
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 20XX 1

Classifier Ensemble by Exploring
Supplementary Ordering Information

Ou Wu

Abstract—Supplementary information has been proven to be particularly useful in many machine learning tasks. In ensemble learning
for a set of trained base classifiers, there also exists abundant implicit supplementary information about the performance orderings for the
trained base classifiers in previous literature. However, few classifier ensemble studies consider exploring and utilizing supplementary
information. The current study proposes a new learning method for stack classifier ensembles by considering the implicit supplementary
ordering information regarding a set of trained classifiers. First, a new metric learning algorithm for measuring the similarities between
two arbitrary learning tasks is introduced. Second, supplementary ordering information for the trained classifiers of a given learning
task is inferred based on the learned similarities and related performance results reported in the previous literature. Third, a set of
ordered soft constraints is generated based on the supplementary ordering information, and achieving the optimal combination weights
of the trained classifiers is formalized into a goal programming problem. The optimal combination weights are then obtained. Finally, the
experimental results verify the effectiveness of the proposed new classifier ensemble method.

Index Terms—Classifier ensemble, supplementary information, performance ordering, soft constraints.
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1 INTRODUCTION

In general, an ensemble of different base classifiers is
more accurate than a single base classifier [1] [2] [3]. This
work focuses on stacking classifier ensembles. When a set of
base classifiers is given, stacking classifier ensemble learning
weightily combines the base classifiers in which the ensem-
ble weights are learnt based on a new training set. This
scenario has been investigated and applied to numerous
applications [4] [5] [6]. One of the key issues in stacking
classifier combination is producing the optimal ensemble
weights of the involved base classifiers.

This study investigates a new approach to infer optimal
combination weights for base classifiers in stacking classifier
ensemble learning, that is, an ensemble that explores the
supplementary information regarding performance order-
ings among base classifiers (hereafter referred to as supple-
mentary ordering information (SOI)). Supplementary infor-
mation is attainable and useful in numerous learning tasks,
such as classification [7] [8], clustering [9] [10], and met-
ric learning [11] [12]. In a standard classification problem,
supplementary information can be the reliability of labels
[7]; while it can be must-link or must-not-link constraints1

for training instance pairs in clustering and metric learning
[11]2. Given that supplementary information is auxiliary
to standard supervised information (e.g, labels), learning
performances can be substantially improved when the for-
mer is effectively utilized [13]. In many ensemble learning
problems, there is also substantial implicit supplementary
information such as the performance orderings among in-
volved trained classifiers. Nevertheless, this type of implicit
supplementary information has received minimal attention
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1. The term “must-link” indicates two instances must be in the same

cluster, while the term “must-not-link” indicates two instances must
not be in the same cluster.

2. In clustering and metric learning, the aforementioned supplemen-
tary information is called side information.

from previous ensemble learning studies. Small et al. [2011]
utilized a similar type of supplementary information to aid
the learning weights of features in linear classification. The
experimental results verified the usefulness of the utilized
supplementary information.

Without loss of generality, the present research focuses
on the ensemble of a set of trained binary classifiers. With
a set of trained (binary) base classifiers and a new training
set3 of features and labels, stacking ensemble learning can
assign optimal combination weights to the trained classifiers
[14]. Optimal combination weights indicate the relative im-
portance or performance orderings of trained classifiers. If
the auxiliary information about the performance orderings
of the involved trained classifiers in ensemble is available
before ensemble, then this information is assumed to facil-
itate the pursuance of the optimal combination weights for
the trained base classifiers. This type of SOI does exist in
practice. The performance of a trained classifier depends on
its corresponding learning algorithm and the characteristics
of the learning (classification) task to be processed. For
most common learning algorithms, the previous literature
has tested and compared the performances of their trained
classifiers in many existing learning (classification) tasks.
Therefore, the approximate performance orderings for the
trained classifiers on a new learning task can be inferred
based on the reported performance results or conclusions
of these existing studies. For example, assuming that three
classifiers, that is, LA, LB , and LC , are respectively trained
based on three popular learning algorithms support vector
machine (SVM) [15], logistic regression (LR) [16], and ran-
dom forest (RF) [17], a performance ordering prior among
LA, LB , and LC can be approximately attained based on the
classification performances of the classifiers trained using

3. To distinguish this training set with the training data for base
classifiers, this set is called validation set in this paper.
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SVM, LR, and RF on the existing learning tasks reported
in previous literature. When all the three classifiers LA,
LB , and LC are required to ensemble into a combined
classifier on a new learning task, the ordering prior among
LA, LB , and LC can be used as supplementary information
to improve the ensemble.

In the current study, a new classifier ensemble method
is proposed by exploring the SOI regarding a set of trained
classifiers based on the available performance comparison
data presented in the previous literature. However, two
challenges can be encountered in applying this new method:

(1) Supplementary ordering information is inferred based
on the performance comparison data presented in pre-
vious studies for existing learning tasks; hence, whether
the ordering information is still applicable to the pro-
cessing learning task should be further justified. In-
tuitively, a strong similarity between existing learning
tasks and a given processing learning task is equal to
increase the enhanced usefulness of the performance
data on existing learning tasks. Therefore, the similarity
between the processing task and existing learning tasks
must be measured.

(2) How can the inferred SOI be embedded into the math-
ematical optimization problem for pursuing optimal
classifier combination weights? The inferred SOI must
intuitively be transformed into additional constraints
and subsequently be added into the optimization prob-
lem. Nevertheless, constraints from the inferred SOI
cannot be simply attributed to common hard constraints
because the former may be unreliable or even incorrect
in the worst cases.

For the first challenge, the inference of the similarity be-
tween two different learning tasks is simply reduced to the
measurement of the similarity between the meta-features of
the data sets for these learning tasks. The meta-features of
a data set are extracted based on a recent progress in ma-
chine learning algorithm recommendation [18] [19]. Metric
learning is introduced to learn effective similarity measures
between the meta-features of two data sets in this study.
However, compiling similar pairwise data yet is relatively
easy, whereas compiling dissimilar pairwise data is difficult
when metric learning is applied in this study. Therefore,
motivated by the problem of learning using positive and
unlabeled data (LPU) [20] [21] [22], a new learning problem,
that is, metric learning with positive training data (pairwise
data with similar labels) and unlabeled training data (pair-
wise data without similar and dissimilar labels), is firstly
introduced and investigated. This new problem is called
metric LPU (MLPU) for brevity. With the learned similar
metrics in this study, more reliable SOI can be obtained.

