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Abstract. We prove necessary and sufficient conditions for stable-like estimates of the heat kernel
for jump type Dirichlet forms on metric measure spaces. The conditions are given in terms of the
volume growth function, jump kernel and a generalized capacity.
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2 A. GRIGOR’YAN, E. HU, AND J. HU

1. Introduction

1.1. Historical background and motivation. The heat kernel pt (x, y) in Rn is the fundamental
solution of the classical heat equation

∂tu−∆u = 0

that is given by the Gauss-Weierstrass formula

pt (x, y) =
1

(4πt)n/2
exp

(
−|x− y|

2

4t

)
. (1.1)

The heat kernel of a similar heat equation with non-local operator

∂tu+ (−∆)1/2 u = 0

is also known and coincides with the Cauchy-Poisson kernel in Rn:

pt(x, y) =
Cn
tn

(
1 +
|x− y|2

t2

)−n+1
2

, (1.2)

where Cn = Γ
(
n+1

2

)
/π(n+1)/2.

We are interested in estimates of heat kernels in rather general abstract setting. Let (M,d) be a
locally compact separable metric space and let µ be a Radon measure on M with full support. Let
(E ,F) be a regular Dirichlet form in L2 (M,µ). The generator L of (E ,F) is a self-adjoint, bounded,
non-negative definite operator in L2 (M,µ) that gives rise to the heat semigroup Pt = e−tL, t ≥ 0.
It is known that the operator Pt is Markovian, that is, Ptf ≥ 0 if f ≥ 0 and Ptf ≤ 1 if f ≤ 1. These
properties allow to extend Pt to a bounded linear operator in all spaces Lq (M,µ), q ∈ [1,∞].

If Pt as an operator in L2 (M,µ) has for any t > 0 an integral kernel pt (x, y) then the latter is
called the heat kernel of (E ,F). The heat kernel coincides with the transition density of the Hunt
process associated with (E ,F).

For example, the Gauss-Weierstrass function (1.1) is the heat kernel of the Dirichlet form

E (f, f) =

∫
Rn
|∇f |2 dx,

where f ∈ F := W 1,2 (Rn). The generator of this form is L = −∆. A more general Dirichlet form

E (f, f) =

∫
Rn
aij∂xif∂xjf dx

with a uniformly elliptic symmetric matrix (aij (x)) has the generator L = −∂xi
(
aij∂xj

)
. By

Aronson’s theorem [2], its heat kernel (equivalently, the transition density of the diffusion process
generated by L) satisfies the Gaussian estimate

pt (x, y) � C

tn/2
exp

(
−c |x− y|

2

t

)
,

where C, c are positive constants, and the sign � means that both ≤ and ≥ are true but with
different values of C, c.

Another well-known example of the Dirichlet form is

E (f, f) =

∫∫
Rn×Rn

(f (x)− f (y))2

|x− y|n+β
dxdy,

where f ∈ F := B
β/2
2,2 (Rn) , where β ∈ (0, 2) is the index of this form. The generator of this

Dirichlet form is L = (−∆)β/2, and its heat kernel (that is, the transition density of the symmetric
stable process of index β) satisfies the estimate

pt (x, y) � C

tn/β

(
1 +
|x− y|
t1/β

)−(n+β)

.
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Note that (1.2) matches this estimate with β = 1.
In the general setting, assume that the heat kernel exists and satisfies the following estimate

pt (x, y) � C

tα/β
Φ

(
d(x, y)

t1/β

)
with some function Φ and two positive parameters α, β. Then, by a result of [25], we have either

Φ (s) � C exp
(
−cs

β
β−1

)
or Φ (s) � C (1 + s)−(α+β). In other words, either the Dirichlet form is

local and the heat kernel satisfies sub-Gaussian bounds

pt (x, y) � C

tα/β
exp

(
−c
(
d(x, y)

t1/β

) β
β−1

)
, (1.3)

or the Dirichlet form is of jump type and the heat kernel satisfies stable-like bounds

pt (x, y) � C

tα/β

(
1 +

d (x, y)

t1/β

)−(α+β)

. (1.4)

The sub-Gaussian estimate (1.3) was proved for many fractal spaces like Sierpinski gaskets and
carpets, see for example, [3] [4] [5], [8], [13], [27], [29], [30]. The stable-like estimate (1.4) follows
from (1.3) by subordination, see [16], [34].

In the both cases α has to be the Hausdorff dimension of (M,d). Moreover, both (1.3) and (1.4)
imply the α-regularity of the volume of balls in M , that is, for any metric ball B (x, r) in M ,

µ (B (x, r)) ' rα, (1.5)

where the sign ' means that the ratio of the both sides is bounded from above and below by
positive constants.

In the case of (1.3), the parameter β is called the walk dimension. In fact, the walk dimension
happens to be an invariant of (M,d) as well. It is known that in this case necessarily β ≥ 2. In
fact, for most interesting examples, like Sierpinski gaskets and carpets, we have β > 2. In the case
of (1.4), the parameter β is called the index of the associated jump process, and it can take in
general arbitrary positive values.

The major question that arises in this area is to find some practical conditions on (M,d, µ) and
(E ,F) that should be equivalent to (1.3) resp. (1.4). Certain equivalent conditions for (1.3) were
obtained in [26] and [19], but they contain an elliptic Harnack inequality that is difficult to verify.
Some equivalent conditions for the upper bound in (1.4) were obtained in [18] and [22].

If (M,d, µ) is a complete Riemannian manifold and (E ,F) is the standard Riemannian Dirichlet
form given by

E (f, f) =

∫
M
|∇f |2 dµ,

then it is known (cf. [15], [33]) that the Gaussian heat kernel estimate that corresponds to β = 2
in (1.3), is equivalent to the conjunction of the following two properties:

• the volume regularity (1.5);
• the Poincaré inequality∫

B(x,r)
|∇f |2 dµ ≥ c

r2

∫
B(x,r)

(
f − f

)2
dµ, (1.6)

where f is the arithmetic mean of f in B (x, r).

In the case β > 2 one replaces (1.6) by the β-Poincaré inequality∫
B(x,r)

dΓ〈f, f〉 ≥ c

rβ

∫
B(x,r)

(
f − f

)2
dµ, (1.7)

where Γ〈f, f〉 is the energy measure of f . In general, (1.5) and (1.7) are necessary for (1.3), but not
sufficient, so that one needs one more condition. The third condition was introduced for the first
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time by Barlow, Bass and Kumagai in [6]. They named that condition a cutoff Sobolev inequality
(shortly, (CS)) and proved that (1.5), (1.7) and (CS) are equivalent to (1.3).

The meaning of (CS) is that it postulates the existence of test functions with certain properties.
However, (CS) is quite difficult both to state and to verify, the search for another third condition
continues.

Andres and Barlow introduced in [1] a much simpler cutoff Sobolev inequality in annuli (shortly,
(CSA)) and used it to obtain equivalent conditions for upper bound of sub-Gaussian type. Grigo-
ryan, Hu and Lau proved in [23] that (1.5), (1.7) and (CSA) are equivalent to (1.3). Note that in
[23] the authors used a slightly different version of (CSA) that was named a generalized capacity
estimate (shortly, (Gcap)). It was conjectured in [23] that (Gcap) can be replaced by the following
much simpler capacity condition: for any ball B of radius r,

cap(
1

2
B,B) ≤ Cµ (B)

rβ
, (1.8)

where cap is the capacity associated with (E ,F) (see (1.12) for the definition). This conjecture is
still open.

A similar question is in place for the stable-like estimate (1.4). In this case, we assume that
(E ,F) is a jump-type Dirichlet form with a symmetric jump kernel J (x, y). Chen and Kumagai
proved in [11] that, in the case β < 2, the stable-like estimate (1.4) is equivalent to the volume
regularity (1.5) and the following estimate of the jump kernel J

J (x, y) ' 1

d (x, y)α+β
(1.9)

that replaces in this case the Poincaré inequality.
The main question that we address in the present paper is obtaining equivalent conditions for

(1.4) for arbitrary values of the index β, in particular, for β ≥ 2. In this case, apart from (1.5)
and (1.9) one needs a third condition. Ideally, the third condition should be again the capacity
condition (1.8), but like in the diffusion case we can state this only as a conjecture.

Our main result here is that (1.4) is equivalent to the conjunction of (1.5), (1.9) and a certain
generalized capacity condition (Gcap) that is stated below in Definition 1.11.

We are aware of a preprint of Chen, Kumagai and Wang [12] where they obtained a similar
result using as a third condition a non-local version of (CSA). We should emphasize one significant
advantage of our condition (Gcap) – it can be stated in the same form both for local and non-local
Dirichlet forms, whereas the conditions like (CSA) have to use a specific shape of E .

We should also mention that Chen, Kumagai and Wang [12] use a more general volume doubling
property instead of the volume regularity (1.5) and a more general gauge function instead of rβ.
However, they have to assume also a reverse volume doubling property which implies that the
underlying space must be non-compact. In contrast to that, our result is stated and proved in a
localized form, that is, when all assumptions are made for a restricted range of radius and the heat
kernel bound (1.4) is obtained for a restricted range of time. Consequently, our results apply also
to compact spaces. Yet one more difference is that our proof is completely analytic whereas that
of [12] uses quite strongly the jump process associated with (E ,F) and corresponding probabilistic
tools.

We expect that our method should work also for non-regular Dirichlet forms but this would
require a revision of a number of the previous works that we cite here. Let us emphasize that we
assume neither conservativeness of (E ,F) nor compactness of metric balls, although these assump-
tions are commonly used in many papers on this subject.

Notation. Letters C, c, c′, C ′, c1, C1 etc are used to denote positive constants whose values are
unimportant and can change at any occurrence. However, our results are quantitative in the sense
that the value of such constants depends only on the parameters in the hypotheses in question. The
letters α, β and R denote the global parameters that have the same meaning all over the paper.
The usage of other letters depends on the context. We use the expression “µ-almost all x, y ∈ M
” as a short hand for “µ× µ-almost all (x, y) ∈M ×M”.
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1.2. Statement of the main result. Let (M,d) be a locally compact separable metric space.
We denote by B (x, r) the open metric ball in (M,d) of radius r centered at x ∈ M. For any ball
B = B (x, r) and for any λ > 0, we denote by λB the ball B (x, λr).

Let µ be a Radon measure on M with support and let (E ,F) be a regular Dirichlet form in
L2 (M,µ). We assume that (E ,F) is of jump type, that is, for all u, v ∈ F ∩ C0(X),

E (u, v) =

∫∫
M×M\diag

(u(x)− u(y)) (v(x)− v(y)) dj(x, y),

where j is a jump measure defined on M ×M \ diag (see [14]). Assume in addition that the jump
measure j has a density with respect to µ × µ, which will be denoted by J(x, y). Hence, by [14,
Lemma 4.5.4, p.184], for all u, v ∈ F ,

E(u, v) =

∫∫
M×M

(u(x)− u(y))(v(x)− v(y))J(x, y)dµ(x)dµ(y). (1.10)

Let us fix two positive parameters α, β as well as R ∈ (0,diamM ] that will be used throughout
the paper.

Definition 1.1 (Condition (V )). We say that condition (V≤) is satisfied if, for all x ∈ M and
r ∈ (0,∞),

µ(B(x, r)) ≤ Crα,
for some constant C > 0. We say that condition (V≥) is satisfied if, for all x ∈M and all r ∈ (0, R),

µ(B(x, r)) ≥ C−1rα.

We say that (V ) is satisfied if both (V≤) and (V≥) are satisfied.

Definition 1.2 (Condition (J)). We say that condition (J≤) is satisfied if, for all distinct x, y ∈M ,

J (x, y) ≤ Cd (x, y)−(α+β) .

Similarly, condition (J≥) means that

J (x, y) ≥ C−1d (x, y)−(α+β) .

We say that (J) is satisfied if both (J≤) and (J≥) are satisfied.

By the general theory of Dirichlet forms (cf. [14]), (E ,F) has the generator L that is a non-
negative definite, self-adjoint, symmetric operator on L2(M,µ). The generator gives rise to the
heat semigroup {Pt}t≥0, where Pt := e−tL is a bounded self-adjoint operator in L2 (M,µ). If, for
any t > 0, Pt is an integral operator, that is, given by

Ptf (x) =

∫
M
pt (x, y) f (y) dµ (y) ,

where pt(x, y) is the integral kernel, then pt(x, y) is called the heat kernel of (E ,F). If it exists
then, for any t > 0, pt (x, y) is a non-negative measurable function of (x, y).

In this paper, we are concerned with the following stable-like estimates of the heat kernel.

Definition 1.3 (Condition (UE)). We say that the upper estimate (UE) is satisfied if the heat
kernel pt(x, y) exists and satisfies the following estimate

pt(x, y) ≤ C

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

,

for all t ∈ (0, R
β
) and µ-almost all x, y ∈M .

Note that
1

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

� t−α/β ∧ t

d(x, y)α+β
.
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Definition 1.4 (Condition (LE)). We say that the lower estimate (LE) is satisfied if the heat
kernel pt(x, y) exists and satisfies the following estimate

pt(x, y) ≥ c

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

,

for all t ∈ (0, R
β
) and µ-almost all x, y ∈M .

To state the main result, we need some more definitions.

Definition 1.5. Let U ⊂ M be an open set, A be any Borel subset of U and κ ≥ 1 be a real
number. A κ-cutoff function of the pair (A,U) is any function φ ∈ F such that

• 0 ≤ φ ≤ κ µ-a.e. in M ;
• φ ≥ 1 µ-a.e. in A;
• φ = 0 µ-a.e. in U c.

We denote by κ-cutoff(A,U) the collection of all κ-cutoff functions of the pair (A,U).

Any 1-cutoff function will be simply referred to as a cutoff function. Clearly, φ ∈ F is a cutoff
function of (A,U) if 0 ≤ φ ≤ 1, φ|A = 1 and φ|Uc = 0. Also, we write

cutoff(A,U) := 1- cutoff(A,U).

Note that, for any κ ≥ 1,
cutoff(A,U) ⊂ κ-cutoff(A,U),

and, for any φ ∈ κ-cutoff(A,U), we have 1 ∧ φ ∈ cutoff(A,U).

Remark 1.6. Let us emphasize that we do not require a cutoff function φ to have a compact
support nor to be continuous, unlike some other papers where this notion was used.

Consider the following function space

F ′ := {v + a : v ∈ F , a ∈ R}.
The motivation for introducing this space is to include constant functions that are not necessarily
in F .

Definition 1.7. Let U be an open subset of M and A be any Borel subset of U . For any function

u ∈ F ′ ∩ L∞ and a real number κ ≥ 1, define the generalized capacity cap
(κ)
u (A,U) of the pair

(A,U) by

cap(κ)
u (A,U) = inf

{
E
(
u2φ, φ

)
: φ ∈ κ-cutoff(A,U)

}
. (1.11)

In the case κ = 1 and u ≡ 1 we obtain the usual capacity:

cap(A,U) := cap
(1)
1 (A,U) = inf {E(φ, φ) : φ ∈ cutoff(A,U)} . (1.12)

Remark 1.8. Observe that the quantity E(u2φ, φ) in the definition of the generalized capacity is
well defined. Indeed, if u = v + a where v ∈ F ∩L∞ and a ∈ R then by [14, Theorem 4.2(ii), p.28]
we have

u2φ = v2φ+ 2avφ+ a2φ2 ∈ F .

Remark 1.9. Note that if u is not a constant then E
(
u2φ, φ

)
can take negative values so that the

generalized capacity can be negative (unlike the usual capacity that is always non-negative). Since

we will be using only upper bounds for cap
(κ)
u (A,U), one could have avoided negative values by

using in the definition (1.11) E
(
u2φ, φ

)
+

instead of E
(
u2φ, φ

)
. This would make the generalized

capacity non-negative, while all the results and proofs of this paper remain unchanged.

Remark 1.10. The notion of a generalized capacity for local Dirichlet forms was defined in [23]
in a somewhat different way. However, the main result in [23] can be also reformulated for the
generalized capacity defined by (1.11). The advantage of the definition (1.11) is that it works
equally well for local and non-local Dirichlet forms.
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Definition 1.11. We say that the generalized capacity condition (Gcap) is satisfied if there exist two
constants κ ≥ 1, C > 0 such that, for any u ∈ F ′ ∩ L∞ and for all concentric balls B0 := B(x0, R),
B := B(x0, R+ r) with x0 ∈M and 0 < R < R+ r < R,

cap(κ)
u (B0, B) ≤ C

rβ

∫
B
u2dµ. (1.13)

Clearly, (Gcap) is equivalent to the existence of a number κ ≥ 1 (not depending on u) and a
function φ ∈ κ-cutoff(B0, B) (depending on u) such that

E
(
u2φ, φ

)
≤ C

rβ

∫
B
u2dµ.

Our main result is the following theorem (it is a consequence of a more general Theorem 2.10 to
be stated below).

Theorem 1.12. Let (E ,F) be a regular jump type Dirichlet form on L2(M,µ) with a jump kernel
J . Assume that (M,d, µ) satisfies (V ). Then the following equivalence holds:

(J) + (Gcap)⇔ (UE) + (LE). (1.14)

Moreover, under these hypotheses, the heat kernel is Hölder continuous jointly in x, y and contin-
uous jointly in x, y, t.

If R = ∞ and if (E ,F) is conservative then it is known that (UE) + (LE) ⇒ (V ) (see [20]).
Hence, in this case the statement of Theorem 1.12 can be reformulated as follows:

(V ) + (J) + (Gcap)⇔ (UE) + (LE). (1.15)

In the case β < 2 the condition (Gcap) can be derived from (V ) and (J) (see Section 2.6), so that
in this case we obtain

(V ) + (J)⇔ (UE) + (LE). (1.16)

This equivalence (in a somewhat more restricted setting) was first proved by Z.-Q.Chen and
T.Kumagai [11].

Definition 1.13 (Condition (cap)). We say that the capacity condition (cap) is satisfied if there
exists a constant C > 0 such that, for any B := B(x0, R) with R < R,

cap(
1

2
B,B) ≤ Cµ(B)

Rβ
. (1.17)

It is easy to see that

(Gcap)⇒ (cap) .

Indeed, applying (Gcap) with u ≡ 1, we obtain a function φ ∈ κ-cutoff(1
2B,B) such that

E (φ, φ) ≤ C

Rβ

∫
B
u2dµ = C

µ(B)

Rβ
.

Replacing φ by φ̃ := 1 ∧ φ ∈ cutoff(1
2B,B), we obtain that E(φ̃, φ̃) satisfies the same estimate,

which implies (1.17).
Theorem 1.12 and the condition (Gcap) are motivated by the following conjecture.

Conjecture 1.14. (V ) + (J) + (cap)⇒ (UE) + (LE).

At the time being we lack necessary technical tools to approach to this problem.
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1.3. Structure of the paper. Let us describe the main structural elements of the paper.
Section 2. In Subsection 2.1 we obtain a consequence of (Gcap) – the Andres–Barlow condition

(AB). This is a non-local version of the condition (CSA) introduced by Andres and Barlow [1] for
local Dirichlet forms. A similar condition in [12] is called (CSJ).

