 235 
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Co-expression analysis of operons 236 

The genes in the operons and TUs identified above can be co-expressed (with similar 237 

expression levels) under different conditions. Identifying the expression patterns 238 

provides important information on the functional responses in cells and helps identify 239 

higher level functional machineries, e.g., metabolic and regulatory pathways. The first 240 

generation of co-expression analysis usually focuses on grouping genes under all given 241 

conditions into clusters of similar expression levels or similar changes [39]. With the 242 

quick popularity of microarray and RNA-seq, it soon became desirable to identify genes, 243 

operons, and TUs that are only co-expressed under some (to-be-identified) conditions, 244 

not all conditions. From these ‘conditionally’ expressed gene biclusters (two-245 

dimensional representation of gene clusters)—clusters of co-expressed genes (rows) 246 

under multiple conditions (columns), we can infer local and global gene regulation in 247 

cells and how cellular systems respond to different environmental conditions.  248 

 249 

We have developed a QUalitative BIClustering algorithm (QUBIC) for the clustering of 250 

co-expressed genes across many test conditions (Figure 1D) [40]. Our algorithm first 251 

converts gene expression data into a qualitative matrix, and then identifies all biclusters 252 

in this matrix one-by-one in a heuristic way, starting with the closest gene pairs as a 253 

seed to build an initial bicluster and then iteratively recruiting additional genes into the 254 

current bicluster without violating a pre-specified consistency level. Employing a 255 

combination of qualitative (or semi-quantitative) measures of gene expression data and 256 

a combinatorial optimization technique, the QUBIC algorithm can identify all statistically 257 

significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem 258 

considered to be rather challenging and biologically meaningful. Another key feature is 259 

that QUBIC solves general biclustering problems very efficiently, capable of solving 260 

biclustering problems with tens of thousands of genes under up to thousands of 261 

conditions in a few minutes of the CPU time on a desktop computer. This algorithm 262 

outperforms other programs in this regard, such as SAMBA [41], ISA [42], BIMAX [43], 263 

RMSBE [44] has subsequently been developed into a web server [45], and recently a 264 

Bioconductor package [46]. 265 

 266 
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Comparative genomics analysis in support of conserved operons identification 267 

among different genomes 268 

Mapping biological pathways across microbial genomes is critical to functional studies 269 

of biological systems. Most existing methods mainly rely on sequence-based 270 

orthologous gene mapping, which often leads to biased results because sequence-271 

similarity information alone does not contain sufficient information for accurate 272 

identification of orthologous relationship. We developed an algorithm for pathway 273 

mapping across microbial genomes, combining both sequence similarity and genomic 274 

structure information such as operons and regulons (Figure 1A) [47]. Our algorithm is 275 

based on the observation that the products of genes in an operon or TU usually perform 276 

closely related functions and these genes are more likely to be in the same pathway 277 

than those not belonging in the same operons, TUs, or regulons [48-50]. Such a 278 

program, P-MAP, solved this constrained optimization problem using the integer-279 

programming algorithm [47]. Our analysis on a number of known homologous pathways 280 

shows that using genomic structure information as constraints can greatly improve the 281 

pathway-mapping accuracy over methods that use sequence-similarity information 282 

alone [47]. 283 

 284 

Another direct application of the DOOR database and is to increase the accuracy of 285 

orthologous gene prediction, which is the most basic function of comparative genomics. 286 

Most of the programs developed for this function are based on either phylogeny [51-53] 287 

or sequence similarity [49, 54]. In our method GOST (Global Optimization STrategy) for 288 

orthologous gene mapping, we utilize groups of functionally or transcriptionally related 289 

operons (uber-operons) (Figure 1B), whose gene sets are conserved across the target 290 

and multiple reference genomes [55]. Then GOST identifies all the orthologous gene 291 

pairs across two genomes with a good ‘enough’ sequence similarity score and the 292 

insight that the two genes have homologous working partners in their respective 293 

genomes (two genes are defined as homologous if their sequence similarity is below a 294 

specific E-value threshold in BLAST). Two genes in a genome are considered as 295 

‘working partners’ if they belong to a common operon/uber-operon [55]. GOST identified 296 