For the second challenge, we note that soft constraints
are typically used when the underlying information is in-
sufficiently reliable in goal programming [23]. Therefore, the
inferred SOI regarding the trained classifiers is used as a set
of soft constraints in a classical ensemble learning frame-
work, i.e., LPBoost4 [26] [27]. Moreover, soft constraints

4. LPBoost is a learning method for classification. It is also used as
a staking classifier ensemble method in various ensemble applications
[24] [25].

are ordered according to the reliability degrees of the SOI
regarding each pair of input trained classifiers.

The main contributions of the present research can be
summarized as follows:

• Existing studies on stacking ensemble learning do
not consider supplementary information. Given that
supplementary information is quite helpful in many
learning tasks and implicitly exists in classifier en-
sembles, the current study investigates a new classi-
fier ensemble learning method to utilize SOI for the
involved trained classifiers. To our knowledge, this
study is the first to consider and utilize supplemen-
tary information in classifier ensembles.

• This study explores a new metric learning problem,
that is, MLPU, to obtain more reliable SOI for the
input trained classifiers in ensemble based on the
available performance comparison data presented in
previous literature. A new learning algorithm is then
proposed for MLPU.

• The inferred SOI is transformed into a set of soft
constraints and the soft constraints are ordered based
on their reliability degrees. The pursuance of optimal
ensemble weights is reduced to a goal optimization
problem on a validation data set with the ordered
soft constraint set.

The rest of the paper is organized into five sections.
Following the introduction, Section 2 briefly presents the
background of the current study. Section 3 introduces the
research methodologies in this study including the SOI in-
ference and how to apply it into classifier ensemble learning.
Section 4 reports the experimental results. Finally, conclu-
sions are given in Section 5.

2 BACKGROUNDS

This section introduces the background studies including
those on classifier ensemble, learning with supplementary
information, optimization with soft constraints, and auto-
matic learning algorithm selection.

2.1 Classifier ensemble
Ensemble methods either train multiple learners and then
combine them for use or directly combine trained multiple
learners [14] [28] [29]. Gao et al. [30] [31] provided an
excellent summary of various learning problems according
two dimensions, namely, supervision and ensemble level.
The current study belongs to the interaction of supervised
learning and ensemble at output level. In particular, it focus-
es on the stacking classifier ensemble learning [32], which
aims to train a new classifier by weighted combining the
trained individual classifiers. With a set of trained multiple
classifiers based on the original training data, a stacking
classifier ensemble algorithm generates a validation set and
considers the outputs of the trained classifiers on this valida-
tion set as new input features. Finally, the optimal classifier
combination weights are achieved based on learning with
both the new features and the original labels. The trained
classifiers can then be combined based on the obtained
optimal combination weights to classify new data. The two-
class LPBoost [33] algorithm is typically applied to deriving
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the combination weights of trained classifiers. LPBoost de-
termines an optimal combination weight vector by solving
a linear programming problem.

Some classical methods (i.e., random forest [17], Ad-
aBoost [34], and extreme learning machine [35]) can also
be seen as ensemble algorithms. Nevertheless, these meth-
ods train base classifiers and infer combination weights
simultaneously, which does not belong to “stacking classi-
fier ensemble”. Therefore, these methods are not directly
compared with the proposed method in the experiments

2.2 Learning with supplementary information

Supplementary information (e.g., label reliability, must-link
constraints for pairwise data, or labeled features5) is ex-
tremely useful as a supplement to standard supervised
information such as labels. Supplementary information has
been explored in many learning paradigms in previous
literature. Xing et al. [11] investigated metric learning with
user-provided supplementary information (i.e., similar and
dissimilar pairs of data points). The learned metrics were
demonstrated to be able to improve clustering performance
significantly. Wu et al. [12] utilized implicit and uncertain
supplementary information from tags and contents gener-
ated by users for automated photo tagging. Zhang et al.
[37] developed a new semi-supervised boosting framework
by utilizing the pairwise constraints between instances.
The supplementary information on pairwise constraints de-
scribes whether two instances should belong to the same
or different classes. Hu and Kwok [38] studied kernel
learning when supplementary information was presented.
Xu et al. [8] explored supplementary information, such as
demographical information and attributes of users in web
mining to expedite matrix completion and proposed a novel
multi-label learning algorithm. Zhu et al. [39] incorporated
supplementary prior information for posterior distributions
into Bayesian inference and proposed a new regularized
Bayesian inference framework. In text mining, it is feasible
for domain experts to encode knowledge among labels and
features which is referred to as labeled features [40]. Small
et al. [41] investigated the learning problems when the
importance ordering for some features has been given by
domain experts. They developed a constrained weight space
SVM to learn classifiers in the presence of ranked features.

The present study is partially inspired by the research of
Small et al. [41]. We aim to integrate supplementary infor-
mation for performance orderings (rankings) for classifiers
into the combination weight learning. However, distinct
differences exist between our study and that of Small et al.
[41]. First, our study focuses on classifier ensemble instead
of individual classifier training. Second, the supplementary
information for ranked classifiers is not explicitly provided
by users and is required to be inferred from related per-
formance results in previous literature, whereas the ranked
features are explicitly provided in the work of Small et
al. Third, because the SOI for classifiers is obtained by
inference, the corresponding constraints of these classifiers

5. A labeled feature denotes that a particular feature, for example the
word “call”, is highly indicative of a particular label, such as “contact”
[36].

transformed from the inferred SOI may be unreliable. There-
fore, the reliability of constraints must be considered in our
work. By contrast, the constraints in the work of Small et al.
are regarded as absolutely reliable6.