In Subsection 2.2 we discuss some properties of capacity. In Subsection 2.3 we show that (Gcap)
follows from a survival condition (S). In Subsection 2.4 we obtain a self-improved version of the
condition (AB). The latter is used later in the proof of Lemma 3.10 that in turn is one of the
ingredients of the proof of the crucial Lemma of Growth (Lemma 4.1).

In Subsection 2.5 we state an extended version of Theorem 1.12 – Theorem 2.10, and explain a
general scheme of its proof.

In Subsection 2.6 we treat a special case β < 2. We prove that in this case the hypothesis (Gcap)
can be dropped from (1.14), cf. Corollary 2.12.

Section 3. We prove here some auxiliary technical results, mostly related to the fact that (E ,F)
is of jump type. The main results of this section are Lemmas 3.9 and 3.10.

Section 4. This section is central for the proof of Theorems 1.12 and 2.10. In a sequence of
lemmas, we prove estimates of the Hölder norm of harmonic functions. The condition (Gcap) in
the form (AB) is used only in the proof of Lemma 4.3, which itself constitutes the main part of the
proof of Lemma of Growth 4.1. The latter implies the Weak Harnack Inequality of Lemma 4.5.

In the case of a local Dirichlet form, the Weak Harnack Inequality implies immediately the
Hölder continuity estimate for harmonic functions (cf. [23]). In the present non-local case, the
Weak Harnack Inequality implies a weaker statement that requires further self-improvement. This
is a quite elaborate argument that we have borrowed from the paper of Di Castro, Kuusi, Palatucci
[10] and that is implemented in Lemma 4.7. The latter implies immediately Oscillation Lemma 4.8
containing the required estimate of the Hölder norm.

Section 5 is devoted to the proof of Theorem 2.10. In Subsection 5.1 we show that (V ) + (J) +
(AB) imply (S) (Corollary 5.7). In Subsection 5.2 we prove the oscillation inequality for a weak
solution u of the equation Lu = f (Lemma 5.9), based on the Oscillation Lemma 4.8.

In Subsection 5.3 we prove ultracontractive estimates for the heat semigroup PΩ
t and for its time

derivative (Lemma 5.10), by means of the Faber-Krahn and Nash inequalities that follow from (V )
and (J) (Lemma 3.5).

In Subsection 5.4 we prove the oscillation inequality and the Hölder continuity for the heat
semigroup considering a function u = PΩ

t f as a weak solution to Lu = −∂tu and using Lemmas
5.9 and 5.10.

In Subsection 5.5 we obtain the existence of the heat kernel via the ultracontractivity of the heat
semigroup, and prove the Hölder continuity of the heat kernel (Lemma 5.13).

In Subsection 5.6 we conclude the proof of Theorem 2.10. We first obtain from (S) the on-
diagonal lower bound of the heat kernel. Then, using the Hölder norm estimate of the heat kernel
of Lemma 5.13, we obtain the near-diagonal lower estimate (NLE) of the heat kernel (see definition
in Section 2.5). Finally, we apply the following result of the companion paper of the authors [17,
Theorem 2.9]: under the standing assumption (V ),

(J) + (S) + (NLE)⇔ (UE) + (LE), (1.18)

which finishes the proof of (UE) and (LE).
Let us also mention that the techniques for obtaining (LE) in (1.18) was developed in [17], while

the method for derivation of (UE) came from [22, Corollary 2.7].
Section 6. In this Section we obtain some consequences of our main result: Corollary 6.2 about

the equivalent conditions for (UE) and (LE) in terms of the Green function instead of (Gcap),
and Corollary 6.3 about asymptotic behavior of the heat semigroup as t → ∞. Finally, Appendix
contains some technical results.
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2. Around condition (Gcap)

Let us extend E from F to F ′ = F + {const} as follows:

E(u+ a, v + b) := E(u, v), ∀u, v ∈ F , a, b ∈ R.
Then E has on F ′ the same expression as in (1.10). Some properties of (E ,F ′) are proved in
Appendix.

To shorten the formulas, we use everywhere measure j defined on M ×M by

dj = J(x, y)dµ(x)dµ(y).

In expressions of the form ∫
E1×E2

F (x, y) dj

we always follow the convention that the variable x belongs to E1 and y belongs to E2.

2.1. Condition (AB).

Definition 2.1. Given ζ > 0, we say that condition (ABζ) is satisfied if there is C > 0 such that,
for any u ∈ F ′ ∩ L∞ and for any three concentric balls B0 := B(x0, R), B := B(x0, R + r) and
Ω := B(x0, R

′) with 0 < R < R+ r < R′ < R, there exists φ ∈ cutoff(B0, B) such that∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj ≤ ζ

∫
B×B

φ2 (x) (u(x)− u(y))2 dj +
C

rβ

∫
Ω
u2dµ. (2.1)

We say that (AB) holds if (ABζ) holds for some ζ > 0.

The condition (AB) is named after Andres and Barlow, who first introduced in [1] a similar
condition for local Dirichlet forms (although in [1] function φ had to be the same for all u). They
called their condition by (CSA) – a cutoff Sobolev inequality in annuli. The condition (CSA)
was a significantly simplified version of a cutoff Sobolev inequality introduced earlier by Barlow,
Bass, Kumagai [6]. Since none of all these conditions is actually related to the classical Sobolev
inequality, we have decided to give to it a more appropriate name.

To confuse the reader even more, let us also mention that a version of the condition (CSA) for
local Dirichlet forms was used in [23] under the name (Gcap). Here we use (Gcap) for a different
condition as stated above.

It follows from (Gcap) or (AB) that, for any couple of concentric balls B1, B2 with radii 0 <
R1 < R2 < R, the set cutoff(B1, B2) is non-empty. This observation will be frequently used. In this
section we establish a relation between (Gcap) and (AB) that is needed for the proof of Theorem
1.12.

Lemma 2.2. For any measurable set E ⊂ M and for all measurable functions f, g on E, the
following inequality holds:∫

E×E
f2 (x) (g (x)− g (y))2 dj ≤ 2

∫
E×E

(g (x)− g (y))
(
f2 (x) g (x)− f2 (y) g (y)

)
dj

+4

∫
E×E

g2 (x) (f (x)− f (y))2 dj, (2.2)

provided the middle integral is greater than −∞.

Remark 2.3. In general, the integrals in (2.2) can take value +∞. However, all the integrals in
(2.2) are finite provided f, g ∈ F ′ ∩ L∞. Indeed, by the expression (1.10) of E(g, g),∫

E×E
f2(x) (g(x)− g(y))2 dj ≤ ‖f‖2∞

∫
M×M

(g(x)− g(y))2 dj = ‖f‖2∞ E(g, g) <∞.

Similarly, the third integral in (2.2) is finite. It follows from Proposition 6.5(ii) that f2g ∈ F ′∩L∞.
Then, using the Cauchy-Schwarz inequality and the expressions of E(g, g) and E(f2g, f2g), we obtain∫

E×E
|g(x)− g(y)|

∣∣f2(x)g(x)− f2(y)g(y)
∣∣ dj ≤√E(g, g)

√
E(f2g, f2g) <∞.
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Proof of Lemma 2.2. By a direct computation, we have the following identity

1

2

(
X2 + Y 2

)
(a− b)2 = (a− b)(X2a− Y 2b)− 1

2
(a2 − b2)(X2 − Y 2)

for all numbers a, b,X, Y . Let us estimate the last term here as follows:∣∣(a2 − b2)(X2 − Y 2)
∣∣ = |(X + Y )(a− b)| · |(a+ b)(X − Y )|

≤ 1

4
(X + Y )2(a− b)2 + (a+ b)2(X − Y )2

≤ 1

2
(X2 + Y 2)(a− b)2 + 2(a2 + b2)(X − Y )2.

Substitution into the above identity yields

1

2

(
X2 + Y 2

)
(a− b)2 ≤ 2(a− b)(X2a− Y 2b) + 2(a2 + b2)(X − Y )2.

In particular, for arbitrary x, y ∈ E, setting here X = f(x), Y = f(y), a = g(x) and b = g(y), we
obtain

1

2

(
f2(x) + f2 (y)

)
(g(x)− g(y))2

≤ 2(g(x)− g(y))(f2(x)g(x)− f2(y)g(y)) + 2(g2(x) + g2(y))(f(x)− f(y))2.

Integrating this inequality over E × E against dj and symmetrizing in x, y we obtain (2.2). �

Lemma 2.4. (V≤) + (J≤) + (Gcap)⇒ (AB) .

Proof. Let B0, B,Ω and u be as stated in condition (AB). Consider also the intermediate ball
B1 := B(x0, R+ r/2). Applying (Gcap) to the triple (B0, B1, B), we obtain that there is a function
g ∈ κ-cutoff(B0, B1) such that

E(u2g, g) ≤ C

rβ

∫
B1

u2dµ. (2.3)

Let us apply (2.2) with this g and with f = u, E = B. Since g|Bc = 0, we have∫
B×B

(g (x)− g (y))
(
u2 (x) g (x)− u2 (y) g (y)

)
dj

= E(u2g, g)−
(∫

Bc×B
+

∫
B×Bc

)
(g(x)− g(y))

(
u2(x)g(x)− u2(y)g(y)

)
dj

= E(u2g, g)−
∫
Bc×B

u2(y)g2(y)dj −
∫
B×Bc

u2(x)g2(x)dj

≤ E(u2g, g).

Substituting this into (2.2) and using (2.3), we obtain∫
B×B

u2(x) (g(x)− g(y))2 dj ≤ 2E(u2g, g) + 4

∫
B×B

g2(x) (u(x)− u(y))2 dj

≤ 4

∫
B×B

g2(x) (u(x)− u(y))2 dj +
2C

rβ

∫
B1

u2dµ. (2.4)

Define the function

φ := 1 ∧ g ∈ cutoff(B0, B1).

Since for all x, y ∈M we have |φ(x)−φ(y)| ≤ |g(x)−g(y)| and g (x) ≤ κφ (x), we obtain from (2.4)∫
B×B

u2(x) (φ(x)− φ(y))2 dj ≤ 4κ2

∫
B×B

φ2 (x) (u(x)− u(y))2 dj +
2C

rβ

∫
B1

u2dµ. (2.5)

Since

Ω× Ω = [B ×B] t [(Ω \B)× (Ω \B)] t [(Ω \B)×B] t [B × (Ω \B)] ,
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we have ∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj

=

(∫
B×B

+

∫
(Ω\B)×(Ω\B)

+

∫
(Ω\B)×B

+

∫
B×(Ω\B)

)
· · ·

=: I1 + I2 + I3 + I4.

We estimate I1, · · · , I4 separately. By (2.5), we have

I1 ≤ ζ
∫
B×B

φ2 (x) (u(x)− u(y))2 dj +
C

rβ

∫
B
u2(x)dµ(x),

where ζ = 4κ2. Since φ ≡ 0 on Bc
1 and, hence, φ ≡ 0 on Bc, we have

I2 = 0.

Using (6.8) from Appendix (which requires (V≤) and (J≤)) and the fact that φ ≤ 1, we obtain

I3 =

∫
Ω\B

(∫
B
u2(x)φ2(y)J(x, y)dµ(y)

)
dµ(x)

=

∫
Ω\B

(∫
B1

u2(x)φ2(y)J(x, y)dµ(y)

)
dµ(x)

≤
∫

Ω\B
u2(x)

(∫
{y:d(x,y)≥ r

2
}
J(x, y)dµ(y)

)
dµ(x)

≤ C

rβ

∫
Ω\B

u2(x)dµ(x).

Similarly, we have

I4 =

∫
B

(∫
Ω\B

u2(x)φ2(x)J(x, y)dµ(y)

)
dµ(x)

=

∫
B
u2(x)φ2(x)

(∫
Ω\B

J(x, y)dµ(y)

)
dµ(x)

≤
∫
B1

u2(x)

(∫
{y:d(x,y)≥ r

2
}
J(x, y)dµ(y)

)
dµ(x)

≤ C

rβ

∫
B1

u2(x)dµ(x).

Adding up the estimates of I1, · · · , I4, we obtain (2.1). �

2.2. Condition (cap).

Lemma 2.5. If (V ) holds, then (cap) is equivalent to the following condition: for any λ ∈ (0, 1),
there is a constant C > 0 depending on λ so that for any ball B := B(x0, R) with R ∈ (0, R),

cap(λB,B) ≤ Cµ(B)

Rβ
. (2.6)

Proof. Indeed, (cap) follows from (2.6) by setting λ = 1/2. Let us prove that (cap) implies (2.6). If
λ ≤ 1

2 then this trivially follows by the monotonicity of capacity. Now, assume that λ ∈ (1
2 , 1) and

set a = (1− λ)/2. It follows from (V ) by a standard covering argument that there exist an integer
N = N(λ) > 0 and N balls Bi = B(xi, aR) with the centers xi ∈ λB, i = 1, 2, ..., N such that

λB ⊂
N⋃
i=1

Bi.
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By the definition of a, we have 2Bi ⊂ B. Using the subadditivity of capacity and its monotonicity
properties, we obtain

cap(λB,B) ≤
N∑
i=1

cap(Bi, B) ≤
N∑
i=1

cap(Bi, 2Bi).

By (cap) we obtain

cap(Bi, 2Bi) ≤ C
µ (2Bi)

(2aR)β
≤ C ′µ (B)

Rβ
,

whence (2.6) follows. �

Recall that (Gcap)⇒ (cap). In the next statement we show that also (AB) implies (cap).

Lemma 2.6. (V≤) + (J≤) + (AB) =⇒ (cap).

Proof. We need to prove that, for any ball B := B(x0, R) ⊂M with R ∈ (0, R),

cap(
1

2
B,B) ≤ Cµ(B)

Rβ
, (2.7)

with some constant C > 0 independent of R.
Applying the condition (AB) with function u ≡ 1 for the triple 1

2B,
3
4B,B, we obtain that there

exists a function φ ∈ cutoff(1
2B,

3
4B) such that∫
B×B

(φ(x)− φ(y))2dj ≤ Cµ(B)

Rβ
.

Using this inequality together with (J≤) and (V≤), we obtain

E(φ, φ) =

∫
M×M

(φ(x)− φ(y))2 dj

=

∫
B×B

(φ(x)− φ(y))2 dj + 2

∫
( 3
4
B)×Bc

φ2(x)dj

≤ C
µ(B)

Rβ
+ 2

(∫
( 3
4
B)
φ2(x)dµ(x)

)(
sup
x∈ 3

4
B

∫
Bc
J(x, y)dµ(y)

)

≤ C
µ(B)

Rβ
+ 2µ(B)

(
sup
x∈B

∫
{d(x,y)≥R/4}

J(x, y)dµ(y)

)

≤ C
µ(B)

Rβ
+ 2µ(B)

c

(R/4)β
(by (6.8))

≤C ′µ(B)

Rβ
,

which implies (2.7). �

2.3. Condition (S). Given a non-empty open set Ω ⊂ M , let F (Ω) be the closure of F ∩ C0 (Ω)

in F with respect to the norm E1 (u, u) := E (u, u) +‖u‖2L2 . It is well known (see [14]) that if (E ,F)
is regular, then (E ,F(Ω)) is also a regular Dirichlet form. In this case, we denote the corresponding
generator, heat semigroup and heat kernel (if it exists) respectively by LΩ, {PΩ

t } and pΩ
t (x, y).

Definition 2.7 (Condition (S)). We say that a survival condition (S) is satisfied if there exist
constants ε, δ > 0 such that, for any ball B ⊂M of radius r ∈ (0, R) the following inequality holds:

ess inf
1
4
B

PBt 1 ≥ ε,

provided t1/β ≤ δr.

In this section, we will prove the following implication.



TWO-SIDED ESTIMATES 13

Lemma 2.8. If every metric ball of radius < R has finite measure then (S)⇒ (Gap) .

Proof. We will prove a slightly stronger statement: there exists a number κ ≥ 1 such that, for
any pair of balls B0 := B(x0, R), B := B(x0, R + r) with R + r < R, there is a function φ ∈ κ-
cutoff(B0, B) such that, for all u ∈ F ′ ∩ L∞,

E(u2φ, φ) ≤ κ

rβ

∫
B
u2φdµ. (2.8)

The construction of φ is motivated by the argument of [1, Lemma 5.4]. Set λ = r−β and consider
the function

h = GBλ 1B :=

∫ ∞
0

e−λtPBt 1Bdt.

It follows from [14, Theorem 4.4.1] that h ∈ F(B). We first obtain two-sided bounds of h and then
construct a κ-cutoff function φ using h. By the definition of h, we have h = 0 in Bc. Hence, for
any 0 ≤ f ∈ L1 ∩ L2(B),

(h, f) =

∫ ∞
0

e−λt
(
PBt 1B, f

)
dt ≤

∫ ∞
0

e−λtdt · ‖f‖1 = λ−1 ‖f‖1 = rβ ‖f‖1 ,

which implies that

h ≤ rβ, µ-a.e. on B.

Let us now obtain a lower bound of h in B0. Fix x ∈ B0 and consider the ball B̃ := B(x, r) ⊂ B.

By the definition of h and condition (S), we have, for any 0 ≤ f ∈ L1(1
4B̃),

(h, f) =

∫ ∞
0

e−λt
(
PBt 1B, f

)
dt

≥
∫ (δr)β

0
e−λt

(
P B̃t 1

B̃
, f
)
dt

≥
∫ (δr)β

0
e−λtdt · ε ‖f‖1

= λ−1
(

1− e−λδ
βrβ
)
ε ‖f‖1

= rβ(1− e−δ
β

)ε ‖f‖1 ,

where the constants ε, δ are those from (S). Since B0 can be covered by a family of countable balls

like B̃ and f is arbitrary, we obtain that

h ≥ κ−1rβ µ-a.e. on B0.

where κ := ε−1(1− e−δβ )−1.
Now consider the function

φ :=
κh

rβ
,

which satisfies the conditions φ ∈ F (B), 0 ≤ φ ≤ κ, φ|B0 ≥ 1 and φ|Bc = 0. It remains to prove
that φ satisfied (2.8). Let us use the notation

Eλ(w, v) = E(w, v) + λ(w, v),

where w, v ∈ F . If u ∈ F ′ ∩ L∞ then u2φ ∈ F . By [14, Theorem 4.4.1], we obtain

E(u2φ, φ) ≤ Eλ(u2φ, φ) =
κ

rβ
Eλ(u2φ,GBλ 1B) =

κ

rβ
(u2φ, 1B)

=
κ

rβ

∫
B
u2φdµ ≤ κ

rβ

∫
B
u2dµ,

which finishes the proof of (2.8). �
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2.4. Self-improvement of (AB).

Lemma 2.9. If (V≤) and (J≤) hold then (AB)⇒
(
AB1/8

)
.