665 more enzyme gene pairs than RBH, 1,901 more than INPARANOID [56] and 2,354 297 
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more than OrthoMCL [57]. We believe that the actual performance of GOST is even 298 

better than suggested by these comparisons, as the genes tested only represent a 299 

small portion of all the orthologous relationships among enzyme-encoding genes across 300 

bacterial genomes. Overall, GOST is much more efficient than OrthoMCL and 301 

INPARANOID and runs as fast as RBH [49, 55].  302 

 303 

ADVANCED KNOWLEDGE DISCOVERY USING DOOR 304 
 305 

Evolutionary understanding of operons: Uber operon and operon structures 306 

across multiple closely related organisms 307 

Operons are gene sets placed in contiguous blocks on genomes which are co-regulated 308 

and co-transcribed to execute related functions. We already show that this structure is 309 

not static, but rather dynamic with respect to gene composition particularly during gene 310 

expression across various external growth conditions. From an evolutionary perspective, 311 

the gene content, gene order, and operon/TU regulation may vary among genomes but 312 

such rearrangements tend to conserve individual genes in specific functional and 313 

regulatory contexts across genomes, such contexts are called uber-operons (Figure 314 

1A) [58]. We have developed an algorithm to predict uber-operons, which can reveal the 315 

patterns of operon evolution in prokaryotes (Figure 1A). Our algorithm sets two groups 316 

of genomes (target and references) for comparison and then identifies groups of 317 

functionally or transcriptionally related operons, whose gene sets are conserved across 318 

the target and multiple reference genomes. Using this algorithm, we predicted uber-319 

operons for each of available 91 genomes, using other 90 genomes as references. 320 

Totally 158 uber-operons containing 1,830 genes were obtained in E. coli K12, and it is 321 

found that many of the uber-operons are parts of known regulons or biological pathways 322 

or involved in highly related biological processes based on their Gene Ontology (GO) 323 

[59] assignments. For some of the predicted uber-operons that are not part of known 324 

regulons or pathways, our analyses indicate that their genes are highly likely to work 325 

together in the same GO biological processes, suggesting the possibility of new 326 

regulons or pathways [60]. Besides the uber operons between distantly related species, 327 

we also examined the diversity of operons with high resolution between closely related 328 
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genomes with a graph-based model, we found that genes in a connected component (a 329 

maximal set of genes linked together as a subgraph in the entire graph) are likely to be 330 

functionally related and these identified components tend to form treelike topology, such 331 

as paths (each path is a chain of connected unique nodes) and stars (each star is a tree 332 

with one internal node and many leaves), corresponding to different biological 333 

mechanisms in transcriptional regulation [61]. For example, a path-structure component 334 

integrates genes encoding a protein complex, such as ribosome; a star-structure 335 

component not only groups related genes together, but also reflects the key functional 336 

roles of the central node of this component, such as the ABC transporter with a 337 

transporter permease and substrate-binding proteins surrounding it. Most interestingly, 338 

the genes from organisms with highly diverse living environments, i.e., biomass 339 

degraders and animal pathogens of the Clostridium genus, can be clearly classified into 340 

different topological groups on some connected components [61]. 341 

 342 

The global organizing principle of operons in bacterial genomes  343 

Dynamic organization of the bacteria chromosome under different conditions. 344 

Besides the local evolutionary conservation of operons, little is understood about what 345 

may determine the global arrangement of bacterial genes in a genome beyond the 346 

operon level. It is postulated that the global genomic organization of bacterial genes 347 

may be affected and constrained by multiple cellular processes, particularly gene 348 

transcription, genome replication, and nucleoid compaction, at both local and global 349 

levels [62]. For example, we found at least 40% of the operons in the genomes E. coli 350 

K-12 and Bacillus subtilis strain participate in multiple metabolic pathways [14]. 351 

Furthermore, we found that the global arrangement of operons in a bacterial genome is 352 

largely influenced by the fact that bacteria tend to keep their operons of the same 353 

biological pathways in vicinity on genomes and also keep operons in multiple pathways 354 

close to other fellow operons of these pathways (Figure 1E) [14]. 355 

 356 

The circular chromosome of bacteria has been suggested to fold into a collection of 357 

sequentially consecutive domains (supercoils), which are dynamically positioned with 358 

high precision [63-65]. A domain needs to be unfolded when a biological pathway which 359 
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contains genes encoded in this DNA segment is transcriptionally activated. We 360 

postulated that bacterial genomes are partitioned into a set of folding domains such that 361 

the total unfolding/refolding events of these domains is minimal. By testing this 362 

hypothesis, we predicted seven distinct sets of such domains along the E. coli 363 