2.3 Optimization with soft constraints
The majority of machine learning problems are finally re-
duced to a mathematical optimization problem with con-
straints similar to those in SVM and LPBoost. Constraints
are typically derived from supervised information. For ex-
ample, in SVM, most constraints come from the ground-
truth labels in training data. Because it is difficult to satisfy
all the constraints simultaneously, slack variables are usual-
ly added. In such situation, the original (hard) constraints
become soft, thereby implying that the former can be violat-
ed with the cost of the slack variables. Moreover, supervised
or prior information in numerous practical learning prob-
lems is not absolutely reliable or correct. In this case, soft
constraints must be used. For example, the labels provided
by users may be incorrect, and the supplementary informa-
tion such as ranking among features may be unreliable. In
this instance, the corresponding constraints should be soft.
Meanwhile, some supervised or supplementary information
may be more correct or more reliable than others. In this
event, the ordering among soft constraints should be con-
sidered. Notably, the optimization problem in LPBoost im-
plicitly uses soft constraints. Nevertheless, ordering among
soft constraints is not referred to in LPBoost.

Optimization with ordered soft constraints is primarily
investigated in goal programming [42] and constraint sat-
isfaction problems [23]. Our study introduces concepts and
methods in goal programming to describe our optimization
problem to effectively embed the inferred SOI for classifiers.

2.4 Automatic learning algorithm selection
Learning algorithm selection refers to the problem of which
learning algorithm is likely to perform best for the current
learning tasks [43]. The No Free Lunch theorems [44] sug-
gest that we need to move away from a black-box approach
to algorithm selection and should understand more about
the characteristics of learning tasks in order to identify
the most appropriate algorithm. Researchers have explored
meta-learning techniques [45], learning about learning, to
predict the related performances of learning algorithms
according to features of classification data sets. Wang et al.
[19] proposed a novel multi-label learning-based method
to recommend a classification algorithm for new learning
tasks. Experiments on over 1,000 benchmark learning tasks
verified the effectiveness of their proposed method.

Studies on learning algorithm selection indicate that the
performances of learning algorithms are highly related to
the characteristics of learning tasks [19]. Intuitively, if the
characteristics of two learning tasks are highly similar, then
the relative performances for the same learning algorithm
on both tasks are assumed to be also quite similar. Therefore,
the current study selects the performance ordering informa-
tion presented in existing learning tasks to infer SOI, which
can aid the ensemble learning for new learning tasks.

6. In fact, in our point of view, the ordering for features provided by
experts may also be unreliable, particularly when the feature dimension
is high.
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Fig. 1. Overview of the proposed method for classifier ensemble learning with SOI exploration.

3 METHODOLOGIES

This section introduces the proposed new ensemble learning
method based on the considering of implicit SOI on input
trained base classifiers. We assume that H trained binary
classifiers, denoted as L1, · · · , LH , are existing and ready
to use for ensemble. For each training instance on the
validation training set, a new feature vector xi is obtained by
running the H classifiers on the corresponding raw feature
vector. Each instance is associated with a label yi. The task
is to learn a weight vector for the H classifiers based on
the new feature vectors, the raw labels, and SOI on the H
classifiers. In this work, LPBoost is used as the reference
ensemble learning algorithm.

3.1 Overview of the proposed method

This study aims to infer the SOI regarding the input trained
classifiers and then utilizes it to combine the input classifier-
s effectively. Consequently, we encounter two challenges:
inferring the SOI for classifiers, and building an ensemble
based on the inferred SOI. These two challenges are ad-
dressed by proposing a new learning method as shown in
Fig. 1. In the proposed method, the step of SOI inference
aims to generate reliable SOI based on the performance
comparison (ordering) data for input classifiers on existing
learning tasks investigated in previous studies. Meanwhile,
the step of ensemble learning intends to generate the op-
timal combination weights for the input trained classifiers
based on the ordered soft constraints (generated from SOI)
and input new training (validation) data. The following
subsections describe the details of these key steps.

3.2 Supplementary ordering information inference

There are a large number of studies in previous literature
that refer to the empirical evaluation and comparison of the
performances of different classifiers trained from various
learning algorithms. In general, the performance compar-
ison results summarize the performance orderings of dif-
ferent classifiers and those of their corresponding learning
algorithms on the specific tasks. These performance order-
ing data provide researchers or engineers with intuitive
hints and evidences for selecting the corresponding learning
algorithms when they are confronted with new learning
(classification) tasks. For example, if the performance com-
parison results presented in most previous studies indicate
that SVM is superior to decision tree in nearly all existing
learning tasks, then engineers may use SVM instead of the
decision tree to address a new classification task.

In the present work, performance ordering among clas-
sifiers based on the previous literature is adopted in an
alternative manner. In particular, the performance compari-
son data presented in the previous literature are applied to
explore the SOI for classifiers. When two learning tasks are
highly similar to each other, the performance orderings for
different classifiers on these two tasks should intuitively be
relatively consistent. Therefore, a similarity metric for two
different learning tasks should be established at the outset.

3.2.1 Metric learning for similarity measurement between
two learning tasks

The similarity between two learning (classification) tasks
can be measured based on the characteristics of each learn-
ing task. In recommendation of a learning algorithm [19],
the meta-features for the data set of a learning task are used
to describe the characteristics of the learning task. Meta-
features described in [19] are also applied in this research
and can be divided into the following categories7:
(1) Statistical and information theory-based features. This cat-

egory includes the number of features, the number of
training instances, the ratio of instances to features,
the ratio of binary features, the correlation coefficient
between features, and so on.

(2) Model structure-based features. This category uses the in-
cluded decision tree to model the data structure of the
learning task. The measures for the constructed decision
tree, including the ratio of the number of nodes to the
number of features, the ratio of the number of nodes to
the number of instances, are used as the meta-features.

(3) Landmarking-based features. This category of features is
considered based on the assumption that the perfor-
mance of the candidate algorithms could be predicted
through the performance of a set of simple learning
algorithms (also called landmarkers). The landmarkers
used in this work are Naı̈ve Bayes, 1-NN, and a decision
node learner.

(4) Problem complexity-based features. This category of fea-
tures describes the geometrical characteristics of the
training data. Typical features include Fisher’s discrim-
inant ratio, and the percentage of instances in the prob-
lem that lie next to the class boundary.