The difference between (AB) and
(
AB1/8

)
is that the constant ζ in (AB) may be large, whereas

in
(
AB1/8

)
we have ζ = 1

8 . In fact, the value 1
8 is chosen for convenience of application, while in

the statement and proof of Lemma 2.9 it can be replaced by arbitrarily small positive number.
The proof below follows essentially the argument of Andres and Barlow [1] that was done in the

setting of local Dirichlet forms. We have to overcome two new difficulties, though: the non-locality
and the fact that the test function φ in (AB) is allowed to depend on u, which makes the derivation
of
(
AB1/8

)
much more involved.

Proof of Lemma 2.9. Let B0 := B(x0, R), B := B(x0, R + r) and Ω := B(x0, R
′) be as in the

definition of (AB). Fix a function u ∈ F ′ ∩ L∞. We need to find φ ∈ cutoff(B0, B) such that∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj ≤ 1

8

∫
B×B

φ2 (x) (u(x)− u(y))2 dj +
C

rβ

∫
Ω
u2dµ. (2.9)

If u ≡ 0 in Ω then any φ will do. Assume in the rest of the proof that ‖u‖L2(Ω) > 0. Fix some

ε > 0 to be specified below in (2.10), and set uε := |u|+ ε. Note that uε ∈ F ′ ∩ L∞.
Let q > 1 be a parameter also to be determined later. Define the sequences {rn}∞n=0 and {sn}∞n=1

by

rn =
(
1− q−n

)
r, sn = rn − rn−1 = (q − 1) q−nr

and set

Bn := B(x0, R+ rn),

Un := Bn+1 \Bn,

Obviously, rn ↑ r and, hence, Bn ↑ B as n → +∞, and ∪∞n=1Un = B \ B1 (see Fig. 1).
Applying (AB) to the function uε and to each triple (Bn, Bn+1,Ω), we obtain that there exists

Figure 1. Sets Bn and Un

φn ∈ cutoff(Bn, Bn+1) such that,∫
Ω×Ω

u2
ε(x) (φn(x)− φn(y))2 dj ≤ ζ

∫
Bn+1×Bn+1

(uε(x)− uε(y))2 dj +
C

sβn+1

∫
Ω
u2
εdµ.

Note that

|uε (x)− uε (y)| ≤ |u (x)− u (y)|
and

u2
ε ≤ 2u2 + 2ε2.
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In particular, ∫
Ω
u2
εdµ ≤ 2

∫
Ω
u2dµ+ 2ε2µ (Ω) .

Choosing

ε :=

(
−
∫

Ω
u2dµ

)1/2

, (2.10)

we obtain that ∫
Ω
u2
εdµ ≤ 4

∫
Ω
u2du.

It follows that∫
Ω×Ω

u2
ε(x) (φn(x)− φn(y))2 dj ≤ ζ

∫
Bn+1×Bn+1

(u(x)− u(y))2 dj +
C

sβn+1

∫
Ω
u2dµ. (2.11)

Consider the sequences {an}∞n=1 and {bn}∞n=0 defined by

bn = q−βn, an = bn−1 − bn =
(
qβ − 1

)
q−βn,

so that
∞∑
n=1

an = 1,

and define the following function

φ :=

∞∑
n=1

anφn. (2.12)

We will prove the following two claims:

(i) φ ∈ F (which will imply that φ ∈ cutoff(B0, B) because by construction φ|B0 = 1 and
φ|Bc = 0);

(ii) if q is close enough to 1 then φ satisfies (2.9), which will finish the proof of
(
AB1/8

)
.

To verify (i), observe first that ‖φn‖L2 ≤ µ (B)1/2 and, hence,

∞∑
n=1

‖anφn‖L2 ≤ µ (B)1/2
∞∑
n=1

an <∞,

which implies that φ ∈ L2 (M). Since F is complete with respect to the norm ‖·‖L2 + E (·, ·)1/2, in
order to prove that φ ∈ F , it suffices to verify that

∞∑
n=1

E (anφn, anφn)1/2 <∞.

Since uε ≥ ε, we obtain from (2.11) that∫
Ω×Ω

(φn(x)− φn(y))2 dj ≤ ζε−2E (u, u) +
Cε−2

sβn+1

∫
Ω
u2dµ.

Since φn is supported in B, we obtain

E (φn, φn) =

∫
M×M

(φn(x)− φn(y))2 dj =

∫
Ω×Ω

(φn(x)− φn(y))2 dj + 2

∫
B×Ωc

φ2
n(x)dj.

Since d (B,Ωc) ≥ R′ − (R+ r) > 0 and φ2
n ≤ 1, the last integral here is bounded from above by

a constant that is independent of n, which follows from (6.8) that in turn is based on (V≤) and
(J≤). Absorbing also E (u, u) and

∫
Ω u

2dµ into constants, using sn = (q − 1) q−nr and combining
the above two lines, we obtain

E (φn, φn) ≤ Cqβn,
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where the constant C depends on all variables in question except for n. Since an =
(
qβ − 1

)
q−βn,

we obtain that

∞∑
n=1

E (anφn, anφn)1/2 =
∞∑
n=1

anE (φn, φn)1/2 ≤ C
∞∑
n=1

q−βnq
1
2
βn <∞,

which finishes the proof of (i).
For the proof of (ii), we consider the partial sums of the series (2.12):

ΦN :=
N∑
n=1

anφn,

Clearly, ΦN ↑ φ pointwise as N →∞. It suffices to prove the following inequality

∫
Ω×Ω

u2(x) (ΦN (x)− ΦN (y))2 dj ≤ 1

8

∫
B×B

φ2 (x) (u(x)− u(y))2 dj +
C

rβ

∫
Ω
u2dµ, (2.13)

because (2.9) will follow then from (2.13) as N →∞ by means of Fatou’s lemma.
Set

SN (u) :=

∫
Ω×Ω

u2(x) (ΦN (x)− ΦN (y))2 dj =

∫
Ω×Ω

u2(x)

(
N∑
n=1

an(φn(x)− φn(y))

)2

dj.

Since φn = 1 on Bm+1 for all n ≥ m+ 1, and φm = 0 on Bc
m+1, we obtain, for all x, y ∈M and for

all n ≥ m+ 2,

(φm(x)− φm(y)) (φn(x)− φn(y)) = φm(x)− φm(y)φn(x)− φm(x)φn(y) + φm(y)

= φm(x)(1− φn(y)) + φm(y)(1− φn(x)).

It follows that

(
N∑
n=1

an(φn(x)− φn(y))

)2

=

N∑
n=1

a2
n (φn(x)− φn(y))2 + 2

N−1∑
m=1

N∑
n=m+1

aman (φm(x)− φm(y)) (φn(x)− φn(y))

=

N∑
n=1

a2
n (φn(x)− φn(y))2 + 2

N−1∑
m=1

amam+1 (φm(x)− φm(y))
(
φm+1(x)− φm+1(y)

)
+ 2

N−2∑
m=1

N∑
n=m+2

anam (φm(x)− φm(y)) (φn(x)− φn(y)) ,

≤ 3

N∑
n=1

a2
n (φn(x)− φn(y))2 + 2

N−2∑
m=1

N∑
n=m+2

aman

(
φm(x)(1− φn(y)) + φm(y)(1− φn(x))

)
,
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whence

SN (u) ≤ 3

N∑
n=1

a2
n

∫
Ω×Ω

u2(x) (φn(x)− φn(y))2 dj︸ ︷︷ ︸
I1

+ 2
∞∑
m=1

∞∑
n=m+2

aman

∫
Ω×Ω

u2(x)φm(x) (1− φn(y)) dj︸ ︷︷ ︸
I2

+ 2

∞∑
m=1

∞∑
n=m+2

aman

∫
Ω×Ω

u2(x)φm(y) (1− φn(x)) dj︸ ︷︷ ︸
I3

= 3I1 + 2I2 + 2I3. (2.14)

We estimate I1, I2, I3 separately. By (2.11) we have

I1 ≤
∞∑
n=1

a2
n

∫
Ω×Ω

u2(x) (φn(x)− φn(y))2 dj

≤ ζ
∞∑
n=1

a2
n

∫
Bn+1×B

(u(x)− u(y))2 dj + C
∞∑
n=1

1

sβn+1

∫
Ω
u2(x)dµ(x)

= ζ

∞∑
n=1

a2
n

∫
B1×B

(u(x)− u(y))2 dj︸ ︷︷ ︸
I11

+ ζ

∞∑
n=1

a2
n

∫
(Bn+1\B1)×B

(u(x)− u(y))2 dj︸ ︷︷ ︸
I12

+ C
∞∑
n=1

a2
n

sβn+1

∫
Ω
u2(x)dµ(x)︸ ︷︷ ︸

I13

= ζI11 + ζI12 + CI13. (2.15)

Next, we estimate separately I11, I12, I13. Since

∞∑
n=1

a2
n = (qβ − 1)2

∞∑
n=1

q−2βn =
(qβ − 1)2

q2β − 1
=
qβ − 1

qβ + 1

and φ = 1 on B1, we obtain

I11 =

∞∑
n=1

a2
n

∫
B1×B

(u(x)− u(y))2 dj ≤ qβ − 1

qβ + 1

∫
B×B

φ2(x) (u(x)− u(y))2 dj. (2.16)

Before we estimate I12, which is the main term, observe that by (2.12) the function φ on each
annulus Um satisfies the estimate

φ ≥
∞∑

k=m+1

akφk =

∞∑
k=m+1

ak = bm,

which implies

am ≤
φ

bm
am = (qβ − 1)φ on Um. (2.17)
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Using (2.17) and an = q−(n−m)βam, we obtain

I12 =

∞∑
n=1

a2
n

∫
(Bn+1\B1)×B

(u(x)− u(y))2 dj =

∞∑
n=1

n∑
m=1

∫
Um×B

a2
n (u(x)− u(y))2 dj

=
∞∑
n=1

n∑
m=1

q−2(n−m)β

∫
Um×B

a2
m (u(x)− u(y))2 dj

=

∞∑
m=1

( ∞∑
n=m

q−2(n−m)β

)∫
Um×B

a2
m (u(x)− u(y))2 dj

≤
∞∑
m=1

q2β

q2β − 1

∫
Um×B

(qβ − 1)2φ2(x) (u(x)− u(y))2 dj

≤ q2β(qβ − 1)

qβ + 1

∫
B×B

φ2(x) (u(x)− u(y))2 dj. (2.18)

In order to evaluate I13, observe that, by the definitions of an and sn,

∞∑
n=1

a2
n

1

sβn+1

=
∞∑
n=1

(
qβ − 1

)2
q−2βn

(q − 1)β q−β(n+1)rβ
= qβ

(
qβ − 1

)2
(q − 1)β rβ

∞∑
n=1

q−βn =
qβ
(
qβ − 1

)
(q − 1)β rβ

,

which implies that

I13 =

∞∑
n=1

a2
n

1

sβn+1

∫
Ω
u2dµ =

qβ
(
qβ − 1

)
(q − 1)β rβ

∫
Ω
u2dµ. (2.19)

Substitution of (2.16), (2.18), and (2.19) into (2.15) yields an upper bound of I1.
Now let us estimate I2. Using that φm = 0 in Bc

m+1, 1− φn = 0 on Bn and

d(Bm+1, B
c
n) ≥ rn − rm+1 ≥ sm+2, provided n ≥ m+ 2,

we obtain

I2 =

∞∑
m=1

∞∑
n=m+2

aman

∫
Ω×Ω

u2(x)φm(x) (1− φn(y)) dj

≤
∞∑
m=1

∞∑
n=m+2

aman

∫
Bm+1×(Ω\Bn)

u2(x)dj

≤
∞∑
m=1

∞∑
n=m+2

aman

∫
Bm+1

u2(x)

(∫
{d(x,y)≥sm+2}

J(x, y)dµ(y)

)
dµ(x)

≤ C
∞∑
m=1

∞∑
n=m+2

aman
1

sβm+2

∫
Ω
u2(x)dµ(x),

where we have used (6.8). Computing

∞∑
m=1

∞∑
n=m+2

aman
1

sβm+2

=
∞∑
m=1

am

sβm+2

∞∑
n=m+2

an =
∞∑
m=1

am

sβm+2

bm+1 =
qβ

(q − 1)β rβ
,

we obtain

I2 ≤ C
qβ

(q − 1)β
1

rβ

∫
Ω
u2dµ (2.20)
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We estimate I3 similarly:

I3 =
∞∑
m=1

∞∑
n=m+2

aman

∫
Ω×Ω

u2(x)φm(y) (1− φn(x)) dj

≤
∞∑
m=1

∞∑
n=m+2

aman

∫
(Ω\Bn)×Bm+1

u2(x)dj

≤
∞∑
m=1

∞∑
n=m+2

aman

∫
Ω
u2(x)

(∫
{d(x,y)≥sm+2}

J(x, y)dµ(y)

)
dµ(x)

≤ C
qβ

(q − 1)β
1

rβ

∫
Ω
u2(x)dµ(x). (2.21)

Combing (2.14), (2.15), (2.16), (2.18), (2.19), (2.20) and (2.21), we obtain

SN (u) ≤ 2ζ
q2β(qβ − 1)

qβ + 1

∫
B×B

φ2(x) (u(x)− u(y))2 dj +
C (q)

rβ

∫
Ω
u2dµ. (2.22)

Finally, by choosing q close enough to 1, we can make the coefficient in front of the first integral
arbitrarily small, in particular ≤ 1

8 , which finishes the proof of (2.13). �

2.5. Main theorem. Now we formulate our main result that contains Theorem 1.12 from Intro-
duction.

Theorem 2.10. Let (E ,F) be a regular jump type Dirichlet form on L2(M,µ) with a jump kernel
J . If (M,d, µ) satisfies (V ) then the following equivalences hold:

(UE) + (LE) ⇔ (J) + (S)

⇔ (J) + (Gcap)

⇔ (J) + (AB)

⇔ (J) + (AB1/8).

Under any of these conditions, the heat kernel pt (x, y) is Hölder continuous jointly in x, y and
continuous jointly in x, y, t.

In the proof we use the following condition.

Definition 2.11 (Condition (NLE)). We say that a near diagonal lower estimate (NLE) is sat-
isfied if the heat kernel pt(x, y) exists and satisfies the following estimate

pt(x, y) ≥ c

tα/β
,

for all t ∈ (0, R
β
) and µ-almost all x, y ∈M such that d (x, y) ≤ δ′t1/β, with some positive constants

c, δ′.

In order to prove Theorem 2.10, we will use the following result of [17, Theorem 2.9]: under the
standing assumption (V ),

(UE) + (LE)⇔ (J) + (S) + (NLE). (2.23)

Note that the main contribution of [17] was the proof of (LE) under (J) + (S) + (NLE), while the
other implications were based on [7, Theorem 1.2(a) ⇒ (c)], [21], [22, Theorem 2.1]. Combining
(2.23) with the results obtained earlier in this section, we obtain

(UE) + (LE) ⇒ (J) + (S) by (2.23)

⇒ (J) + (Gcap) by Lemma 2.8

⇒ (J) + (AB) by Lemma 2.4

⇒ (J) +
(
AB1/8

)
by Lemma 2.9.



20 A. GRIGOR’YAN, E. HU, AND J. HU

Hence, in order to close the circle of implications in Theorem 2.10, it remains to verify that

(J) + (AB1/8)⇒ (S) + (NLE), (2.24)

and then combine (2.24) with (2.23).
The proof of (2.24) will take the rest of the paper and will be concluded in Section 5.6. The

existence and the continuity of the heat kernel are proved in Lemma 5.13.

2.6. Case β < 2. In this section we make two mild additional assumptions:

(i) all the metric balls in (M,d) of radii < R are precompact;
(ii) F contains all functions f ∈ C0 (M) such that E (f, f) <∞.

The main result of this Section is the following consequence of Theorem 2.10.

Corollary 2.12. Let (E ,F) be a regular jump type Dirichlet form on L2(M,µ) with a jump kernel
J . Assume in addition that (i) and (ii) are satisfied, and that β < 2. If (V ) holds then

(J)⇔ (UE) + (LE) . (2.25)

If in addition R =∞ then we have the equivalence

(V ) + (J)⇔ (UE) + (LE) . (2.26)

This result was first proved by Chen and Kumagai [11], although in a more restricted setting.

Proof. We will prove that in the case β < 2 we have

(V≤) + (J≤)⇒ (AB0), (2.27)

which will then imply (2.25) by Theorem 2.10.
Fix a point x0 ∈M , numbers 0 < R < R+ r < R and consider the function

φ(x) := 1 ∧ (R+ r − d(x0, x))+

r
.

Clearly, the function φ is continuous, suppφ ⊂ B (x0, R+ r) and hence, suppφ is compact. Observe
also, that 0 ≤ φ ≤ 1 and φ ≡ 1 on B (x0, R). We will prove below that φ ∈ F , which will imply
that φ is a cutoff function of the pair (B (x0, R), B (x0, R+ r)). We will also prove that, for any
open set Ω ⊃ B (x0, R+ r) and for any u ∈ F ′ ∩ L∞,∫

Ω×Ω
u2 (x) (φ(x)− φ(y))2 J (x, y) dµ(x)dµ(y) ≤ C

rβ

∫
Ω
u2dµ (2.28)

which is equivalent to (AB0).
Let us start with the proof of the following inequality∫

M
(φ(x)− φ(y)2J (x, y) dµ(y) ≤ Cr−β, (2.29)

for any x ∈ M . Because of (J≤), it suffices to prove (2.29) with J (x, y) = d (x, y)−(α+β). Let us
split the integral in (2.29) into the following two parts:

I1(x) :=

∫
{d(x,y)<r}

(φ(x)− φ(y))2

d(x, y)α+β
dµ(y), I2 (x) :=

∫
{d(x,y)≥r}

(φ(x)− φ(y))2

d(x, y)α+β
dµ(y).

As follows from the definition of φ, we have

|φ(x)− φ(y)| ≤ d(x, y)

r
, ∀x, y ∈M. (2.30)

For any k ≥ 0, set Bk := B(x, 2−kr), so that

I1 (x) =
∞∑
k=0

∫
Bk\Bk+1

(φ(x)− φ(y))2

d(x, y)α+β
dµ(y).

Observe that, for any y ∈ Bk \Bk+1,

2−(k+1)r ≤ d(x, y) < 2−kr
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and, by (2.30)

(φ(x)− φ(y))2

d(x, y)α+β
≤ d (x, y)2

r2d (x, y)α+β
≤ c2−k(2−α−β)

rα+β
,

where c = 2α+β−2. By (V≤) we have

µ (Bk \Bk+1) ≤ µ (Bk) ≤ C
(

2−kr
)α

,

whence it follows

I1 (x) ≤ c
∞∑
k=0

2−k(2−α−β)

rα+β
µ(Bk \Bk+1) ≤ cC

rβ

( ∞∑
k=0

2−k(2−β)

)
=

C ′

rβ
,

where C ′ <∞ because 2− β > 0.
Since 0 ≤ φ ≤ 1, we obtain by (V≤) and (6.7), that

I2 (x) ≤
∫
{d(x,y)≥r}

dµ(y)

d(x, y)α+β
≤ cr−β.