chromosome under seven growth conditions, namely exponential growth, stationary 364 

growth, anaerobiosis, heat shock, oxidative stress, nitrogen limitation, and SOS stress 365 

responses [16]. These predicted folding domains are highly stable statistically and are 366 

generally consistent with the experimental data of DNA binding sites of the nucleoid-367 

associated proteins that assist the folding of these domains, as well as genome-scale 368 

protein occupancy profiles. These results establish a strong link between a folded E. coli 369 

chromosomal structure and the encoded biological pathways and their activation 370 

frequencies [16]. 371 

 372 

Global genomic arrangement of bacterial operons is closely tied with the total 373 

transcriptional efficiency 374 

The above results suggest that microbial genomes are globally folded such that the total 375 

number of supercoil unfolding events in the folded chromosome, needed to 376 

transcriptionally activate all the obligatory pathways under a specific growth condition, 377 

tends to be minimized [16] (Figure 1E). We reasoned this is a result of adaptive 378 

evolution, such that the operons are globally arranged in such a way that the total 379 

energy is minimized for unfolding (and then refolding) relevant DNA segments needed 380 

to make the required genes transcriptionally accessible in response to various stimuli. 381 

To this end, we developed a simple model for estimating this total energy cost and 382 

found that partitions of the whole genome into 10-100 kb genomic regions offers can 383 

minimize such energy cost [16, 17]. Through applying the above quantitative model on 384 

52 E. coli genomes, we further investigated the potential underlying principles that 385 

dictate the global organization of operons into supercoils in the chromosomes. We 386 

found the commonalities and differences in the genomic organizations of genes (and 387 

operons) encoding specific pathways across different genomes is largely dictated by the 388 

frequencies of the transcription activation of pathways relative to those of the other 389 
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encoded pathways in an organism and the variation in the activation frequencies of a 390 

specific pathway across the related genomes [66]. 391 

 392 

 393 

SUMMARY AND OUTLOOK 394 
 395 
Genomes are the complete set of genes or genetic materials present in a cell or 396 

organism and contain heredity information which needs to be deciphered to make sense 397 

out of them and life. Increasingly available prokaryotic genomes have provided a rich 398 

source of ‘raw’ materials for knowledge discovery on the organization and function of 399 

genes, operons, and chromosomes, and the evolution of these functional constituents. 400 

We have curated an operon database in 2,072 genomes and developed multiple tools 401 

to understand the organization of gene, operon, and chromosome. We have 402 

demonstrated operon as a local gene-organizing strategy has profound implications in 403 

gene function, regulation, and genome organization. On a system level, our findings so 404 

far support that genome organization and transcription efficiencies are closely 405 

correlated. With more genomes sequenced and more powerful tools, advanced systems 406 

knowledge will be gained for bacterial life. This will the main goal of our next version of 407 

DOOR3, which is under construction. 408 

 409 

FUNDING 410 

This work was supported by a grant from the U.S. Department of Energy (#DE-PS02-411 

06ER64304). The BioEnergy Science Center (BESC) is supported by the Office of 412 

Biological and Environmental Research in the DOE Office of Science. This work was 413 

also supported in part by the State of South Dakota Research Innovation Center and 414 

the Agriculture Experiment Station of South Dakota State University.  415 

KEY POINTS 416 
 417 
1. DOOR is a comprehensive database that curates operons in 2,072 prokaryotic 418 

genomes that have becoming increasingly available and predicts regulatory motifs of 419 

the operons toward biology knowledge discovery. A total of 1,323,902 multi-gene 420 
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operons is predicted, averaging 583 such operons per chromosome and 24 operons 421 

per plasmid, along with 2,578,949 single-gene operons. 422 

2. Operons are not static, but rather dynamic under different conditions and usually 423 

form clusters of transcription units. More importantly, operons of related functions 424 

are evolutionary conserved, forming uber operons. 425 

3. The global arrangement of operons in a bacterial genome is largely influenced by 426 

the fact that bacteria tend to keep their operons of related functions in vicinity and 427 

form supercoils; bacterial genomes are such partitioned to minimize the total 428 

unfolding/refolding events of these domains. 429 

4. Our tools developed around operons can predict and analyze transcription units, 430 

regulatory motifs, operon evolution, transcription efficiency, and genome 431 

organization, which can establish link between organization and function at operon 432 

and genome levels. 433 

 434 
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