(5) Structural information-based features. This category of fea-
tures calculates the frequencies of the 1, 2-itemsets of the
training data, and then extracts the quantiles of these
frequency sequences as features.

7. The effectiveness of these categories of meta-features has been
verified by Wang et al. [19] on over 1,000 benchmark learning tasks.
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On the basis of the aforementioned meta-features, the
similarity between two learning tasks can be directly calcu-
lated using conventional similarity measurements, such as
cosine similarity. Nevertheless, these meta-features are het-
erogeneous, and dealing with them via a simple procedure
may be inappropriate. A more suitable means is to utilize
metric learning to learn a similarity metric which can assign
certain weights to the features defined above.

The similarity between two learning tasks (denoted as
tasks Ti and Tj without loss of generality) is calculated
based on the meta-features of the training data sets of these
two learning tasks. Therefore, let ῡi and ῡj denote the meta-
features of the two labeled data sets of the tasks i and j,
respectively. Let yij ∈ {−1, 1} be the similarity label of
the pair Ti, Tj . If the pair is similar, yij = 1, if the pair
is dissimilar, yij = −1. Accordingly, the measurement for
similar degree for Ti and Tj is defined as the probability of
that yij is equal to 1 given υi and ῡj . That is,

Sim(Ti, Tj) = p(yij = 1|ῡi, ῡj), (1)

The value of Sim(Ti, Tj) ranges within [0, 1] where a high
value indicates a high similarity degree.

The similarity measurement described in (1) can be
learned by first constructing a training set, which consists of
similar and dissimilar pairs of learning tasks. A similar set
can be constructed by simply collecting classification tasks
from the same or similar application domains. Nevertheless,
judging whether two tasks are dissimilar is difficult even if
they come from different application domains. Therefore,
formulating an effective training set is difficult. Inspired by
previous studies on learning with positive and unlabeled
data (LPU), this study introduces a new learning problem,
called metric learning with positive (similar) and unlabeled
data (MLPU). The learning problem is formalized as fol-
lows.

MLPU: By considering a set of M -dimensional meta-
feature vectors {ῡi}Ni=1 ∈ RM for N classification tasks
{Ti}Ni=1, and by noting that certain pairs are ”similar”, we
can construct the following similar set S:

S : (ῡi, ῡj) ∈ S if Ti and Tj are similar

How can we learn a similarity measurement function de-
fined in Eq. (1)?

Assuming η is a random binary variable. Let η = 1 if a
pair of learning tasks is labeled, and let η = 0 if a pair is
unlabeled. Only positive pairs are labeled; hence, yij = 1 is
certain when η = 1. However, when yij = −1, either η = 1
or η = 0 may be true.

A fixed unknown distribution p(ῡi, ῡj , yij , η) can be
observed over the involved variables. The training set of
MLPU is a sample drawn from this distribution that consists
of labeled samples < ῡi, ῡj , η = 1 > and unlabeled samples
< ῡi, ῡj , η = 0 >. The fact that only positive samples are
labeled can be precisely described by the following equation

p(η = 1|ῡi, ῡj , yij = −1) = 0. (2)

By following the work of previous studies on LPU [22],
we primarily assume that the labeled positive examples are

completely selected in a random manner from all positive
examples. Such an assumption is expressed as follows:

p(η = 1|ῡi, ῡj , yij = 1) = p(η = 1|yij = 1). (3)

Let π = p(η = 1|yij = 1) be the probability that a
positive example pair is labeled. The value of π is constant
according to Eq. (3). With the above assumption, the follow-
ing lemma is established in LPU.

Lemma 1 [22]: Suppose that the “selected completely at
random assumption” holds. Then

p(y = 1|ῡi, ῡj) = p(η = 1|ῡi, ῡj)/π. (4)

Therefore, the calculation of Sim(Ti, Tj) relies on the
values of p(η = 1|ῡi, ῡj) and π. To estimate p(η = 1|ῡi, ῡj),
we can construct a new training set based on the MLPU
training set. Then for the example pairs in S, the label η = 1;
otherwise, the label η = 0. According to [46], p(η = 1|ῡi, ῡj)
is expressed based on the logistic function as follows:

p(η = 1|ῡi, ῡj) =
1

1 + exp(−||ῡi − ῡj ||2A + μ)
,

where μ is the threshold, A is a diagonal and nonnegative
matrix, and

||ῡi − ῡj ||2A = (ῡi − ῡj)
T A(ῡi − ῡj), (5)

Based on the new MLPU training set and on the
above definitions, the overall log likelihood for all simi-
lar/unlabeled pairs is as follows:

L(A, μ) = − ∑
(ῡi,ῡj)∈S

log(1 + exp(−||ῡi − ῡj ||2A + μ))

− ∑
(ῡk,ῡl)/∈S

log(1 + exp(||ῡk − ῡl||2A − μ)).

(6)
Meanwhile, based on the maximum likelihood estima-

tion, the pursuance of variables A and μ is casted into the
following optimization problem:

minL(A, μ)

s.t. A � 0, μ ≥ 0
, (7)

where the constraint A � 0 indicates that A is a positive
semi-definitive matrix.

To solve the above problem, we define M = 1
N

N∑
i=1

ῡiῡ
T
i .

Let v1, · · · ,vK be the top K eigenvectors of matrix M. We
then assume A is a linear combination of the top K eigen-
vectors

A =
K∑
i=1

γiviv
T
i ,γi ≥ 0, i = 1, ...,K. (8)

The above optimization problem is simplified into the
following form according to the procedures in [47]:

min
γi,μ

L(A, μ)

s.t. A =
K∑
i=1

γiviv
T
i ,

μ ≥ 0,

γi ≥ 0

i = 1, · · · ,K

. (9)
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Such an optimization problem is a convex programming
problem; thus, it can be solved by directly using Newton’s
method. If A is obtained, Sim(Ti, Tj) defined in Eq. (1) is
calculated as follows:

Sim(Ti, Tj) =
1

[1+exp(−||ῡi−ῡj ||2A+μ)]×π

∼ 1
[1+exp(−||ῡi−ῡj ||2A+μ)]

, (10)

where π can be omitted as it is constant.