Combining the estimates of I1 and I2, we obtain (2.29).
Let us show that φ ∈ F . Since φ ∈ C0 (M), it suffices to verify that

E (φ) =

∫
M×M

(φ(x)− φ(y))2 J (x, y) dµ(x)dµ(y) <∞.

Set B = B (x0, R+ r) and split the domain of integration in E (φ) as follows:∫
M×M

=

∫
B×M

+

∫
Bc×B

+

∫
Bc×Bc

.

The third integral vanishes because φ = 0 in Bc. The first integral is estimated just by integrating
(2.29) over B which yields that it is finite. The second integral is bounded by

∫
M×B and the latter

is equal to the first integral by the symmetry in x, y. Hence, E (φ) <∞ and φ ∈ F .
Finally, multiplying (2.29) by u2 and integrating over Ω, we obtain (2.28), which finishes the

proof of (2.25).
Assume that R = ∞. In the view of (2.25), in order to prove (2.26) we need only to ensure

that (UE) + (LE) ⇒ (V ). This implication was proved in [20], although under the additional
assumption that (E ,F) is conservative. However, the conservativeness of the Dirichlet form (E ,F)

with the jump kernel J (x, y) ' d (x, y)−(α+β) with β < 2 follows from a result of [24], which finishes
the proof. �

3. Auxiliary estimates

3.1. Subharmonic functions.

Definition 3.1. Let Ω be an open subset of M . We say that a function u ∈ F ′ is subharmonic
(resp. superharmonic) in Ω if

E (u, ϕ) ≤ 0 (resp. E (u, ϕ) ≥ 0) (3.1)

for any 0 ≤ ϕ ∈ F(Ω). A function u ∈ F ′ is called harmonic in Ω if it is both subharmonic and
superharmonic in Ω.

Lemma 3.2. Let u ∈ F ′.
(i) Suppose that a function f ∈ C2(R) satisfies f ′′ ≥ 0 and supR |f ′| < ∞, supR f

′′ < ∞.
Then, for any non-negative function φ ∈ F ∩ L∞, we have f (u) ∈ F ′, f ′(u)φ ∈ F and

E(f(u), φ) ≤ E(u, f ′(u)φ). (3.2)

(ii) Let Ω be open subset of M . If u ∈ F ′ is subharmonic in Ω, then u+ ∈ F ′ and u+ is also
subharmonic in Ω.



22 A. GRIGOR’YAN, E. HU, AND J. HU

Proof. (i) By Proposition 6.5 (see Appendix), we conclude that f(u) ∈ F ′ and f ′(u)φ ∈ F ∩ L∞.
In order to prove (3.2), we use the following elementary inequality: for all X,Y ∈ R and a, b ∈ R+

(f (X)− f (Y )) (a− b) ≤ (X − Y )
(
f ′ (X) a− f ′ (Y ) b

)
. (3.3)

Indeed, substituting here X = u (x) , Y = u (y) , a = φ (x) , b = φ (y), we obtain

E(f(u), φ) =

∫
M×M

(f(u(x))− f(u(y))) (φ(x)− φ(y)) dj

≤
∫
M×M

(u(x)− u(y))
(
f ′ (u(x))φ(x)− f ′ (u(y))φ(y)

)
dj = E(u, f ′(u)φ),

which proves (3.2).
To prove (3.3) we can assume without loss of generality that a > b (otherwise switch a, b and

X,Y ). We have

f ′ (X) a− f ′ (Y ) b = f ′ (X) (a− b) +
(
f ′ (X)− f ′ (Y )

)
b

whence

(X − Y )
(
af ′ (X)− bf ′ (Y )

)
= (X − Y ) f ′ (X) (a− b) + (X − Y )

(
f ′ (X)− f ′ (Y )

)
b

≥ (X − Y ) f ′ (X) (a− b) ,

where we have used the monotonicity of f ′ and b ≥ 0. Finally, it remains to observe that

(X − Y ) f ′ (X) ≥ f (X)− f (Y ) ,

which follows from the monotonicity of f ′.
(ii) Let u = v + a with v ∈ F and a ∈ R. Consider the function

g(t) = (t+ a)+ − a+.

Since g (v) is a normal contraction of v, we obtain g (v) ∈ F and, hence, u+ = g(v) + a+ ∈ F ′.
Since u is subharmonic in Ω, v is also subharmonic in Ω. In order to prove that u+ is subharmonic

in Ω, it suffices to verify that g(v) is subharmonic in Ω. It is easy to see that there exists a sequence
{gk}∞k=1 of C2-functions on R such that

gk ⇒ g as k →∞.

and

gk(0) = 0, g′k ≥ 0, g′′k ≥ 0, sup
R
g′′k <∞, sup

k
sup
R
g′k <∞.

Fix a function 0 ≤ φ ∈ F(Ω) and prove that E(g(v), φ) ≤ 0. By [14, Theorem 1.4.2(iii)], we can
assume in addition that φ ∈ L∞. Then g′k(v)φ is non-negative and, by Proposition 6.5(ii)-(iii),
g′k(u)φ ∈ F(Ω). Applying (3.2) and using that v is subharmonic in Ω, we obtain, for any k ≥ 1,

E(gk(v), φ) ≤ E(v, g′k(v)φ) ≤ 0.

It remains to verify that

lim
k→∞

E(gk(v), φ) = E(g(v), φ), (3.4)

which will imply that g (v) is subharmonic in Ω.
Since C := supk supR g

′
k <∞ and gk (0) = 0, we have

|gk(v)| ≤ C|v|.

Setting wk := gk (v) ∈ F , and w := g (v) ∈ F , we obtain by dominated convergence theorem, that

wk
L2

→ w as k →∞. (3.5)

On the other hand, since C−1wk is a normal contraction of v, we have

sup
k
E(wk, wk) ≤ c, (3.6)
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where c = C2E (v, v) < ∞. By [32, Lemma 2.12], (3.5) and (3.6) imply that {wk} converges to w
weakly in (E ,F), that is,

E (wk, φ)→ E (w, φ) , (3.7)

which is exactly (3.4). �

3.2. Inequalities of Nash and Faber-Krahn. Let us set

ν =
β

α
.

Definition 3.3. We say the Nash’s inequality (Nash) holds for (E ,F) if there exists a positive
constant C > 0 such that

‖u‖2(1+ν)
2 ≤ C

(
E(u, u) +R

−β ‖u‖22
)
‖u‖2ν1

for all u ∈ F ∩ L1.

Given a non-empty open set Ω ⊂M , let LΩ be the generator of the Dirichlet form (E ,F(Ω)) (cf.
Section 2.3). Denote by λ1 (Ω) the bottom of the spectrum of LΩ in L2 (Ω, µ). It is known that

λ1(Ω) = inf
u∈F(Ω)\{0}

E(u, u)

‖u‖22
.

Definition 3.4. We say the Faber-Krahn inequality (FK) holds if there exist σ ∈ (0, 1) and c > 0
such that, for any ball B := B(x0, R) ⊂ M with R ∈ (0, σR) and for any non-empty open set
Ω ⊂ B,

λ1(Ω) ≥ c

Rβ

(
µ(B)

µ(Ω)

)ν
.

Lemma 3.5. (V ) + (J≥)⇒ (V≤) + (Nash)⇒ (FK).

Proof. The first implication (V ) + (J≥) ⇒ (Nash) follows from the argument in the proof of
[28, Theorem 3.1]. Although the result of [28, Theorem 3.1] was stated and proved in the case
R = diamM , this argument works also for any R ≤ diam(M). Let us prove the second implication:

(V≤) + (Nash)⇒ (FK).

Let Ω be any open subset of a ball B := B(x0, R) with R ∈ (0, σR), where σ > 0 is a number to
be determined later. We need to prove that, for any non-zero function u ∈ F (Ω)

E(u, u)

‖u‖22
≥ c

Rβ

(
µ(B)

µ(Ω)

)ν
.

It suffices to prove this for any non-zero u ∈ F(Ω)∩L1(Ω). By the Cauchy-Schwarz inequality, we
have

‖u‖21 ≤ ‖u‖
2
2 µ(Ω).

Substituting this into (Nash), we obtain

‖u‖2(1+ν)
2 ≤ C

(
E(u, u) +R

−β ‖u‖22
)
‖u‖2ν1

≤ C
(
E(u, u) +

(
σ−1R

)−β ‖u‖22)(‖u‖22 µ(Ω)
)ν
,

where we have also used that R > σ−1R. Dividing by ‖u‖2ν2 , we obtain

‖u‖22 ≤ CE(u, u)µ(Ω)ν + Cσβ
µ(Ω)ν

Rβ
‖u‖22

By Ω ⊂ B and (V≤) we have

µ (Ω)ν ≤ µ (B)ν ≤ (CRα)β/α = CνRβ,

whence
‖u‖22 ≤ CE(u, u)µ(Ω)ν + C1+νσβ ‖u‖22 .
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Choosing σ from C1+νσβ = 1
2 we obtain

‖u‖22 ≤ 2CE(u, u)µ(Ω)ν ,

whence
E(u, u)

‖u‖22
≥ (2C)−1

(µ(Ω))ν
=

(2C)−1

(µ(B))β/α

(
µ(B)

µ(Ω)

)ν
≥ c

Rβ

(
µ(B)

µ(Ω)

)ν
,

which proves (FK). �

3.3. Some energy estimates. The main results of this section are Lemmas 3.9 and 3.10 that will
be used in the next sections.

Lemma 3.6. For all u, v > 0 and a, b ∈ R, we have

(u− v)

(
a2

u
− b2

v

)
≤ −1

2

(
ln
v

u

)2 (
a2 ∧ b2

)
+ 3 (a− b)2 . (3.8)

Proof. We start with the following elementary inequality that is true for any ε > 0:

a2 = (b+ a− b)2 ≤ (1 + ε)b2 +
(
1 + ε−1

)
(a− b)2, (3.9)

By the symmetry of (3.8), we can assume without loss of generality that v ≤ u. Setting

t :=
v

u
∈ (0, 1],

substituting v = tu into (3.8) and using (3.9), we obtain

(u− v)

(
a2

u
− b2

v

)
= (1− t)

(
a2 − t−1b2

)
≤ (1− t)

[
(1 + ε)b2 +

(
1 + ε−1

)
(a− b)2 − t−1b2

]
= (1− t)

(
1 + ε− t−1

)
b2 + (1− t)

(
1 + ε−1

)
(a− b)2.

Set ε = 1
2(1− t) in the above inequality. Then 0 < ε ≤ 1

2 and, hence,

(1− t)
(
1 + ε−1

)
= 2ε(1 + ε−1) = 2ε+ 2 ≤ 3.

Since b2 ≥ a2 ∧ b2 and

(1− t)
(
1 + ε− t−1

)
= (1− t)

(
3

2
− 1

2
t− t−1

)
=

1

2
t2 − 1

t
− 2t+

5

2
,

the inequality (3.8) will be proved if we verify that

1

2
t2 − 1

t
− 2t+

5

2
≤ −1

2
(ln t)2 . (3.10)

Since the both sides of (3.10) vanish at the endpoint t = 1, it suffices to prove the following
inequality between the derivatives of the both sides of (3.10):

t+
1

t2
− 2 ≥ − ln t

t
,

which is equivalent to

t2 +
1

t
− 2t ≥ − ln t. (3.11)

Again, since the both sides of (3.11) vanish at t = 1, it suffices to prove the following inequality
between their derivatives:

2t− 1

t2
− 2 ≤ −1

t
,

which is equivalent to

2t3 − 2t2 + t− 1 ≤ 0

and which is true because 2t3 − 2t2 + t− 1 = (t− 1)
(
2t2 + 1

)
. �
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Lemma 3.7. Let a function u ∈ F ′ ∩L∞ be non-negative in an open set B ⊂M and φ ∈ F ∩L∞

be such that φ = 0 in Bc. Fix any λ > 0 and set uλ := u+ λ. Then φ2

uλ
∈ F and

E(u,
φ2

uλ
) ≤ − 1

2

∫
B×B

(
φ2(x) ∧ φ2(y)

) ∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 dj
+ 3E(φ, φ)− 2

∫
B×Bc

uλ(y)
φ2(x)

uλ(x)
dj. (3.12)

Proof. We first prove that φ2

uλ
∈ F ∩ L∞. Indeed, the function

F (t) :=
1

|t|+ λ

is a bounded Lipschitz function on R. Since u is non-negative in B and φ = 0 in Bc, the function
φ2

uλ
is well defined on M and φ2

uλ
= F (u)φ2. Hence, by Proposition 6.5(ii),

φ2

uλ
= F (u)φ2 ∈ F ∩ L∞.

Now we prove (3.12). We split the integral in the definition of E(u, φ
2

uλ
) into four parts as follows:

E(u,
φ2

uλ
) =

(∫
B×B

+

∫
B×Bc

+

∫
Bc×B

+

∫
Bc×Bc

)
(u(x)− u(y))

(
φ2(x)

uλ(x)
− φ2(y)

uλ(y)

)
dj

= : I1 + I2 + I3 + I4.

Since φ = 0 in Bc, we have that I4 = 0 and, by symmetry,

I2 + I3 = 2

∫
B×Bc

(uλ(x)− uλ(y))
φ2(x)

uλ(x)
dj

= 2

∫
B×Bc

φ2(x)dj − 2

∫
B×Bc

uλ(y)
φ2(x)

uλ(x)
dj

= 2

∫
B×Bc

(φ(x)− φ(y))2 dj − 2

∫
B×Bc

uλ(y)
φ2(x)

uλ(x)
dj.

In order to estimate I1, we use Lemma 3.6 that yields

(u(x)− u(y))

(
φ2(x)

uλ(x)
− φ2(y)

uλ(y)

)
≤ −1

2

∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 (φ2(x) ∧ φ2(y)
)

+ 3 (φ(x)− φ(y))2 .

Integrating this inequality over B ×B against dj, we obtain

I1 ≤ −
1

2

∫
B×B

(
φ2(x) ∧ φ2(y)

) ∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 dj + 3

∫
B×B

(φ(x)− φ(y))2 dj.

Combining the estimates of I1, I2 + I3 and I4, we obtain

E(u,
φ2

uλ
) ≤ − 1

2

∫
B×B

(
φ2(x) ∧ φ2(y)

) ∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 dj
+ 3

(∫
B×B

+

∫
B×Bc

)
(φ(x)− φ(y))2 dj

− 2

∫
B×Bc

uλ(y)
φ2(x)

uλ(x)
dj,

whence (3.12) follows. �
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Lemma 3.8. Let u ∈ F ′ ∩ L∞ be non-negative and superharmonic in a ball 2B, where B is an
arbitrary ball in M . Fix any λ > 0 and set uλ := u+ λ. Then the following inequality holds:∫

B×B

∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 dj ≤ 6 cap(B,
3

2
B) + 4

∫
3
2
B×(2B)c

(uλ(y))−
uλ(x)

dj, (3.13)

Proof. If cap(B, 3
2B) = ∞ then (3.13) holds trivially. Hence, assume that cap(B, 3

2B) < ∞, and

let φ be a cutoff function for the pair (B, 3
2B).

Observe that φ2

uλ
∈ F(2B). Indeed, since φ vanishes outside 3

2B, we have φ ∈ F(2B). By the

same argument as in the first part of the proof of Lemma 3.7, we conclude that φ2

uλ
∈ F(2B). Since

φ2

uλ
is non-negative and u is superharmonic in 2B, we obtain that

E(u,
φ2

uλ
) ≥ 0. (3.14)

Applying Lemma 3.7 with B replaced by 2B and using (3.14), we obtain

1

2

∫
2B×2B

(
φ2(x) ∧ φ2(y)

) ∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 dj ≤ 3E(φ, φ)− 2

∫
(2B)×(2B)c

uλ(y)
φ2(x)

uλ(x)
dj.

Since φ = 1 in B, φ = 0 in (3
2B)c and φ ≤ 1 in 2B, it follows that∫

B×B

∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 dj ≤ 6E(φ, φ) + 4

∫
3
2
B×(2B)c

(uλ(y))−
uλ(x)

dj.

Minimizing the last inequality over φ ∈ cutoff(B, 3
2B), we finish the proof. �

Fix a reference point x0 ∈M . For any measurable function v onM and for any ball B = B (x0, R)
on M , define the tail of v outside B by

TB(v) :=

∫
Bc
|v(y)| J(x0, y)dµ(y). (3.15)

Lemma 3.9. Assume that (V ), (J), and (cap) are satisfied. Let a function u ∈ F ′ ∩ L∞ be non-
negative and superharmonic in the ball 2B, where B := B(x0, R) and R < 1

2R. Fix three positive
numbers a, b, λ and consider the function:

v :=

(
ln

a

u+ λ

)
+

∧ b.

Then

−
∫
B
−
∫
B

(v(x)− v(y))2dµ(x)dµ(y) ≤ C
(

1 +
RβT2B((uλ)−)

λ

)
, (3.16)

where the constant C depends only on the constants in the conditions (cap), (J) and (V≤).

Proof. It follows from the definition of v that, for all x, y ∈M ,

|v(x)− v(y)| ≤
∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣ .
For all x ∈ 3

2B, y ∈ (2B)c, we have d (x0, x) < 3
2R < 3d (x, y) and, hence,

d(x0, y)

d(x, y)
≤ d(x0, x) + d(x, y)

d(x, y)
≤ 3 + 1 = 4.

It follows from (J), that, for the above range of x, y,

J (x, y) ≤ CJ (x0, y) .
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Using the above three inequalities, (V ), (J), (cap) and Lemma 3.8, we obtain

−
∫
B
−
∫
B

(v(x)− v(y))2dµ(x)dµ(y)

=
1

µ (B)2

∫
B×B

(v(x)− v(y))2d(x, y)α+β

d(x, y)α+β
dµ(x)dµ(y)

≤ C(2R)α+β 1

R2α

∫
B×B

∣∣∣∣ln uλ(y)

uλ(x)

∣∣∣∣2 J (x, y) dµ(x)dµ(y)

≤ C2α+βRβ−α

(
6 cap(B,

3

2
B) + 4

∫
3
2
B×(2B)c

(uλ(y))−
uλ(x)

J (x, y) dµ(x)dµ(y)

)

≤ C ′Rβ−α

(
Rα−β +

∫
3
2
B
dµ(x)

∫
(2B)c

(uλ(y))−
uλ(x)

J(x0, y)dµ(y)

)

≤ C ′ + C ′Rβ−αµ(
3

2
B)

∫
(2B)c

(uλ(y))−
λ

J(x0, y)dµ(y)

≤ C ′ + C ′′
RβT2B((uλ)−)

λ
,

which finishes the proof. �

Lemma 3.10. Assume that (AB1/8) is satisfied. Let B0 := B(x0, R), B := B(x0, R + r) and

Ω := B(x0, R
′) be three balls so that 0 < R < R + r < R′ < R. Then, for any u ∈ F ′ ∩ L∞, there

exists φ ∈ cutoff(B0, B) such that

E(uφ) ≤ 2E(u, uφ2) +
c

rβ

∫
Ω
u2dµ+ 3

∫
Ω×Ωc

u(x)u(y)φ2(x)dj, (3.17)

where the constant c > 0 depends only on the constant in the condition (AB1/8).