3.2.2 Supplementary ordering information inference based
on learned similarity measurement
Given two learning algorithms for classification, we gen-
erally have historical comparison data regarding the per-
formances of their trained classifiers on various existing
learning tasks from different application domains which
can be found in the previous literature. In particular, we
assume that two classifiers that denote L1 and L2, which are
trained by two different learning algorithms, are available.
The performance comparison data for the two classifiers on
the G existing learning tasks T1, T2, · · · , TG should exhibit
the form listed in Table 1:

TABLE 1
The performance comparison data for classifiers L1 and L2

Classification task T1: L1 � L2 (L1 outperforms L2)

Classification task T2: L1 ≺ L2 (L2 outperforms L1)

· · ·
Classification task TG: L1 � L2 (L1 outperforms L2)

The above historical comparison data can be used to esti-
mate the reliability of ordering between L1 and L2 on a new
classification task Tu. Given the performance comparison
data in Table 1 and the learned similarity metric Sim(, ), the
reliability degree (Q) of that L1 outperforms L2 on the task
Tu is defined as follows:

Q(L1 � L2 : Tu)
= 1∑G

g=1
Sim(Tu,Tg)

× [
∑

Ti:L1�L2

Sim(Tu, Ti)

− ∑
Tj :L1≺L2

Sim(Tu, Tj))]
, (11)

where Sim(, ) is calculated according to Eq. (10).
The value of Q(L1 � L2 : Tu) ranges within [0, 1]. When

the value is high, L1 is inclined to outperform L2 on the
new classification task based on performance ordering data
for the existing learning tasks reported in the previous liter-
ature. According to Eq. (11), if L1 outperforms L2 in all pre-
vious classification tasks8, then Q(L1 � L2 : Tu) = 1, and
vice versa. In addition, assume that Q(L1 � L2 : Tu) = 0.6
and Q(L3 � L4 : Tu) = 0.9, then the inferred ordering
L3 � L4 is more reliable than L1 � L2.

For each pair of classifiers Li and Lj , we can estimate
the ordering relationships by calculating Q(Li � Lj : Tu)
on the new classification task Tu. In the next section, these

8. If the comparison results on some classification tasks are not given,
the calculation can still be performed with a slight modification that the
denominator only sums the involved tasks.

estimated ordering relationships are used in the concrete
ensemble learning for the optimal combination weights of
input trained classifiers.

To learn a similarity metric between two data sets, a
training corpus that consists of similar pairs of data sets and
unlabeled data sets should be constructed. The similar pairs
of data sets and unlabeled data sets used in this study are
constructed as follows. The 121 data sets compiled based
on the UCI machine learning repository9 used in [48] are
introduced as the basic data sets. Based on these basic data
sets, a set of new training data is established for MLPU.
For the similar data set, the data pairs are selected based
on the following procedures. A total of 36 pairs of data
sets, each of which come from exactly the same application
domain, are considered similar. Each of the 121 data sets
is processed with the feature reduction technique principal
component analysis [49] and a new data set is obtained. The
original and new corresponding data sets are considered as
a pair of similar data sets. A total of 157 similar pairs of
data sets are then obtained. For the unlabeled data pairs,
the six adjacent data sets for each of the 121 data sets, which
are from different application domains, listed in [48], are
selected with the data set to generate six unlabeled pairs
of data sets. In total, there are 726 unlabeled pairs of data
sets. All the aforementioned data are used to learn a new
similarity measurement based on the proposed algorithm.

3.3 Ensemble with inferred SOI
Given an ensemble training (or validation) set and a set
of trained classifiers for ensemble, the optimal combination
weights of the trained classifiers can be pursued with exist-
ing learning algorithms such as LPBoost [33]. Generally, the
original LPBoost without introducing slack variables can be
formalized as follows:

min
ρ,β

− ρ

s.t. ynβ
Txn ≥ ρ n = 1, · · · , N

H∑
h=1

β(h) = 1,β(h) ≥ 0

, (12)

where β indicates the combination weights for the H input
trained classifiers.

The first family of constraints in Eq. (12) is hard. When
all of these constraints are satisfied, all the training data
are correctly classified by the corresponding solution. As
described in the previous subsection, we are able to obtain
some orderings between the input classifiers for ensemble.
If Q(Li � Lj : Tu) > 0, then the historical comparison
data indicate that Li outperforms Lj in the current clas-
sification task, and vise versa. Intuitively, this SOI (Q) for
two classifiers can be transformed into the ordering for their
combination weights according to the following form:

if Q(Li � Lj : Tu) > 0 then β(i) > β(j). (13)

where β(i) and β(j) are the combination weights of the
classifiers Li and Lj , respectively. Eq. (13) signifies that if the
classifier Li is expected to be superior to Lj , its combination
weight should be larger than that of Lj . This intuition is

9. http://mlr.cs.umass.edu/ml/index.html
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similar in spirit with the assumption in [41], that is, if
one feature is judged by a human expert to be better than
another, its weight should be larger. However, this intuitive
consideration encounters the following issues:
(1) In this study, the reliability degree of the estimated or-

dering Li � Lj in Eq. (13) has no theoretical guarantees,
and may be inaccurate or even wrong10. In this case, the
concluded ordering β(i) > β(j) in Eq. (13) is not highly
significant. Therefore, the reliability issue must not be
ignored.

(2) Even if the estimated ordering (i.e., Li � Lj) in Eq. (13)
is correct, the concluded ordering (i.e., β(i) > β(j)) may
also be insignificant because the SOI only considers the
relationships between two classifiers. Another classifier
such as L3 may indicate that the combination of L2 and
L3 can achieve good results. In this case, β(1) becomes
zero and the conclusion that β(1) > β(2) becomes
insignificant.

(3) Even if the inference in Eq. (13) is correct, the absolute
value of Q(Li � Lj : Tu) indicates the reliability of the
conclusion. For example, Q(Li � Lj : Tu) = 0.51 and
Q(Li � Lj : Tu) = 0.99 are different. The concluded
ordering (β(i) > β(j)) obtained by the latter value is
more reliable.
The utilization of the SOI obtained by using Eq. (13)

should not ignore the above three problems. To this end,
the obtained supplementary orderings among combination
weights in this study are treated as soft constraints which
can be violated. That is, the optimal combination weights
should first satisfy the hard constraints in (13). After all
the hard constraints are satisfied, the optimal combination
weights that satisfy the soft constraints are selected as the
final weights. Moreover, the soft constraints are ordered
such that the satisfaction of the constraints corresponding
to larger Q values should be prioritized. The utilization of
the ordered soft constraints can address the three aforemen-
tioned issues. First, if the estimated ordering is inaccurate or
insignificant, the optimal combination weights can violate
the corresponding inaccurate soft constraint. Second, the
soft constraints that correspond to different Q values are
dealt with in orders according to the Q values. In summary,
the optimization problem can be summarized as follows:

min
ρ,β

− ρ

s.t. ynβ
Txn ≥ ρ n = 1, · · · , N (hard constraints)

β(i) > β(j), if Q(Li�Lj :Tu)

· · ·
β(k) > β(l), if Q(Lk�Ll:Tu)

⎫⎪⎪⎬
⎪⎪⎭

(ordered soft

constraints

according to

Q)

i, j, k, l ∈ [1, H]
H∑

h=1

β(h) = 1,β(h) ≥ 0

,

(14)

10. In fact, the estimated ordering for features in [41] may also be
inaccurate. The estimation accuracy depends on the expertise degree
of human expertise and the complexity of the relationships among
features.

where H is the number of classifiers in the ensemble. In the
above optimization problem, the soft constraints are ordered
according to their corresponding supplementary ordering
values (i.e., Q). Therefore, assuming that Q(Li � Lj : Tu) >
Q(Lk � Ll : Tu) in (14), the soft constraint that β(i) > β(j)
is ordered higher than that β(k) > β(l).

In practice, the hard constraints in (14) are also difficult
to be satisfied11. These constraints can also be relaxed as
soft constraints12 if the ordering degrees indicate that the
relaxed soft constraints are significantly higher than the
current soft constraints. We solve this problem by adopting
the goal programming technique. The solving details are
introduced in Appendix A. Comparing (12) with (14), the
main difference between LPBoost and our method lies in
that the optimization problem in our method considers new
soft constraints which are inferred based on the SOI for the
base classifiers to ensemble.

ALGORITHM 1: EnsemSP
Input: Validation data for the classification task Tu; a set of

trained classifiers {Lh}, h = 1, · · · , H ; multiple labeled data
sets from different learning tasks {Tg}, g = 1, · · · , G and
their meta-features; the performance data of different
learning algorithms reported in the previous literature;
learned similarity measurement function fsim; parameters
λ1 and λ2.

Output: Optimal combination weights β.

Steps:

1. Extract the meta-feature of Tu described in Section 3.2.1;

2. Calculate the similarities (i.e., Sim(, )) using Eq. (10)
between the validation set Tu and the historical data sets
from the learning tasks {Tg}, g = 1, · · · , G based on their
meta-features;

3. Infer the supplementary ordering relationships and the
reliability degree between each pair of the trained classifiers
in {Lh}, h = 1, · · · , H using Eq. (11) based on the calculated
similarities and historical comparison results on {Tg},
g = 1, · · · , G;

4. Run the trained classifiers {Lh}, h = 1, · · · , H on the
validation data for Tu. The scores of all the trained classifiers
on each validation instance are consisting of a new feature
vector for the validation instance. A new training set for the
successive classifier combination weights can then be
obtained;

5. Construct the optimization problem (14) for classifier
combination weights based on the new training set and the
inferred the supplementary ordering relationships and the
reliability degrees;

6. Solve the optimization problem (14) to produce the optimal
ensemble weights β.

11. Furthermore, if all the hard constraints are satisfied, the general-
ization ability of the obtained ensemble weights may be low.

12. In fact, we will show that the introduction of slack variables is
essentially to take the hard constraints to soft in the Appendix A.
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3.4 Steps
The entire process of classifier ensemble learning with
supplementary ordering information is called EnsemSP for
brevity. The primary steps for applying EnsemSP are sum-
marized in Algorithm 1.

3.5 Computational complexity
The computational complexity of the proposed algorithm
depends on two parts. The first part is the meta-feature
extraction for training data, and the second part is solving
the optimization problem, that is, Eq. (14). Meta-feature
extraction follows the features used in the work of Wang
et al. [19]. In this work, the meta-feature extraction process
for each experimental data set (including both Tg and Tu

in Algorithm 1) does not exceed 10 seconds on a computer
with Intel Core i7-2600 CPU 3.4GHz and 8G RAM. For linear
programming, computational complexity is subject to the
number of variables (i.e., H+1). The value of H is generally
small (5 in this study) for classifier ensemble, and thus, the
time consumption is low in our experiments. Overall, the
computational complexity of EnsemSP is larger than that
of LPBoost. Nevertheless, the computational complexity of
EnsemSP is acceptable because meta-feature extraction is
performed only once for each data set in {Tg} for different
tasks Tus in Algorithm 1.

4 EXPERIMENTS

In this section, experiments are performed to verify the
effectiveness of the proposed method, i.e., EnsemSP. Given
that there is little work that investigates ensemble learn-
ing with supplementary information in previous literature,
existing classical ensemble methods13 will be used as the
competing methods.

4.1 Experimental data
Running the proposed method requires two data corpora.
The first data corpus consists of three parts. The first part
(called training set directly) is used to train a set of base
classifiers for the ensemble. The second part (called vali-
dation set14) is used for ensemble learning to achieve the
optimal combination weights for the trained base classifiers.
The third part (called test set) is used to evaluate the
performances of the competing ensemble methods. Mean-
while, the second data corpus comprises numerous data sets
and associated historical performance comparison data for
the classifiers’ corresponding learning algorithms on these
data sets. Ferńndez-Delgado et al. [48] conducted exten-
sive investigations to compare various classical learning
algorithms (e.g., random forest, support vector machine,
AdaBoost, etc.) across 121 UCI data sets. Accordingly, in the
experiments, the involved 121 UCI data sets and reported
performance data from [48] are used as the {Tg} set and

13. Some classical methods (e.g., UDEED [50] and consensus maxi-
mization [30]) are not included because these methods run in different
ensemble settings.