Proof. We first prove the following identity

E(uφ) = E(u, uφ2) +

∫
M×M

u(x)u(y) (φ(x)− φ(y))2 dj, (3.18)

for all u, φ ∈ F ′ ∩ L∞. Note that, by Proposition 6.5(i)-(ii), both uφ and uφ2 belong to F ′ ∩ L∞.
By a direct computation, we have the following identity for all numbers a, b,X, Y ,

(Xa− Y b)2 = (X − Y )
(
Xa2 − Y b2

)
+XY (a− b)2 .

Setting here X = u(x), Y = u(y), a = φ(x) and b = φ(y) and integrating this identity in (x, y) ∈
M ×M with respect to dj, we obtain (3.18).

Assume further that φ ∈ cutoff(B0, B). Since

M ×M = (Ω× Ω) t (Ωc ×M) t (Ω× Ωc) , (3.19)

and φ|Ωc=0, by (3.18), Cauchy-Schwartz inequality and symmetrization, we obtain

E(uφ) = E(u, uφ2) +

(∫
Ω×Ω

+

∫
Ωc×Ω

+

∫
Ω×Ωc

)
u(x)u(y) (φ(x)− φ(y))2 dj (by (3.19))

≤ E(u, uφ2) +

∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj (by Cauchy-Schwartz and symmetrization)

+ 2

∫
Ω×Ωc

u(x)u(y)φ2(x)dj. (by symmetrization) (3.20)

By condition (AB1/8), there exists φ ∈ cutoff(B0, B) such that∫
Ω×Ω

u2(x)(φ(x)− φ(y))2dj ≤ 1

8

∫
Ω×Ω

(u(x)− u(y))2 φ2(x)dj +
C

rβ

∫
Ω
u2dµ. (3.21)
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Let us estimate the middle integral in (3.21). Applying (2.2) and observing that φ|Ωc = 0, we
obtain ∫

Ω×Ω
(u(x)− u(y))2 φ2(x)dj ≤ 2

∫
Ω×Ω

Fdj + 4

∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj, (3.22)

where

F (x, y) := (u(x)− u(y))
(
u (x)φ2(x)− u (y)φ2(y)

)
,

and all the integrals are finite by Remark 2.3. Note that∫
M×M

Fdj = E
(
u, uφ2

)
.

Using (3.19) again, we obtain∫
Ω×Ω

Fdj =

∫
M×M

Fdj −
∫

Ωc×M
Fdj −

∫
Ω×Ωc

Fdj. (3.23)

Since φ (x) = 0 in Ωc, we have

−
∫

Ωc×M
Fdj =

∫
Ωc×Ω

(u(x)− u(y))u(y)φ2(y)dj

≤
∫

Ωc×Ω
u (x)u (y)φ2(y)dj.

Similarly, we obtain

−
∫

Ω×Ωc
Fdj ≤

∫
Ω×Ωc

u(x)u(y)φ2(x)dj.

Symmetrizing the former integral and substituting into (3.23), we obtain∫
Ω×Ω

Fdj ≤ E
(
u, uφ2

)
+ 2

∫
Ω×Ωc

u(x)u(y)φ2(x)dj.

Substitution into (3.22) yields∫
Ω×Ω

(u(x)− u(y))2 φ2(x)dj ≤ 2E
(
u, uφ2

)
+ 4

∫
Ω×Ωc

u(x)u(y)φ2(x)dj

+4

∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj.

Substituting this into (3.21), we obtain∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj

≤ 1

4
E(u, uφ2) +

1

2

∫
Ω×Ωc

u(x)u(y)φ2(x)dj

+
1

2

∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj +
C

rβ

∫
Ω
u2dµ,

which implies that∫
Ω×Ω

u2(x) (φ(x)− φ(y))2 dj ≤ 1

2
E(u, uφ2) +

∫
Ω×Ωc

u(x)u(y)φ2(x)dj +
2C

rβ

∫
Ω
u2dµ.

Finally, substituting the above inequality into (3.20), we obtain (3.17). �

4. Superharmonic and harmonic functions

In this section we establish estimates of the Hölder norm of harmonic functions. The main result
is stated in Lemma 4.8.
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4.1. Lemma of growth. Recall that, by Lemma 3.5, the hypotheses (V ) and (J) imply the Faber-

Krahn inequality (FK). Let σ and ν = β
α be the constants from (FK). Without loss of generality,

we can always assume that σ ∈
(
0, 1

2

)
.

Lemma 4.1 (Lemma of growth). Assume that (V ), (J) and (AB) are satisfied. Then there exists
ε0 ∈ (0, 1) depending only on the constants in the above conditions, such that the following is true:
if a function u ∈ F ′ ∩ L∞ is superharmonic and non-negative in a ball 2B, where B = B (x0, R)
has radius R < σR, and if, for some a > 0,

µ(B ∩ {u < a})
µ(B)

≤ ε0

(
1 +

RβT2B(u−)

a

)−α/β
, (4.1)

then

ess inf
1
2
B

u ≥ a

2
(4.2)

(see Fig. 2).

Figure 2. Level sets {u < a} and {u < a/2}

Recall that the tail function TB (v) was defined by (3.15). Observe also that if u ≥ 0 on M then
T2B (u−) = 0 and the condition (4.1) simplifies.

Remark 4.2. The term “Lemma of growth” was introduced by E.M. Landis [31] in the context of
second order elliptic PDEs in Rn. In order to understand this terminology, let us reformulate the
statement assuming that inf2B u = 0 and a = 1

2 sup2B u. Then, for the function v := 2a − u, we

have inf2B v = 0, sup2B v = 2a, and the smallness of µ(B∩{v>a})
µ(B) implies that

sup
1
2
B

v ≤ 3

2
a,

which can be rewritten in the form

sup
2B

v ≥ 4

3
sup
1
2
B

v.

The latter means that sup v exhibits a growth by a factor ≥ 4
3 > 1 when passing from 1

2B to 2B,
which gives the name to this type of statements. In the context of local Dirichlet forms, a similar
Lemma of growth was proved in [23, Lemmas 7.2, 7.6].

The most essential part of the proof of Lemma 4.1 is contained in the following lemma. We use
the notation Br := B (x0, r).
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Lemma 4.3. Assume that (V ) , (J) and (AB) are satisfied. Let a function u ∈ F ′ ∩ L∞ be
superharmonic and non-negative in a ball B2R, where R < σR. Fix some 0 < a < b, r1 < r2 < R
and set

m1 =
µ(Br1 ∩ {u < a})

µ (Br1)
and m2 =

µ(Br2 ∩ {u < b})
µ (Br2)

.

Then

m1 ≤ CA

(
b

b− a

)2(r2

r1

)α( r2

r2 − r1

)α+β

m
1+β/α
2 , (4.3)

where

A := 1 +
rβ2TBr2 (u−)

b
,

and the constant C > 0 depends only on the constants in (V ) , (J) and (AB).

Proof. We use in the proof the following facts from [14]:

(1) any function u ∈ F admits a quasi-continuous version ũ [14, Theorem 2.1.3, p.71];
(2) for any u ∈ F and any open subset Ω of M , we have u ∈ F (Ω) if and only if ũ = 0 q.e. in

Ωc, where q.e. means quasi-everywhere [14, Corollary 2.3.1 p.98].

Let us fix a quasi-continuous modification of a given superharmonic function u and denote it
also by the same letter u. Set v := (b− u)+ and

m̃1 := µ(Br1 ∩ {u < a}), m̃2 := µ(Br2 ∩ {u < b}).
Let φ be any cutoff function of the pair (Br1 , B 1

2
(r1+r2)); without loss of generality, we can assume

that φ is quasi-continuous. Then we have

m̃1 =

∫
Br1∩{u<a}

φ2dµ ≤
∫
Br1

φ2

(
(b− u)+

b− a

)2

︸ ︷︷ ︸
≥1 on {u<a}

dµ =
1

(b− a)2

∫
Br1

(φv)2dµ. (4.4)

Consider the set
E := B 1

2
(r1+r2) ∩ {u < b}.

By the outer regularity of µ, for any ε > 0 , there is an open set Ω such that E ⊂ Ω ⊂ Br2 and

µ(Ω) ≤ µ(E) + ε ≤ m̃2 + ε (4.5)

(see Fig. 3).

Figure 3. Sets E and Ω
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On the other hand, since φ = 0 q.e. outside B 1
2

(r1+r2) and v = 0 outside {u < b}, we obtain that

φv = 0 q.e. in Ec. Hence, since φv ∈ F and φv = 0 q.e. in Ωc ⊂ Ec, we conclude that

φv ∈ F(Ω). (4.6)

By the definition of λ1 (Ω), we obtain ∫
Ω

(φv)2dµ ≤ E(φv)

λ1(Ω)
.

Using again that φv vanishes outside Ω and combining this inequality with (4.4), we obtain

m̃1 ≤
1

(b− a)2

∫
Ω

(φv)2dµ ≤ E(φv)

(b− a)2λ1(Ω)
. (4.7)

By (FK) (Lemma 3.5) and (4.5), we have

λ1(Ω) ≥ c

rβ2

(
µ(Br2)

µ(Ω)

)ν
≥ c1

rβ2

(
µ(Br2)

m̃2 + ε

)ν
, (4.8)

where ν = β/α.
Let us now estimate E(φv) from above. Since u is superharmonic in B2R, the function b − u is

subharmonic in B2R and, by Lemma 3.2(ii), the function v = (b−u)+ is also subharmonic in B2R.
Furthermore, by Proposition 6.5(iii) and (4.6), we have vφ2 = vφ ·φ ∈ F(Ω) ⊂ F(B2R). Hence, by
the definition of subharmonic functions, we obtain

E(v, vφ2) ≤ 0. (4.9)

By Lemma 2.9, we have
(
AB1/8

)
. Applying Lemma 3.10 to the triple Br1 , B(r1+r2)/2, Br2 and the

function v, we see that there exists φ ∈ cutoff(Br1 , B(r1+r2)/2) such that

E(vφ) ≤ 2E(v, vφ2) +
c

rβ

∫
Br2

v2dµ+ 3

∫
Br2×Bcr2

v(x)v(y)φ2(x)dj

where r = r2 − r1, x ∈ Br2 and y ∈ Bc
r2 . Applying here (4.9) and using that φ = 0 outside

B(r1+r2)/2, we obtain

E(vφ) ≤ c

rβ

∫
Br2

v2dµ+ 3

∫
B(r1+r2)/2

v (x) dµ (x) · ess sup
x∈B(r1+r2)/2

∫
Bcr2

v(y)J(x, y)dµ(y)

≤ c

rβ

∫
Br2

v2dµ+ 3

∫
Br2

vdµ · C2

(
3r2

r

)α+β ∫
Bcr2

v(y)J(x0, y)dµ(y)

≤ cb2

rβ
µ(Br2 ∩ {u < b}) + 3C2 bµ(Br2 ∩ {u < b})

(
3r2

r

)α+β

TBr2 (v) (using v ≤ b1{u<b})

≤ cm̃2
b2

rβ2

((r2

r

)β
+
rβ2
b

(r2

r

)α+β
(TBr2 (b) + TBr2 (u−))

)
(by definition of m̃2 and v)

≤ cm̃2
b2

rβ2

((r2

r

)β
+
(r2

r

)α+β
+
rβ2
b

(r2

r

)α+β
TBr2 (u−)

)
(by (6.8))

≤ cm̃2
b2

rβ2

(r2

r

)α+β
(

1 +
rβ2TBr2 (u−)

b

)
(using r2 ≥ r)

= cm̃2
b2

rβ2

(r2

r

)α+β
A, (4.10)

where in the second line we used that, for all x ∈ B(r1+r2)/2 and all y ∈ Bc
r2 ,

d(x0, y)

d(x, y)
≤ d(x0, x) + d(x, y)

d(x, y)
≤ d(x0, x)

d(x, y)
+ 1 ≤ 2r2

r
+ 1 ≤ 3r2

r
,
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which implies by (J) that

J (x, y) ≤ C2

(
3r2

r

)α+β

J (x0, y) .

Combining (4.7), (4.8), (4.10) and letting ε→ 0, we obtain

m̃1 ≤ c
(

b

b− a

)2 m̃ν
2m̃2

µ(Br2)ν

(r2

r

)α+β
A.

Dividing this inequality by µ (Br1) and observing that

m1 =
m̃1

µ(Br1)
and m2 =

m̃2

µ(Br2)
,

we obtain

m1 ≤ c
(

b

b− a

)2

m1+ν
2

µ(Br2)

µ(Br1)

(r2

r

)α+β
A

≤ C
(

b

b− a

)2(r2

r1

)α (r2

r

)α+β
A ·m1+β/α

2 ,

which finishes the proof. �

Proof of Lemma 4.1. Let u ∈ F ′ ∩ L∞ is superharmonic and non-negative in B2R with R < σR
and let a > 0. Consider the following sequences

Rk :=
1

2
(1 + 2−k)R, and ak :=

1

2
(1 + 2−k)a,

where k is a non-negative integer. Clearly, R0 = R, a0 = a, Rk ↘ 1
2R, and ak ↘ 1

2a as k → ∞.
Set also

mk :=
µ(BRk ∩ {u < ak})

µ(BRk)

(see Fig. 4).

Figure 4. Sets BRk ∩ {u < ak} and BRk+1
∩ {u < ak+1}

Applying the inequality (4.3) of Lemma 4.3 with a = ak, b = ak−1, r1 = Rk and r2 = Rk−1, we
obtain, for any k ≥ 1,

mk ≤ CAk
(

ak−1

ak−1 − ak

)2(Rk−1

Rk

)α( Rk−1

Rk−1 −Rk

)α+β

m
1+β/α
k−1 ,
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where

Ak := 1 +
Rβk−1TBRk−1

(u−)

ak−1
.

Since u is non-negative in B2R and BRk−1
⊂ B2R we have

TBRk−1
(u−) = TB2R

(u−) .

Since Rk−1 ≤ R and ak−1 ≥ 1
2a, we obtain

Ak ≤ 2A,

where

A = 1 +
RβTB2R

(u−)

a
.

Using that

Rk−1

Rk
≤ 2,

ak−1

ak−1 − ak
=

1 + 2−(k−1)

2−(k−1) − 2−k
≤ 2k+1 and

Rk−1

Rk−1 −Rk
≤ 2k+1,

we obtain that

mk ≤ C · 2A · 22(k+1) · 2α · 2(k+1)(α+β) ·m1+β/α
k−1 = C ′A · 2ck ·mq

k−1,

where C ′ := 22α+β+3C, c = α+ β + 2, and

q = 1 + β/α.

Applying the above inequality inductively, we obtain,

mk ≤ (C ′A) · 2ck ·mq
k−1

≤ (C ′A)1+q · 2ck+cq(k−1) ·mq2

k−2

. . .

≤ (C ′A)1+q+···+qk−1 · 2c(k+q(k−1)+···+qk−1) ·mqk

0 .

Note that

k + q(k − 1) + · · ·+ qk−1 =
qk+1 − (k + 1)q + k

(q − 1)2
≤ q

(q − 1)2 q
k,

1 + q + · · ·+ qk−1 =
qk − 1

q − 1
=

qk

q − 1
− 1

q − 1
.

Hence, we obtain that

mk ≤
(

2
cq

(q−1)2 · (C ′A)
1
q−1 ·m0

)qk
(C ′A)

− 1
q−1 .

It follows from the last inequality and from q > 1 that if

2
cq

(q−1)2 · (C ′A)
1
q−1 ·m0 ≤

1

2
, (4.11)

then
lim
k→∞

mk = 0. (4.12)

Note that (4.11) is equivalent to

m0 ≤ 2
− cq

(q−1)2
−1 · (C ′A)

− 1
q−1 ,

that is, to

µ(BR ∩ {u < a})
µ(BR)

≤ 2
− cq

(q−1)2
−1 (

C ′
)− 1

q−1

(
1 +

RβTB2R
(u−)

a

)−α
β

,

which is equivalent to the hypothesis (4.1) with

ε0 := 2
− cq

(q−1)2
−1 (

C ′
)− 1

q−1 . (4.13)
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Assuming that ε0 is defined by (4.13), we see that (4.11) is satisfied and, hence, we have (4.12). It
follows that

µ(BR/2 ∩ {u ≤ a
2})

µ(BR/2)
= 0,

which implies (4.2). �

Corollary 4.4. Assume that (V ), (J) and (AB) are satisfied. There is a constant ε > 0 depending
only on α, β and such that, for any ball B := B(x0, R) with R ∈ (0, σR), and for any function
u ∈ F ′ ∩ L∞ that is superharmonic and non-negative in 2B and satisfies

RβT2B(u−) ≤ ε
(
−
∫
B

1

u
dµ

)−1

, (4.14)

the following is true:

ess inf
1
2
B

u ≥ ε

2

(
−
∫
B

1

u
dµ

)−1

.

Proof. We will apply Lemma 4.1 with a suitable constant a > 0. Indeed, for any a > 0, we have

µ(B ∩ {u < a} = µ(B ∩ {1

u
>

1

a
} ≤ a

∫
B

1

u
dµ = aµ(B)−

∫
B

1

u
dµ.

In order to fulfill the condition (4.1) of Lemma 4.1, the constant a should satisfy the inequality:

a−
∫
B

1

u
dµ ≤ ε0

(
1 +

RβT2B(u−)

a

)−α/β
. (4.15)

Let us set
ε := 2−α/βε0.

Assuming that (4.14) holds with this ε, we claim that (4.15) holds with the following value of a:

a := ε

(
−
∫
B

1

u
dµ

)−1

.

Indeed, for this a we have by (4.14)

RβT2B(u−) ≤ a
and, hence,

a−
∫
B

1

u
dµ = ε = 2

−α
β ε0 ≤ ε0

(
1 +

RβT2B(u−)

a

)−α
β

.

Therefore, by Lemma 4.1, we conclude that

ess inf
1
2
B

u ≥ a

2
=
ε

2

(
−
∫
B

1

u
dµ

)−1

,

which finishes the proof. �

4.2. Weak Harnack inequality.

Lemma 4.5 (Weak Harnack inequality). Assume that (V ), (J) and (AB) are satisfied. Then there
exists ε ∈ (0, 1) depending only on the constants in the above hypotheses, such that the following is
true: if a function u ∈ F ′∩L∞ is superharmonic and non-negative in a ball 2B, where B = B (x0, R)
has radius R < σR, and if, for some a > 0,

µ(B ∩ {u ≥ a})
µ(B)

≥ 1

2
(4.16)

and
RβT2B(u−) ≤ εa, (4.17)

then
ess inf

1
2
B

u ≥ εa.
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Proof. Let λ, b be two positive parameters to be determined later. Consider the functions uλ := u+λ
and

v :=

(
ln
a+ λ

uλ

)
+

∧ b.