14. To avoid overfitting, the validation data used for ensemble learn-
ing should be excluded from the training data for base learners [14].
This strategy is adopted in our experiments. The data used in the first
and second parts are different.

the historical performance ordering data in Algorithm 1,
respectively.

In the present research, 17 data sets are used to construct
the first data corpus. Only binary classification is performed
in the experiments. Therefore, new data sets are compiled
based on the raw data sets for those with more than two
categories. For example, two new sets (i.e., yeast01 and
yeast23) are constructed by choosing data from the “0” and
“1” categories and data from the “2” and “3” categories,
respectively. Table 2 shows the details of the involved data
sets. The former 13 data sets are obtained from the UCI Ma-
chine Learning Repository15. The ImageAes data set consists
of photos and their ‘high’/‘low’ aesthetic labels16 which can
be obtained from http://ritendra.weebly.com/aesthetics-
datasets.html (the good ol’ data set). The rest three sets
are obtained from LibSVM data17. Considering that both
the evaluation data and the historical comparison data are
mainly obtained from the UCI repository, when a UCI data
set is used for evaluation, its associated historical perfor-
mance comparison data are excluded from the historical
comparison data corpus.

TABLE 2
The details of the involved seventeen data sets.

Data set No. of instances No. of features

heat 270 13
mfeat1 400 573
mfeat2 400 573
mfeat3 400 573
mfeat4 400 573
biodeg 1055 41

germannoise 1000 24
hillvalleynoise 1212 100

hillvalleynonoise 1212 100
thyroidnoise 215 5

winered 1599 11
Yeast01 892 8
Yeast23 407 8

ImageAes 3581 58
splice 3175 60
gisette 7000 5000

svmguide3 1284 21

4.2 Basic learning algorithms and competing ensem-
ble methods
In our experiments, five basic learning algorithms (or base
learners) are used for training classifiers: support vector
machines (SVM), random forest (RF) [17], AdaBoost [34],
C4.5 decision tree (C4.5) [51], and logistic regression (LR)
[16]. Four competing ensemble methods are considered,
i.e., majority voting (Voting), weigted voting (wVoting),
LPBoost, and EnsemSP. The parameter settings of all the
involved algorithms and methods are introduced in the next
subsection.

15. http://archive.ics.uci.edu/ml/datasets.html
16. The ‘high’/‘low’ aesthetic label of a photo is generated according

to its associated average user score. In the experiments, an average
score larger than five is transformed into the ‘high’ aesthetic label.

17. https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
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The relationships among the involved experimental
training data, base learners, and ensemble methods are
shown in Table 3.

4.3 Ensemble results
In the first experiments, the parameter settings of the five
basic learning algorithms are as follows. For SVM, the radial
basis kernel is chosen. The parameters C and g are fixed
with 1 and 0.1, respectively. For RF, the number of trees is
fixed as 50, and other parameters are default. For AdaBoost,
the number of basic learners is fixed as 50, and other
parameters are default. For C4.5 decision tree, the pruning
confidence threshold is set as 0.25. For LR, the codes in
MATLAB are used, and all the parameters are default. The
parameter settings of LPBoost and EnsemSP18 are defined
as follows. The parameter λ1 (please see (16) in Appendix
A) is searched via 5-fold cross validation in {0.1, 1, 10, 50,
100} and for each value of λ1, the parameter λ2 is searched
in {0, λ1/10, λ1/5, λ1/2, λ1}. When λ2 equals 0, EnsemSP
is reduced to LPBoost. The weighted setting for wVoting
follows the strategy proposed by Wang et al. [52].

Given a data set, to perform EnsemSP, the similarity
between the data set and each of 121 UCI data sets is
calculated according to Step 2 in Algorithm 1. Then the
supplementary ordering relationships as well as reliability
degrees between each pair of the five basic learning algo-
rithms are inferred according to Step 3 in Algorithm 1. The
inferred supplementary ordering relationships as well as
reliability degrees are transformed into soft constrains as
shown in Eq. (14).

In the experiment, the parameters of basic classifiers are
tuned on training data. For SVM, the parameters C and g
are searched via five-fold cross validation from {0.1, 1, 5,
10, 100} and {0.01, 0.1, 1, 5, 10}, respectively. For RF, the
number of trees is searched via five-fold cross validation
from {10, 20, 50, 100, 200, 500}. For AdaBoost, the number
of basic learners is searched via five-fold cross validation
from {10, 20, 50, 100, 200}. For C4.5, the pruning confidence
threshold is searched via five-fold cross validation from
{0.15, 0.2, 0.25, 0.3, 0.35}. Table 4 lists the classification
accuracies of the three competing ensemble methods on 17
data sets. On most data sets, Voting achieves the lowest
classification accuracies. Meanwhile, LPBoost also produces
inferior results than EnsemSP.

In Section 3.1, we learn the similarity measurement func-
tion for the meta-features19 of the data sets between two
learning tasks. We further investigate whether the learned
similarity measurement function is useful by comparing
three ensemble methods, namely, EnsemSP-D (EnsemSP
that does not consider the similarities between the histor-
ical and the current data sets), EnsemSP-C (EnsemSP that
uses cosine similarities), and EnsemSP (uses the learned
similarity metrics). In EnsemSP-D, the similarities between
historical data sets and the current data set are not used;
thus the ordering relationships among the input classifiers

18. In the performing of EnsemSP, the similarity measurement is
used to infer supplementary ordering which is transformed into soft
constraints in Eq. (14). The detailed steps are described in Algorithm 1.

19. We appreciate Dr. Guangtao Wang for providing us the source
codes (http://gr.xjtu.edu.cn/web/qbsong/8) of meta-feature extrac-
tion described in [19].

are nearly the same. In other words, in EnsemSP-D, the
meta-features are not used; in EnsemSP-C, the meta-features
are used but MLPU is not used; in EnsemSP, both the meta-
features and MLPU are used. Table 5 presents the classifica-
tion accuracies of the three competing ensemble methods on
the used seventeen data sets. In most data sets, EnsemSP-
D achieves the lowest classification accuracies. EnsemSP,
which utilizes the learned similarity metric, outperforms
both EnsemSP-D and EnsemSP-C in most data sets. The
results verify that both the used meta-features and learned
similarity metric are useful.