Note that 0 ≤ v ≤ b and

v = 0 ⇔ a+ λ

uλ
≤ 1 ⇔ u ≥ a,

v = b ⇔ a+ λ

uλ
≥ eb ⇔ uλ ≤ (a+ λ)e−b =: q.

We will apply Lemma 4.1 to uλ instead of u. Set

ω :=
µ(B ∩ {u ≥ a})

µ(B)
=
µ(B ∩ {v = 0})

µ(B)
(4.18)

and

m0 :=
µ(B ∩ {uλ ≤ q})

µ(B)
=
µ(B ∩ {v = b})

µ(B)
(4.19)

(cf. Fig. 5).

Figure 5. Sets {u ≥ a} = {uλ ≥ a+ λ} and {uλ ≤ q}

By Lemma 4.1 we know that if

m0 ≤ ε0

(
1 +

RβT2B((uλ)−)

q

)−α
β

, (4.20)

then

ess inf
1
2
B

uλ ≥
q

2
. (4.21)

Clearly, we have

A := RβT2B(u−) ≥ RβT2B

(
(uλ)−

)
.

Hence, in order to have (4.20), it suffices to ensure that

m0 ≤ ε0

(
1 +

A

q

)−α
β

. (4.22)
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Using (4.19), (4.18), and Lemma 3.9, we obtain

b2m0ω =
1

µ(B)2

∫
B∩{v=0}

∫
B∩{v=b}

b2dµ(x)dµ(y)

=
1

µ(B)2

∫
B∩{v=0}

∫
B∩{v=b}

(v(x)− v(y))2dµ(x)dµ(y)

≤ −
∫
B
−
∫
B

(v(x)− v(y))2dµ(x)dµ(y)

≤ c
(

1 +
RβT2B((uλ)−)

λ

)
(by (3.16))

≤ c
(

1 +
A

λ

)
.

It follows that

m0 ≤
c

b2ω

(
1 +

A

λ

)
≤ 2c

b2

(
1 +

A

λ

)
,

where we have used that ω ≥ 1/2, which is true by (4.16). Hence, the condition (4.22) will be
satisfied provided

2c

b2

(
1 +

A

λ

)
≤ ε0

(
1 +

A

q

)−α
β

,

which is equivalent to

b2 ≥ 2c

ε0

(
1 +

A

λ

)(
1 +

A

q

)α
β

. (4.23)

Fix ε > 0 to be determined later, and specify the parameters λ, b as follows:

λ := εa, b := ln
1 + ε

4ε
.

Then we have
q = (a+ λ)e−b = 4εa,

and the inequality (4.23) is equivalent to(
ln

1 + ε

4ε

)2

≥ 2c

ε0

(
1 +

A

εa

)(
1 +

A

4εa

)α
β

. (4.24)

Since by (4.17) we have A ≤ εa, the inequality (4.24) will follow from(
ln

1 + ε

4ε

)2

≥ 4c

ε0

(
5

4

)α/β
,

and the latter can be achieved by choosing ε small enough. With this choice of ε we conclude that
(4.21) holds, which implies

ess inf
1
2
B

u ≥ q

2
− λ = 2εa− εa = εa,

thus finishing the proof. �

4.3. Oscillation inequalities. In this section we frequently use the notation Br := B (x0, r)
assuming that x0 is a fixed point on M .

Lemma 4.6 (Oscillation Inequality). Assume that (V ), (J) and (AB) are satisfied. Let u ∈ F ′∩L∞
be harmonic in a ball BR = B(x0, R) with R < σR. Then, there is a constant ε ∈ (0, 1) depending
only on the constants from the hypotheses and such that, either

osc
BR/4

u ≤ (1− ε) osc
BR

u, (4.25)

or

osc
BR

u ≤ 1

ε
A, (4.26)
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where
A = RβTBR((u−m)− + (M − u)−),

m = ess infBR u and M = ess supBR u.

Proof. Set a = M−m
2 . Consider the function u−m ∈ F ′∩L∞, which is non-negative and harmonic

in BR. By the weak Harnack inequality of Lemma 4.5, there is a constant ε′ ∈ (0, 1) such that if

µ(BR/2 ∩ {u−m ≥ a})
µ(BR/2)

≥ 1

2
, (4.27)

and
A1 := RβTBR((u−m)−) ≤ ε′a, (4.28)

then,
ess inf
BR/4

(u−m) ≥ ε′a.

The latter implies that

osc
BR/4

u = osc
BR/4

(u−m) ≤ (M −m)− ε′a =

(
1− ε′

2

)
(M −m) =

(
1− ε′

2

)
osc
BR

u,

that is (4.25) with ε = ε′/2. Similarly, if

µ(BR/2 ∩ {M − u ≥ a})
µ(BR/2)

≥ 1

2
, (4.29)

and
A2 := RβTBR((M − u)−) ≤ ε′a, (4.30)

then
ess inf
BR/4

(M − u) ≥ ε′a,

and, hence,

osc
BR/4

u ≤M −m− ε′a =

(
1− ε′

2

)
(M −m) =

(
1− ε′

2

)
osc
BR

u,

that is (4.25) with ε = ε′/2. Since

u−m ≥ a ⇔ u ≥ M +m

2
,

M − u ≥ a ⇔ u ≤ M +m

2
,

we see that either (4.27) or (4.29) is always satisfied. Hence, if both (4.28) and (4.30) are satisfied,
then we obtain (4.25). On the other hand, if one of (4.28) and (4.30) is not satisfied, then

A = A1 +A2 ≥ ε′a = ε′
M −m

2
=
ε′

2
osc
BR

u,

which is equivalent to (4.26) with ε = ε′/2. �

Lemma 4.7 (Iterated Oscillation Inequality). Assume that (V ), (J) and (AB) are satisfied. Let
u ∈ F ′ ∩ L∞ be harmonic in a ball BR = B(x0, R) with R < σR. Set Rk := q−kR, where q ≥ 4,
k ≥ 0 and

Qk := osc
BRk

u.

If q is large enough then, for all k ≥ 0,

Qk ≤ C0q
−γkA, (4.31)

where
A := RβTBR(|u|) + ‖u‖L∞(BR) ,

and the constants C0, γ, q depend only on the constants in the hypotheses.
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Proof. We prove (4.31) by induction in k. For k = 0 and k = 1 it is trivial, because

Q1 ≤ Q0 = osc
BR

u ≤ 2 ‖u‖L∞(BR) ≤ 2A = 2qγ
(
q−γA

)
,

so that (4.31) holds provided C0 ≥ 2qγ .
Assuming that k ≥ 1, let us make the induction step from ≤ k to k + 1. Since q ≥ 4, we can

apply Lemma 4.6 and obtain the following:

Qk+1 ≤ (1− ε)Qk, or Qk ≤ ε−1Ak,

where ε ∈ (0, 1) is the constant from Lemma 4.6,

Ak := RβkTBRk ((u−mk)− + (Mk − u)−),

and

mk := ess inf
BRk

u, Mk := ess sup
BRk

u.

In the first case, that is, when

Qk+1 ≤ (1− ε)Qk,
we obtain by induction hypothesis

Qk+1 ≤ (1− ε)C0q
−γkA = (1− ε)qγC0q

−γ(k+1)A ≤ C0q
−γ(k+1)A,

provided

(1− ε)qγ ≤ 1. (4.32)

Below we will make sure that (4.32) is satisfied as follows: we will first determine (a large) q and
then specify γ to be small enough (and then choose C0 large enough).

Consider now the second case when

Qk ≤ ε−1Ak. (4.33)

We will show that, by choosing suitable values of q, C0, γ we can ensure that

Qk ≤ C0q
−(k+1)γA, (4.34)

which will imply the same estimate for Qk+1 ≤ Qk, thus finishing the induction step.

For that, set v := (u−mk)−+(Mk−u)− and estimate the quantity Ak = RβkTBRk (v) from above

by using the induction hypothesis

Qj ≤ C0q
−γjA, j = 0, 1, · · · , k. (4.35)

Decompose TBRk (v) as follows:

TBRk (v) =

∫
BcRk

v(y)J(x0, y)dµ(y)

=
k−1∑
i=0

∫
BRi\BRi+1

v(y)J(x0, y)dµ(y) +

∫
BcR

v(y)J(x0, y)dµ(y) (4.36)

(see Fig. 6).
Observe that the following inequality holds in BRi with i ≤ k:

v = (u−mk)− + (Mk − u)− ≤ Qi −Qk. (4.37)

Indeed, if mk ≤ u ≤Mk then v = 0 and (4.37) is trivial. If u < mk then we have in BRi

v = mk − u ≤ mk −mi ≤ mk −mi +Mi −Mk = Qi −Qk,

and the same argument works if u > Mk:

v = u−Mk ≤Mi −Mk ≤ Qi −Qk.
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Figure 6. Balls BRi

Using (J≤), (V≤) and (6.8), we obtain, for any i ≤ k,∫
BRi\BRi+1

v(y)J(x0, y)dµ(y) ≤ (Qi −Qk)
∫
BRc

i+1

J(x0, y)dµ(y) ≤ c(Qi −Qk)
Rβi+1

,

where c is the constant from (6.8); we take c > 1.
On the other hand, since everywhere

v ≤ |u|+ max (|mk| , |Mk|) ≤ |u|+ ‖u‖L∞(BR) ,

we obtain ∫
BcR

v (y) J(x0, y)dµ(y) ≤
∫
BcR

(|u(y)|+ ‖u‖L∞(BR))J(x0, y)dµ(y)

≤ TBR(|u|) +
c ‖u‖L∞(BR)

Rβ
≤ cA

Rβ
.

Hence, we obtain from (4.36), that

TBRk (v) ≤ c
k−1∑
i=0

Qi −Qk
Rβi+1

+
cA

Rβ
,

which implies that

Ak = RβkTBRk (v) ≤ c
k−1∑
i=0

Rβk

Rβi+1

(Qi −Qk) + c

(
Rk
R

)β
A

= c
k−1∑
i=0

qβ(i+1−k)(Qi −Qk) + cq−kβA.

Assuming that γ < β and using the induction hypothesis (4.35), we obtain

k−1∑
i=0

qβ(i+1−k)Qi ≤
k−1∑
i=0

qβ(i+1−k) · C0q
−γiA

= C0Aq
−(k−1)γ

k−1∑
i=0

q(β−γ)(i+1−k)

= C0Aq
−(k−1)γ

k−1∑
j=0

q−(β−γ)j

≤ C0A
q−(k−1)γ

1− q−(β−γ)
.
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On the other hand, since k ≥ 1, we have

k−1∑
i=0

qβ(i+1−k) ≥ 1.

It follows that

Ak ≤ cC0A
q−(k−1)γ

1− q−(β−γ)
− cQk + cq−kβA.

Substituting into (4.33), we obtain

Qk ≤
Ak
ε
≤ cC0A

ε

q−(k−1)γ

1− q−(β−γ)
− c

ε
Qk +

c

ε
q−kβA,

which is equivalent to

Qk ≤
c

c+ ε

(
C0

q−(k−1)γ

1− q−(β−γ)
+ q−kβ

)
A.

To ensure (4.34), it suffices to have

c

c+ ε

(
C0

q−(k−1)γ

1− q−(β−γ)
+ q−kβ

)
A ≤ C0q

−(k+1)γA,

which is equivalent to
q2γ

1− q−(β−γ)
+

1

C0
qγ−k(β−γ) ≤ 1 +

ε

c
. (4.38)

Let us now choose q ≥ 4 big enough so that

1

1− q−
β
2

< 1 +
ε

c
.

Then we choose γ ∈ (0, β/2) small enough such that (4.32) is true and

q2γ

1− q−
β
2

< 1 +
ε

c
.

Since β − γ > β/2, it follows that also

q2γ

1− q−(β−γ)
< 1 +

ε

c
.

Finally, we choose C0 so big that (4.38) is satisfied, which finishes the proof. �

Lemma 4.8 (Oscillation Lemma). Assume that (V ), (J) and (AB) are satisfied. Let u ∈ F ′ ∩L∞
be harmonic in a ball BR = B(x0, R) with R < σR. Then, for any ρ ∈ (0, R],

osc
Bρ

u ≤ C
( ρ
R

)γ (
RβTBR(|u|) + ‖u‖L∞(BR)

)
, (4.39)

where γ > 0 is the constant from Lemma 4.7 and C depends only on the constants from the
hypotheses.

Proof. We use the notation from Lemma 4.7. Since ρ ∈ (0, R], there exists an integer k ≥ 0 such
that

q−(k+1) <
ρ

R
≤ q−k.

Hence, by Lemma 4.7,

osc
Bρ

u ≤ osc
B
q−kR

u ≤ C0

(
q−k
)γ
A = C0q

γ
(
q−(k+1)

)γ
A ≤ C0q

γ
( ρ
R

)γ
A,

which is exactly (4.39) with C = C0q
γ . �
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5. Heat semigroup and heat kernel

In this section we develop techniques for the proof of the implication (2.24), that is,

(V ) + (J) + (AB)⇒ (S) + (NLE) ,

which will conclude the proof of Theorem 2.10.

5.1. Green operator and conditions (E) and (S). The main result of this Section is Corollary
5.7 containing the implication

(V ) + (J) + (AB)⇒ (S) .

The proof uses condition (E) stated below in terms of the Green operator.
For any open set Ω ⊂ M , the heat semigroup

{
PΩ
t

}
was defined in Section 2.3. Note that, for

any f ∈ L2 (Ω), the function t 7→ PΩ
t f is continuous as a mapping from [0,∞) to L2 (Ω), which

allows to integrate PΩ
t f in t as an L2-valued function. Define the Green operator GΩ by

GΩf :=

∫ ∞
0

PΩ
t f dt,

where f so far is any non-negative function from L2 (Ω). The function GΩf takes values in [0,∞].
The monotonicity of GΩf in f allows to extend this operator to all non-negative f ∈ L2

loc (Ω), in
particular, to f ≡ 1.

By [26, Lemma 3.2, p.1232]1, if GΩ1 ∈ L∞ (Ω) then GΩ can be extended to a bounded operator

on L2(Ω) that satisfies the identity GΩ =
(
LΩ
)−1

.

Lemma 5.1. If GΩ1 ∈ L∞ (Ω) then, for any f ∈ L2 (Ω), the function u = GΩf belongs to F (Ω)
and satisfies the identity

E (u, ϕ) = (f, ϕ) ∀ϕ ∈ F (Ω) .

If in addition f ≥ 0 then u is superharmonic in Ω.

Proof. Indeed, for any non-negative ϕ ∈ F (Ω), we have

E (u, ϕ) = E
(
GΩf, ϕ

)
=
(
LΩGΩf, ϕ

)
= (f, ϕ) ,

where we have used that LΩGΩ = Id. Consequently, if f ≥ 0 then E (u, ϕ) ≥ 0 for any non-negative
ϕ ∈ F (Ω) which means that u is superharmonic in Ω. �

Definition 5.2 (Condition (E)). We say that condition (E≤) holds if there exist ε ∈ (0, 1) and
C > 0 such that, for any ball B = B (x0, R) of radius R ∈ (0, εR),

ess sup
B

GB1 ≤ CRβ. (5.1)

We say that condition (E≥) holds if, for any ball B of radius R ∈ (0, R),

ess inf
1
4
B

GB1 ≥ C−1Rβ. (5.2)

We say that condition (E) holds if both (E≤) and (E≥) are satisfied.

Remark 5.3. Using the monotonicity of GB1 in B, it is easy to prove that the condition (E≥) is
equivalent to the following: there exist ε, δ ∈ (0, 1) such that, for any ball of radius R ∈

(
0, εR

)
,

ess inf
δB

GB1 ≥ C−1Rβ.

Lemma 5.4. Let (E ,F) be a regular non-local Dirichlet form with a jump kernel J . Then

(V ) + (J≥)⇒ (E≤) .

1Although this lemma was stated for local Dirichlet forms, its proof goes through also for general Dirichlet forms.
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Proof. Fix a ball B (x0, R) of radius R < R and first assume that there exists another ball B (y0, R)

of the same radius such that B (x0, R) and B (y0, R) are disjoint. By [17, Lemma 4.4], for any t > 0
and for any non-negative function f ∈ L1 ∩ L2 (M), we have the following inequality:(

1− P Vt 1, f
)
≥ 2µ(B(y0, R)) inf

x∈B(x0,R),
y∈B(y0,R)

J(x, y)

∫ t

0

(
f, P Vs 1B

)
ds (5.3)

where B = B (x0, R) and V = M \B (y0, R). Observing that(
1− P Vt 1, f

)
≤ ‖f‖L1 ,

and letting in (5.3) t→∞, we obtain

‖f‖L1 ≥ 2µ (B (y0, R)) inf
x∈B(x0,R),
y∈B(y0,R)

J(x, y)
(
f,GB1B

)
.

Since f is arbitrary, it follows that

ess sup
B

GB1B ≤

2µ (B (y0, R)) inf
x∈B(x0,R),
y∈B(y0,R)

J(x, y)


−1

.

Assume in addition that

d (x0, y0) ≤ CR. (5.4)

Then by (J≥)

inf
x∈B(x0,R),
y∈B(y0,R)

J(x, y) ≥ cR−(α+β),

and by (V≥)

µ (B (y0, R)) ≥ cRα,

whence it follows that

ess sup
B

GB1B ≤ CRβ.

Hence, in order to prove (E≤), we should, for any ball B = B (x0, R) of radius R < εR, find a ball

B (y0, R) such that the balls B (x0, R) and B (y0, R) are disjoint and (5.4) is satisfied.
To that end, observe the following consequence of the condition (V ). Let C be the constant from

(V ). Then, for any r ∈
(
0, R

)
, λ ∈ (0, 1) and x ∈M , we have

µ (B (x, λr)) ≤ Cλαrα and µ (B (x, r)) ≥ C−1rα,

which implies

µ (B (x, λr)) < µ (B (x, r))

provided λ is small enough, for example, λ = (2C)−2/α. For this λ, the annulus B (x, r) \B (x, λr)
is non-empty.

Set ε = λ/3. Then R < εR implies that r := 3λ−1R < R, and we obtain that the annulus
B
(
x0, 3λ

−1R
)
\ B (x0, 3R) is non-empty. Let y0 be any point from this annulus. Then the balls

B (x0, R) and B (y0, R) are disjoint and (5.4) holds, which finishes the proof of (E≤). �

Lemma 5.5. Let (E ,F) be a regular non-local Dirichlet form with jump kernel J . Then,

(V ) + (J) + (AB)⇒ (E≥).
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Proof. By Lemma 5.4, under the present hypotheses we have (E≤) with some ε > 0. Without
loss of generality, we can assume that ε ≤ σ/2 where σ is the parameter from the Faber-Krahn
inequality that was used in Corollary 4.4.

Fix a ball B = B (x0, R) with R ∈ (0, εR) and set u = GB1. It suffices to prove that

ess inf
1
4
B

u ≥ cRβ. (5.5)

By (E≤) we have GB1 ∈ L∞. Hence, by Lemma 5.1, the function u = GB1 is superharmonic in
B. Applying Corollary 4.4 to function u in B (instead of 2B) and observing that TB (u−) = 0, we
obtain that

ess inf
1
4
B

u ≥ c

(
−
∫

1
2
B

1

u
dµ

)−1

. (5.6)

On the other hand, by Corollary 2.6, the condition (cap) holds under the present hypotheses. By
(cap) and (V≤), there exists φ ∈ cutoff(BR/2, B3R/4) such that φ ∈ F(B) and

E(φ, φ) ≤ CRα−β.

For any λ > 0, we have by Proposition 6.5(iii) that φ2

u+λ ∈ F(B), whence by Lemma 5.1∫
BR/2

1

u+ λ
dµ ≤ (1B,

φ2

u+ λ
) = E(GB1B,

φ2

u+ λ
) = E(u,

φ2

u+ λ
).

By Lemma 3.7, we obtain

E(u,
φ2

u+ λ
) ≤ 3E(φ, φ) ≤ C ′Rα−β.

Combining the two previous lines, passing to the limit as λ→ 0 and using (V≥), we obtain

−
∫
BR/2

1

u
dµ ≤ CR−β.

Finally, substituting this into (5.6), we obtain (5.5). �

Lemma 5.6. Let (E ,F) be a regular non-local Dirichlet form with the jump kernel J . Then
(E)⇒ (S).

Proof. Recall that (S) means the following: for any ball B = B (x0, R) with R ∈
(
0, R

)
,

ess inf
1
4
B

PBt 1 ≥ ε, (5.7)

provided t1/β ≤ δr.
We first prove (5.7) assuming R < εR where ε is the parameter from (E≤). The ball B can be

exhausted by an increasing family of precompact open sets {Ωn}∞n=1 such that Ωn ⊂ Ωn+1 for each
n ≥ 1. Since (E ,F) is regular, for each n ≥ 1, there is a cutoff function of the pair (Ωn,M). On
the other hand, the function GB1 is bounded by (E≤). Hence, it follows from the arguments in the
proof of [22, (6.34) p.6429] that, for all t > 0 and for µ-a.a. x ∈ Ωn,

PBt 1(x) ≥ GB1(x)− t
‖GB1‖L∞

. (5.8)

Since n ≥ 1 is arbitrary, this inequality holds also for µ-a.a. x ∈ B. By (E) we have∥∥GB1
∥∥
L∞
≤ CRβ

and

ess inf
1
4
B

GB1 ≥ C−1Rβ.
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Substituting into (5.8) and assuming that t ≤ Rβ/(2C), we obtain

ess inf
1
4
B

PBt 1 ≥ C−1Rβ − t
CRβ

≥ C−1Rβ/2

CRβ
=

1

2C2
, (5.9)

which proves (5.7) in the case R < εR.
Now let us prove (5.7) for any R ∈ (0, R). Assume without loss of generality that ε < 1

2 . Since

M is separable, the ball 1
4B can be covered by at most countable family of balls B(xi,

ε
4R) where

xi ∈ 1
4B. Applying (5.9) to each ball Bi = B (xi, εR), we obtain that if t ≤ (εR)β /2C then

ess inf
1
4
Bi

PBit 1 ≥ 1

2C2
.

Since PBt 1 ≥ PBit 1 and the union of 1
4Bi covers 1

4B, we obtain

ess inf
1
4
B

PBt 1 ≥ 1

2C2
,

which proves (5.7) with ε =
(
2C2

)−1
and δ = ε (2C)−1/β. �

Corollary 5.7. Let (E ,F) be a regular non-local Dirichlet form with the jump kernel J . Then

(V ) + (J) + (AB)⇒ (S) .

Proof. Indeed, this implication follows from the three previous Lemmas 5.4, 5.5 and 5.6. �

5.2. Oscillation inequality for Lu = f . We use here the results of Section 4.3 in order to prove
the existence of a Hölder continuous heat kernel of (E ,F), under appropriate hypotheses. For a
non-empty open set Ω ⊂ M and f ∈ L2 (Ω), we say that a function u ∈ F solves weakly the
equation

Lu = f in Ω,

if, for any φ ∈ F(Ω),
E(u, φ) = (f, φ).

Proposition 5.8. Let u ∈ F solves the equation Lu = f weakly in Ω for some f ∈ L2 (Ω). Let
B ⊂ Ω be an open subset.

(a) If v ∈ F solves the equation Lv = f weakly in B, then u− v is harmonic in B.
(b) If

∥∥GB1
∥∥
L∞

<∞ then u−GBf is harmonic in B.

Proof. (a) By definition of a weak solution, we have, for any φ ∈ F(B) ⊂ F(Ω),

E(u, φ) = (f, φ) and E(v, φ) = (f, φ),

which implies that
E(u− v, φ) = 0.

Hence, u− v is harmonic in B.
(b) If

∥∥GB1
∥∥
L∞

<∞ then, by Lemma 5.1, the function v = GBf belongs to F (B) and satisfies
E (v, φ) = (f, φ) for any φ ∈ F (B), that is, v solves the equation Lv = f weakly in B. Hence, we
conclude by (a) that u−GBf is harmonic in B. �

Lemma 5.9. Assume that (V ), (J) and (AB) are satisfied. Let Ω be any open subset of M
containing a ball B := B(x0, r) ⊂ Ω of radius r ∈ (0, σR), where σ ∈ (0, 1) depends on the
constants from the present hypotheses. If f ∈ L2∩L∞(Ω) and if u ∈ F(Ω)∩L∞ solves the equation
Lu = f weakly in Ω, then, for any 0 < ρ ≤ r,

osc
B(x0,ρ)

u ≤ C
(ρ
r

)γ
‖u‖L∞(Ω) + Crβ ‖f‖L∞(B) , (5.10)

where γ is the constant from Lemma 4.8 and C depends only on the constants in the conditions
(V ), (J), (AB).
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Proof. So far we have denoted by σ the parameter from the Faber-Krahn inequality (cf. Lemmas
3.5 and 4.8). Let us reduce the value of σ to ensure that σ ≤ ε where ε is the parameter from (E≤)
(cf. Lemma 5.4), and use in what follows the reduced value of σ.

By (E≤) and r < σR we have
∥∥GB1

∥∥
L∞

<∞. Consider the function

v := u−GBf,

that by Proposition 5.8 is harmonic in B. Besides, v ∈ F(Ω) ∩ L∞. Hence, by Lemma 4.8,

osc
B(x0,ρ)

v ≤ C
(ρ
r

)γ (
rβTB(v) + ‖v‖L∞(B)

)
. (5.11)

Since u = 0 in Ωc, by (J≤), (V≤) and (6.8), we obtain

TB(v) ≤
∫
Bc
J(x0, y)(|u(y)|+GBf)dµ(y)

≤
(
‖u‖L∞(Ω) +

∥∥GBf∥∥
L∞(Ω)

)∫
Bc
J(x0, y)dµ(y)

≤ C
(
‖u‖L∞(Ω) +

∥∥GBf∥∥
L∞(B)

)
r−β.

Substituting this estimate into (5.11) and using that

‖v‖L∞(B) ≤ ‖u‖L∞(B) +
∥∥GBf∥∥

L∞(B)
,

we obtain

osc
B(x0,ρ)

v ≤ C
(ρ
r

)γ (
‖u‖L∞(Ω) +

∥∥GBf∥∥
L∞(B)

)
. (5.12)

By (E≤) we have ∥∥GBf∥∥
L∞(B)

≤
∥∥GB1

∥∥
L∞
‖f‖L∞(B) ≤ Cr

β ‖f‖L∞(B) .

Combining this with (5.12), we obtain

osc
B(x0,ρ)

u ≤ osc
B(x0,ρ)

v + osc
B(x0,ρ)

GBf

≤ C
(ρ
r

)γ (
‖u‖L∞(Ω) +

∥∥GBf∥∥
L∞(B)

)
+ 2

∥∥GBf∥∥
L∞(B)

≤ C
(ρ
r

)γ
‖u‖L∞(Ω) + Crβ ‖f‖L∞(B) ,

which proves (5.10). �

5.3. Estimates for the heat semigroup.

Lemma 5.10. Suppose (V ) and (J≥) are satisfied. Let Ω be an open subset of M . Fix f ∈
L1 ∩ L2(Ω) and set u = PΩ

t f . Then u satisfies the following inequalities, for any t > 0:

‖u(·, t)‖L∞(Ω) ≤ C
eR
−β
t

tα/β
‖f‖L1(Ω) , (5.13)

and

‖∂tu(·, t)‖L∞(Ω) ≤ C
eR
−β
t

t1+α/β
‖f‖L1(Ω) , (5.14)

where ∂tu(·, t) is the Fréchet derivative of the L2 (Ω)-valued function t 7→ u (·, t). Besides, for all
t > s > τ > 0,

‖u (·, t)− u (·, s)‖L∞(Ω) ≤ C (t− s) e
R
−β
τ

τ1+α/β
‖f‖L1(Ω) . (5.15)

The constant C depends only on the constants in the hypotheses (V ) and (J≤).
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Proof. By (V ), (J≥) and Lemma 3.5, we have the Nash inequality (Nash) for (E ,F). Therefore,
we have the Nash inequality also for (E ,F (Ω)). Since in what follows we will use only the Nash
inequality, we can assume without loss of generality and for the sake of simplicity of notations that
Ω = M , so that u = Ptf . Applying [9, Theorem 2.1], we obtain

‖Pt‖L1→L∞ ≤
CeR

−β
t

tα/β
, (5.16)

whence

‖Ptf‖L∞ ≤
CeR

−β
t

tα/β
‖f‖L1 ,

which proves (5.13).
To prove (5.14), let us first obtain an upper bound of ‖Pt‖L1→L2 . By Markov property, Pt is a

contraction in L1, that is,
‖Ptg‖L1 ≤ ‖g‖L1 for all g ∈ L1. (5.17)

Using (5.16) and (5.17), we obtain, for any h ∈ L1 ∩ L2 and t > 0,

sup
‖g‖L1=1

|(Pth, g)| = sup
‖g‖L1=1

|(h, Ptg)| ≤ ‖h‖L2 sup
‖g‖L1=1

‖Ptg‖L2

≤ ‖h‖L2 sup
‖g‖L1=1

√
‖Ptg‖L∞‖Ptg‖L1

≤ ‖h‖L2 sup
‖g‖L1=1

√
CeR

−β
t

tα/β
‖g‖L1‖g‖L1

=
√
C
eR
−β
t/2

tα/(2β)
‖h‖L2 .

It follows that

‖Pt‖L2→L∞ ≤
√
C
eR
−β
t/2

tα/(2β)
, (5.18)

whence by the duality

‖Pt‖L1→L2 = ‖Pt‖L2→L∞ ≤
√
C
eR
−β
t/2

tα/(2β)
. (5.19)

Since, for any s ∈ (0, t),
Ptf = PsPt−sf

and Ps is a bounded operator in L2, we obtain

∂t (Ptf) = Ps (∂tPt−sf) .

Using this identity and the following inequality (see [26, Lemma 5.4])

‖∂s (Psf) ‖L2 ≤
2

s
‖Ps/2f‖L2 , (5.20)

we obtain

‖∂t (Ptf) ‖L∞ = ‖Ps∂t (Pt−sf) ‖∞
≤ ‖Ps‖L2→L∞‖∂t (Pt−sf) ‖L2

≤ ‖Ps‖L2→L∞
2

t− s
‖P(t−s)/2f‖L2

≤ 2

t− s
‖Ps‖L2→L∞‖P(t−s)/2‖L1→L2 ‖f‖L1 .

Setting here s = t/2 and using (5.18), (5.19), we obtain

‖∂t (Ptf) ‖L∞ ≤ C
eR
−β
t

t1+α/β
‖f‖L1 ,
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which proves (5.14).
Finally, let us prove (5.15). For simplicity let us rename τ into 2τ , so that t > s > 2τ . We have

‖Ptf − Psf‖L∞ = ‖Pτ (Pt−τf − Ps−τf)‖L∞ ≤ ‖Pτ‖L2→L∞ ‖Pt−τf − Ps−τf‖L2 .

Next, using (5.20), we obtain

‖Pt−τf − Ps−τf‖L2 =

∥∥∥∥∫ t−τ

s−τ
∂ξ (Pξf) dξ

∥∥∥∥
L2

≤
∫ t−τ

s−τ

2

ξ

∥∥Pξ/2f∥∥L2 dξ

≤ (t− s) 2

τ

∥∥Pτ/2f∥∥L2 ≤ (t− s) 2

τ

∥∥Pτ/2∥∥L1→L2 ‖f‖L1 .

Hence, it follows that

‖Ptf − Psf‖L∞ ≤ (t− s) 2

τ
‖Pτ‖L2→L∞

∥∥Pτ/2∥∥L1→L2 ‖f‖L1 .

Substituting the estimates (5.18) and (5.19), we obtain (5.15). �

5.4. Oscillation inequality and Hölder continuity for the heat semigroup.

Lemma 5.11. Assume that (V ), (J) and (AB) are satisfied. Let Ω be a non-empty open subset of
M . Fix a function f ∈ L1(Ω)∩L2(Ω) and set u (x, t) = PΩ

t f (x). Then, for any ball B(x0, R) ⊂ Ω

of radius R ∈ (0, R), for any t > 0 and ρ ≤ η(t1/β ∧R), the following inequality holds:

osc
B(x0,ρ)

u(·, t) ≤ C e
R
−β
t

tα/β

( ρ

t1/β ∧R

)θ
‖f‖L1(Ω) , (5.21)

where

θ =
βγ

β + γ
, η = σ(β+γ)/γ

and the constant C > 0 depends only on the constants in the conditions (V ), (J) and (AB). Here
γ and σ are the constants from Lemma 5.9.

Proof. It is known that, for all t > 0, the function u (·, t) belongs to dom
(
LΩ
)
, is Frechet differen-

tiable in t as a path in L2 (Ω), and satisfies ∂tu(·, t) = −LΩu (·, t). It follows that, for any φ ∈ F (Ω)
and t > 0,

E (u (·, t) , φ) =
(
LΩu (·, t) , φ

)
= − (∂tu (·, t) , φ) ,

which means that u is a weak solution in Ω of the equation

Lu(·, t) = −∂tu(·, t).

By Lemma 5.10, we have u(·, t) ∈ L∞(Ω) and ∂tu(·, t) ∈ L∞(Ω) for all t > 0.

Note that ρ ≤ η(t1/β ∧ R) < σR. Choose some r ∈ [ρ, σR] to be specified below and set
B := B(x0, r). By Lemmas 5.9 and 5.10 we obtain, for any t > 0,

osc
B(x0,ρ)

u(·, t) ≤ C
((ρ

r

)γ
‖u‖L∞(Ω) + rβ ‖∂tu‖L∞(B)

)
≤ C

eR
−β
t

tα/β

((ρ
r

)γ
+
rβ

t

)
‖f‖L1

≤ C
eR
−β
t

tα/β

((ρ
r

)γ
+
rβ

τ

)
‖f‖L1 , (5.22)

where

τ = t ∧Rβ.
Let us now specify r from the equation (ρ

r

)γ
=
rβ

τ
,
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that is

r = (ργτ)
1

β+γ .

Note that

ρ ≤ η(t1/β ∧R) = ητ1/β

whence it follows that

r ≥
(
ργ (ρ/η)β

) 1
β+γ

> ρ

and

r ≤
((
ητ1/β

)γ
τ
) 1
β+γ

= η
γ

β+γ τ1/β ≤ η
γ

β+γR = σR.

Hence, r ∈ [ρ, σR] as required. For this choice of r, we have

rβ

τ
=

1

τ
(ργτ)

β
β+γ = ρ

βγ
β+γ τ

− γ
β+γ =

( ρ

τ1/β

) βγ
β+γ

.

Therefore, inequality (5.21) follows from (5.22). �

For any set U ⊂M , denote by Ur the open r-neighborhood of U , that is,

Ur =
⋃
x∈U

B (x, r) .

Lemma 5.12. Assume that (V ), (J) and (AB) are satisfied. Let Ω be an open subset of M . Fix
a function f ∈ L1 ∩ L2(Ω) and set u (·, t) = PΩ

t f .
(a) For any t > 0, the function u(·, t) has a locally Hölder continuous version ũ(·, t) in Ω with

the Hölder exponent θ. Moreover, the function ũ (x, t) is jointly continuous in (x, t) ∈ Ω× (0,∞).
(b) For any open subset U of Ω, we have, for all x, x′ ∈ U ,

∣∣ũ(x, t)− ũ(x′, t)
∣∣ ≤ C eR−βt

tα/β

(
d(x, x′)

t1/β ∧R

)θ
‖f‖L1(Ω) , (5.23)

where

R = sup
{
r ∈ [0, R) : Ur ⊂ Ω

}
(5.24)

and θ is the same constant as in Lemma 5.11.
(c) In the case Ω = M , the function ũ (x, t) is Hölder continuous in x ∈ M , jointly continuous

in (x, t) ∈M × (0,∞), and (5.23) holds for all x, x′ ∈M and with R = R.

Proof. (a) The fact that u (·, t) has a Hölder continuous version ũ(·, t) follows from (5.21) by a
standard argument.

By (5.15), we have, for all t > s > τ > 0 ,

sup
x∈Ω
|ũ (x, t)− ũ (x, s)| ≤ C (t− s) e

R
−β
τ

τ1+α/β
‖f‖L1(Ω) ,

which implies that the function t 7→ ũ (x, t) is continuous in t ∈ (0,∞) uniformly in x ∈ Ω. Since
the function x 7→ ũ (x, t) is continuous in x ∈ Ω, we conclude that ũ (x, t) is jointly continuous in
(x, t).

(b) It suffices to prove (5.23) for any R < R such that UR ⊂ Ω. Then we have B(x,R) ⊂ Ω for
any x ∈ U . Set τ = t ∧Rβ. By Lemma 5.11, we obtain

osc
B(x,ρ)

ũ(·, t) ≤ C e
R
−β
t

tα/β

( ρ

τ1/β

)θ
‖f‖L1(Ω) , (5.25)
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provided ρ ≤ ητ1/β. If ρ > ητ1/β, then we obtain by Lemma 5.10

osc
B(x,ρ)

ũ(·, t) ≤ 2‖u(·, t)‖L∞ ≤ C
eR
−β
t

tα/β
‖f‖L1(Ω)

= C
eR
−β
t

tα/β

( ρ

τ1/β

)−θ ( ρ

τ1/β

)θ
‖f‖L1(Ω)

≤ Cη−θ
eR
−β
t

tα/β

( ρ

τ1/β

)θ
‖f‖L1(Ω) .

Hence, by adjusting the constant C, we obtain that (5.21) holds for all ρ > 0. Choosing ρ = d (x, x′),
we obtain (5.23).

(c) If Ω = M , then applying the first statement with U = M we obtain by (5.24) that R = R.
Hence, (5.23) holds with R = R for all x, x′ ∈M , which implies that ũ is Hölder continuous in M .
�

5.5. Existence and the Hölder continuity of the heat kernel. Recall that the heat kernel
pt (x, y) is the integral kernel of the heat semigroup {Pt}. In particular, for any t > 0, the function
pt (x, y) is a measurable function of (x, y) ∈ M × M . By Lemma 5.12, under the hypotheses
(V ) , (J) , (AB), the function Ptf (x) has a continuous version for any f ∈ L1 ∩ L2 (M). From now
on let us use the notation Ptf (x) for this continuous version. In particular, the semigroup identity

Pt+sf (x) = Pt (Psf) (x)

holds for all x ∈M and t, s > 0.
We say that a function pt (x, y) of t > 0, x, y ∈ M is a continuous heat kernel if, for any t > 0,

the function (x, y) 7→ pt (x, y) is continuous in (x, y) ∈M ×M and, for any f ∈ L1 ∩ L2 (M),

Ptf (x) =

∫
M
pt (x, y) f (y) dµ (y) ,

for all t > 0 and x ∈M.
If pt is a continuous heat kernel then the properties of the heat semigroup {Pt} imply the following

properties of pt, for all x, y ∈M and t, s > 0:

(1) pt (x, y) ≥ 0 and ‖pt (x, ·)‖L1 ≤ 1;
(2) pt (x, y) = pt (y, x);
(3) pt+s (x, y) =

∫
M pt (x, z) ps (z, y) dµ (z) .

All these apply to the heat semigroup
{
PΩ
t

}
, where Ω ⊂M is any open set. We use the notation

PΩ
t f (x) for the continuous version, and define the notion of a continuous heat kernel pΩ

t (x, y) in
the same way.

Lemma 5.13. Let (E ,F) be a regular Dirichlet form with jump kernel J . Assume that (V ), (J)
and (AB) are satisfied.

For any non-empty open set Ω ⊂ M , there exists a (locally Hölder) continuous heat kernel
pΩ
t (x, y). Moreover, the function pΩ

t (x, y) is jointly continuous in (x, y, t) ∈ Ω × Ω × (0,∞) and
satisfies the upper bound

sup
x,y∈Ω

pΩ
t (x, y) ≤ C e

R
−β
t

tα/β
. (5.26)

In the case Ω = M , the function pt(x, y) satisfies the following estimate: for all x, x′, y, y′ ∈ M
and t > 0, ∣∣pt(x, y)− pt(x′, y′)

∣∣ ≤ C eR−βt
tα/β

((
d(x, x′)

t1/β ∧R

)θ
+

(
d(y, y′)

t1/β ∧R

)θ)
, (5.27)

where θ is the constant of Lemma 5.11 and the constant C > 0 depends only on the constants in
the conditions (V ), (J) and (AB).
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Proof. For simplicity we restrict ourself to the heat kernel pt (x, y), while the claims related to
pΩ
t (x, y) are proved in the same way.

By Lemma 5.12, for any f ∈ L1 ∩ L2 (M) and t > 0, the function Ptf is Hölder continuous and
satisfies the following estimate, for all t > 0 and x, x′ ∈M ,∣∣Ptf(x)− Ptf(x′)

∣∣ ≤ C eR−βt
tα/β

(
d(x, x′)

t1/β ∧R

)θ
‖f‖L1 . (5.28)

Furthermore, by Lemma 5.10, we have, for all t > 0 and x ∈M ,

|Ptf(x)| ≤ C e
R
−β
t

tα/β
‖f‖L1 . (5.29)

It follows from (5.29) that the mapping f 7→ Ptf(x) (for any fixed t > 0 and x ∈M) extends to a
bounded linear functional on L1(M). Hence, there exists a function qt,x ∈ L∞(M) such that, for
any f ∈ L1 (M),

Ptf(x) =

∫
M
qt,xfdµ = (qt,x, f) (5.30)

and

‖qt,x‖L∞ ≤ C
eR
−β
t

tα/β
. (5.31)

By the Markov properties of Pt we have

qt,x ≥ 0 µ-a.e. in M and ‖qt,x‖L1 ≤ 1. (5.32)

In particular, qt,x ∈ L∞ ∩ L1 and, hence, qt,x ∈ L2.
For any 0 < s < t and x, y ∈M , let us define the function

pt,s(x, y) :=

∫
M
qt−s,xqs,ydµ = Pt−sqs,y(x) = Psqt−s,x(y). (5.33)

Let us prove some properties of pt,s(x, y).
(i) For any f ∈ L1 and 0 < s < t, we have

(pt,s(x, ·), f) = (Psqt−s,x, f) = (qt−s,x, Psf) = Pt−s (Psf) (x) = Ptf(x) = (qt,x, f) .

It follows that
pt,s(x, ·) = qt,x µ-a.e. in M. (5.34)

(ii) Applying (5.28) with f = qs,y and using that ‖qs,y‖L1 ≤ 1, we obtain, for all x, x′, y ∈M ,∣∣pt,s(x, y)− pt,s(x′, y)
∣∣ =

∣∣Pt−sqs,y(x)− Pt−sqs,y(x′)
∣∣

≤ C
eR
−β

(t−s)

(t− s)α/β

(
d(x, x′)

(t− s)1/β ∧R

)θ
(5.35)

Similarly, we have, for all x′, y, y′ ∈M .∣∣pt,s(x′, y)− pt,s(x′, y′)
∣∣ ≤ C eR−βs

sα/β

(
d(y, y′)

s1/β ∧R

)θ
. (5.36)

Adding up the above two inequalities, we see that pt,s(x, y) is jointly Hölder continuous in (x, y)
with the Hölder exponent θ.

(iii) It follows from (5.34) that, for all x ∈M and s′, s′′ ∈ (0, t),

pt,s′ (x, y) = pt,s′′ (x, y)

for µ-a.a. y ∈ M . By the continuity of pt,s (x, y) in (x, y), we conclude that this identity holds
for all y ∈ M . In other words, pt,s(x, y) is independent of the choice of s. Hence, we set, for all
x, y ∈M and t > 0,

pt(x, y) := pt,s(x, y). (5.37)

It follows from (5.30), (5.34) and (5.37) that pt (x, y) is a continuous heat kernel.
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By (ii), the function pt(x, y) is Hölder continuous in (x, y) with the Hölder exponent θ. Moreover,
letting s → 0 in (5.35) and s → t in (5.36), and then adding up the two inequalities, we obtain
(5.27).

The estimate (5.26) follows from (5.31), (5.34) and (5.37).
Finally, let us show that pt (x, y) is jointly continuous in (x, y, t). For that, it suffices to verify

that the function t 7→ pt (x, y) is continuous in t uniformly in (x, y). Indeed, by (5.33), (5.15) and
(5.32), we obtain, for all t > s > 2τ > 0

|pt (x, y)− ps (x, y)| = |Pt−τqτ ,y(x)− Ps−τqτ ,y (x)| ≤ C (t− s) e
R
−β

2τ

τ1+α/β
,

whence the claim follows. �

5.6. Proof of Theorem 2.10. As we have already mentioned in Section 2.5, in order to complete
the proof of Theorem 2.10, it remains to prove (2.24), that is, to derive (S) and (NLE) under the
standing assumptions (V ), (J), (AB).

Condition (S) holds by Corollary 5.7. By Lemma 5.13, we obtain that there is a continuous
heat kernel pt(x, y). Moreover, for each ball B ⊂ M , the heat kernel pBt (x, y) also exists and is
continuous.

Let us now prove (NLE), that is, for any t ∈ (0, R
β
) and for all x, y such that d (x, y) ≤ ηt1/β,

we have
pt (x, y) ≥ a

tα/β
, (5.38)

with some positive a, η. Let ε, δ be the constants in condition (S). We first prove (5.38) assuming

that t <
(
δR
)β

. Fix x ∈M , t <
(
δR
)β

and consider the ball B = B(x, r) with r := δ−1(t/2)1/β <

R. By conditions (S) and (V≤), we have

pt(x, x) =

∫
M
pt/2(x, y)2dµ(y) ≥

∫
B
pBt/2(x, y)2dµ(y) ≥ 1

µ(B)

(∫
B
pBt/2(x, y)dµ(y)

)2

=

(
PBt/21(x)

)2

µ(B)
≥ ε2

Crα
=

c1

tα/β
,

with c1 > 0. By the inequality (5.27) of Lemma 5.13, we have, for all x, y ∈M and t ∈ (0, R
β
),

|pt(x, x)− pt(x, y)| ≤ c2

tα/β

(
d(x, y)

t1/β

)θ
.

It follows that

pt(x, y) ≥ pt(x, x)− |pt(x, x)− pt(x, y)| ≥ 1

tα/β

(
c1 − c2

(
d(x, y)

t1/β

)θ)
.

Therefore, if d(x, y) ≤ ηt1/β, where η =
(
c1
2c2

)1/θ
then we have (5.38) with a = c1/2.

Now let us extend this estimate to all t < R
β
. For that, it suffices to prove that if (5.38) holds

for some t < R
β

and all d (x, y) ≤ ηt1/β then the same estimate holds also for 2t in place of t, but

with different values of a and η. Without loss of generality, assume η < 1. Fix x ∈M , t < R
β

and
set r = 1

2ηt
1/β. By the semigroup property, we have, for any y ∈ B (x, r),

p2t (x, y) ≥
∫
B(x,r)

pt (x, z) pt (z, y) dµ (z) .

For any z ∈ B (x, r), we have d (z, y) < 2r = ηt1/β. Hence, by the previous step of the proof, we

obtain that both pt (x, z) and pt (z, y) are bounded from below by a/tα/β. Since r < R, we can use
(V≥), which implies

p2t (x, y) ≥
( a

tα/β

)2
crα =

a′

tα/β
,
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for all y such that d (x, y) ≤ r = η′ (2t)1/β, where η′ = η2
−(1+ 1

β
)
, which finishes the proof.

6. Some consequences

In this section we prove some consequences of Theorem 2.10.

6.1. Green function. Let Ω be an open subset of M . If the Green operator GΩ (cf. Section 5.1)
has an integral kernel then the latter is called the Green function in Ω and is denoted by gΩ (x, y).
In other words, gΩ (x, y) is a µ-measurable function in x, y that satisfies the following identity

GΩf (x) =

∫
Ω
gΩ(x, y)f(y)dµ(y)

for all non-negative f ∈ L2 (Ω) and µ-a.a. x ∈ Ω.

Definition 6.1 (Condition (g≥)). There exist constants δ, σ ∈ (0, 1) and c > 0 such that, for any
ball B := B(x0, r) of radius r ∈ (0, σR), the Green function gB(x, y) exists and satisfies

gB(x, y) ≥ crβ−α, for µ-a.a. x, y ∈ B(x0, δr).

Corollary 6.2. Let (E ,F) be a regular jump type Dirichlet form on L2(M,µ) with a jump kernel
J . If (M,d, µ) satisfies (V ) then the following equivalence holds

(J) + (g≥)⇔ (UE) + (LE).

Proof. Let us first prove that

(J) + (g≥)⇒ (UE) + (LE).

By Theorem 2.10, it suffices to prove the implication:

(V ) + (J≥) + (g≥)⇒ (S). (6.1)

Indeed, for any ball B := B(x0, r) of radius r ∈ (0, σR), and for µ-a.a. x ∈ δB, we have, using (g≥)
and (V≥),

GB1(x) =

∫
B
gB(x, y)dµ(y) ≥

∫
δB
gB(x, y)dµ(y) ≥ C−1rβ−αµ(δB) ≥ crβ,

which together with Remark 5.3 implies the condition (E≥).
By Lemma 5.4, we have

(V ) + (J≥)⇒ (E≤) ,

and by Lemma 5.6 (E)⇒ (S), which finishes the proof of (6.1).
Let us prove the opposite implication

(UE) + (LE)⇒ (J) + (g≥).

By Theorem 2.10, it suffices to prove that

(UE) + (LE)⇒ (g≥).

Let us first verify the existence of the Green function gB for any ball B := B(x0, r) be a ball of radius
r ∈ (0, σR), where σ ∈ (0, 1) is to be specified. By Theorem 2.10, (UE)+(LE) imply (J) whence by
Lemma 3.5 we obtain (FK). Setting σ to be the constant from (FK), we obtain that λ1 (B) > 0.

Recall that the heat kernel pBt (x, y) is continuous jointly in t, x, y. Since
∥∥PBt ∥∥2→2

≤ e−λ1(B)t, it

follows that pBt (x, y) decays exponentially as t → ∞. Combining this with (UE), we see that the
integral ∫ ∞

0
pBt (x, y) dt

converges for all distinct x, y ∈ B and, hence, determines the Green function gB (x, y).
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Let us now verify the lower bound (g≥). Let δ ∈ (0, 1/4) be a small number to be determined
later. Let B be the ball as above and f ∈ L1 ∩L∞(δB) be an arbitrary non-negative function. By
[21, (4.1), p.2626], we have, for all t > 0 and µ-a.a. x ∈ B,

PBt f(x) ≥ Ptf(x)− sup
0<s≤t

‖Psf‖L∞(Kc), (6.2)

where K = (1
2B). Since Ptf and PBt f are continuous by Theorem 2.10 and Lemma 5.12, this

inequality holds for all x ∈ B. Since f is arbitrary and the heat kernels pBt and pt are continuous
functions (cf. Lemma 5.13), it follows from (6.2) that, for all x, y ∈ δB and t > 0,

pBt (x, y) ≥ pt (x, y)− sup
0<s≤t

sup
z∈Kc,w∈δB

ps (z, w) . (6.3)

By (LE) we obtain, for all t ≤ (δr)β < R
β

and x, y ∈ δB, that

pt (x, y) ≥ c
(
t−α/β ∧ t

(2δr)α+β

)
=

ct

(2δr)α+β
. (6.4)

For all z ∈ Kc, w ∈ δB, we have

d (z, w) ≥ d (x0, z)− d (x0, w) ≥
(

1

2
− δ
)
r ≥ 1

4
r,

where we have used that δ < 1
4 . By (UE), we obtain, for all such z, w and 0 < s ≤ t that

ps(z, w) ≤ Cs

d(z, y)α+β
≤ Ct

(1
4r)

α+β
. (6.5)

Combining (6.3), (6.4) and (6.5), we obtain, for all t ≤ (δr)β and x, y ∈ δB,

pBt (x, y) ≥ ct

(2δr)α+β
− Ct

(1
4r)

α+β
= c

t

rα+β
,

assuming that δ = δ (c, C) > 0 is sufficiently small. It follows that

gB (x, y) =

∫ ∞
0

pt (x, y) dt ≥
∫ (δr)β

0
c

t

rα+β
dt =

c

2

(δr)2β

rα+β
= c′rβ−α,

which finishes the proof of (g≥). �

6.2. Asymptotic behavior of the heat semigroup. If the heat kernel pt (x, y) exists then the
operator Pt extends to all measurable functions f on M by

Ptf (x) =

∫
M
pt (x, y) f (y) dµ (y) ,

provided the integral converges.

Corollary 6.3. Let (E ,F) be a regular, jump type Dirichlet form on L2(M,µ) with a jump kernel
J . Assume that (V ), (J) and (Gcap) are satisfied with R =∞. Fix some x0 ∈ M . Then, for any
measurable function f on M such that∫

M

(
1 + d (y, x0)θ

)
|f (y)| dµ (y) <∞

we have

Ptf (x) = Kpt (x, x0)
(

1 +O
(
t−θ/β

))
as t→∞, (6.6)

where K =
∫
M fdµ and θ > 0 is the exponent from Lemma 5.11.
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Proof. Using the definitions of Ptf and K, we obtain

Ptf (x)−Kpt (x, x0) =

∫
M

(pt (x, y)− pt (x, x0)) f (y) dµ(y).

By Lemma 5.13, we have

|pt (x, y)− pt (x, x0)| ≤ C

tα/β

(
d (y, x0)

t1/β

)θ
,

which implies

|Ptf (x)−Kpt (x, x0)| ≤ C

tα/β+θ/β

∫
M
d (y, x0)θ |f(y)| dµ(y) ≤ C

tα/β+θ/β
.

Finally, it remains to observe that, by Theorem 2.10 with R =∞,

pt (x, x0) ≥ c

tα/β

for large enough t, whence (6.6) follows. �

Appendix

The inequalities in the following proposition are frequently used in this paper.

Proposition 6.4. If (V≤) is satisfied then, for all r > 0 and x ∈M ,∫
B(x,r)c

dµ(y)

d(x, y)α+β
≤ C

rβ
. (6.7)

Consequently, if (V≤) and (J≤) are satisfied, then, for all r > 0 and x ∈M ,∫
B(x,r)c

J(x, y)dµ(y) ≤ C

rβ
. (6.8)

The constant C > 0 depends only on α, β and the constants in the conditions (V≤) and (J≤).

Proof. Set rk = 2kr for all non-negative integers k and Bk = B (x, rk). Using (V≤), we obtain∫
B(x,r)c

dµ(y)

d(x, y)α+β
=

∞∑
k=0

∫
Bk+1\Bk

dµ (y)

d (x, y)α+β

≤
∞∑
k=0

∫
Bk+1\Bk

dµ (y)

rα+β
k

≤
∞∑
k=0

µ (Bk+1)

rα+β
k

≤ C

∞∑
k=0

r−βk ≤ C ′r−β,

which proves (6.7). Clearly, (6.8) follows from (6.7) and (J≤). �

Proposition 6.5. Suppose that u = w + a ∈ F ′ with w ∈ F and a ∈ R, v ∈ F ∩ L∞ and that
F : R 7→ R is a Lipschitz function. The following is true:

(i) F (u)− F (a) ∈ F and so, F (u) ∈ F ′.
(ii) If in addition F (u) ∈ L∞, then F (u)v ∈ F ∩ L∞.

(iii) Let Ω be an open subset of M . If in addition v ∈ F(Ω), then, F (u)v ∈ F(Ω).
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Proof. Denote the Lipschitz constant of F by L and define

h(t) :=
F (t+ a)− F (a)

L
, t ∈ R. (6.9)

(i) Since F (u)− F (a) = Lh(w), it suffices to prove h(w) ∈ F . By (6.9), h satisfies

|h(t)− h(s)| ≤ |t− s| and h(0) = 0.

Hence, h(w) is a normal contraction of w. By the Markov property of (E ,F), h(w) ∈ F and so,

F (u) = Lh(u− a) + F (a) = Lh(w) + F (a) ∈ F ′.
(ii) By (i), the fact that F (u) ∈ L∞ implies h(w) ∈ F ∩ L∞. Hence by [14, Theorem 1.4.2(ii)],

h(w)v ∈ F ∩ L∞, since v ∈ F ∩ L∞. Consequently,

F (u)v = (Lh(u− a) + F (a))v = Lh(w)v + F (a)v ∈ F ∩ L∞.

(iii) Let h̃(w) and ṽ be the quasi-continuous modifications of h(w) and v respectively. Then,

h̃(w)ṽ is the quasi-continuous modification of h(w)v. Since v ∈ F(Ω),

h̃(w)ṽ = 0, q.e. in Ωc.

Hence, h(w)v ∈ F(Ω) and so, F (u)v = Lh(w)v + F (a)v ∈ F(Ω). �
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