TABLE 5
The classification accuracies of three versions of EnsemSP.

Data set EnsemSP-D EnsemSP-C EnsemSP

heat 0.808 0.816 0.828
mfeat1 0.968 0.989 0.996
mfeat2 0.957 0.972 0.979
mfeat3 0.983 0.999 0.999
mfeat4 0.989 0.994 0.997
biodeg 0.8502 0.8563 0.8740

germannoise 0.7497 0.7475 0.7699
hillvalleynoise 0.5393 0.5526 0.5688

hillvalleynonoise 0.5241 0.5076 0.5394
thyroidnoise 0.965 0.971 0.968

winered 0.7794 0.7628 0.7771
Yeast01 0.675 0.634 0.686
Yeast23 0.911 0.917 0.923

ImageAes 0.6883 0.6931 0.6912
splice 0.9087 0.9203 0.9285
gisette 0.9786 0.9753 0.9806

svmguide3 0.9108 0.9217 0.9320

The robustness of the EnsemSP method is further inves-
tigated by adding noisy labels into the involved validation
data sets and by performing new comparisons. For each
validation data20, that labels of n% (n = 10, 20, 30, 40, 50)
samples are flipped. The voting algorithm is not referred
to in this comparison because it does not require valida-
tion data. Figure 221 shows the variations of classification
accuracies of the ensemble learning methods in terms of
n% noisy labels. The performance of LPBoost decreases
dramatically with the increasing proportion of noisy labels
in Figs. 2(b), 2(c), 2(d), 2(e), 2(h), and 2(j). By contrast, the
performance of EnsemSP slightly decreases on most data
sets. We also investigate the performances of the competing
methods when the label-flapping proportions of both the
training and validation sets are set as 30%. The results are
shown in Table 6. The performances of all the competing
methods are reduced. Nevertheless, EnsemSP still achieves
the highest accuracy in most data sets.

To further verify the effectiveness of EnsemSP when
the inferred SOI is useless or even wrong, all the inferred
orderings are reversed when applying EnsemSP, which is
called EnsemSP-reverse. The experimental results show that

20. The competing ensemble methods are performed on validation
data, while base classifiers are trained on training data.

21. The performances of the competing methods on both the hillval-
leynoise and hillvalleynonoise data are poor and only slightly better
than 0.5, so these two data sets are unexplored in this experiment.
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Fig. 2. The variation of classification accuracies in terms of the proportions of noisy labels on validation data.
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TABLE 3
The used experimental training data for the involved methods.

Data parts
Base learners

(SVM, RF, AdaBoost, C4.5, and LR)
Voting LPBoost EnsemSP

The first part
(training data)

Used Not used Not used Not used

The second part
(validation data)

Not used Not used Used Used

TABLE 4
The classification accuracies of the competing ensemble methods when the parameters of the five basic learning

algorithms are searched via cross validation.

Data set RF Voting wVoting LPBoost EnsemSP

Heat 0.787 0.784 0.773 0.763 0.828
mfeat1 0.879 0.737 0.976 0.985 0.996
mfeat2 0.947 0.953 0.963 0.979 0.979
mfeat3 0.982 0.985 0.968 0.999 0.999
mfeat4 0.735 0.583 0.954 0.990 0.997
biodeg 0.8770 0.8513 0.8926 0.8511 0.8740

germannoise 0.7198 0.7551 0.7554 0.7660 0.7699
hillvalleynoise 0.5201 0.5660 0.5648 0.5660 0.5688

hillvalleynonoise 0.5131 0.4991 0.5185 0.5017 0.5394
thyroidnoise 0.946 0.940 0.959 0.968 0.968

winered 0.7453 0.7693 0.7652 0.7553 0.7771
Yeast01 0.631 0.662 0.662 0.677 0.686
Yeast23 0. 882 0.916 0.918 0.917 0.923

ImageAes 0.6748 0.6693 0.6765 0.6858 0.6912
splice 0.8514 0.9075 0.9328 0.9272 0.9285
gisette 0.9671 0.9707 0.9768 0.9685 0.9806

svmguide3 0.8892 0.8943 0.9007 0.9204 0.9320

TABLE 6
The classification accuracies of the competing ensemble
methods when the label-flapping proportions of both the

training and validation sets are set as 30%.

Data set RF Voting wVoting LPBoost EnsemSP

heat 0.603 0.634 0.626 0.707 0.762
mfeat1 0.577 0.618 0.651 0.572 0.843
mfeat2 0.845 0.909 0.918 0.584 0.799
mfeat3 0.876 0.902 0.896 0.761 0.851
mfeat4 0.699 0.493 0.572 0.650 0.827
biodeg 0.764 0.7526 0.7675 0.7825 0.7910

germannoise 0.6613 0.6571 0.6624 0.6623 0.6852
thyroidnoise 0.861 0.876 0.906 0.917 0.917

winered 0.6963 0.7016 0.7036 0.6846 0.7449
Yeast01 0.591 0.602 0.625 0.585 0.641
Yeast23 0.842 0.831 0.833 0.812 0.896

ImageAes 0.6042 0.6121 0.6118 0.6011 0.6570
splice 0.6934 0.7583 0.7680 0.7144 0.7856
gisette 0.9255 0.9418 0.9541 0.8528 0.9135

svmguide3 0.8287 0.8253 0.8314 0.7760 0.8337

the performance of EnsemSP-reverse is equal to that of
LPBoost because when the searched optimal value of the
parameter λ2 in EnsemSP-reverse is zero in the experiments,
EnsemSP-reverse (and EnsemSP) is reduced to LPBoost.

4.4 Discussions
The above experimental results validate the effectiveness
of the proposed EnsemSP. On most experimental data sets,
EnsemSP outperforms the classical ensemble methods (ma-
jority voting and LPBoost). The learned similarity metric
is useful in EnsemSP. Based on the learned similarity mea-
surement function, the classification accuracies of EnsemSP
are higher than those of the method without similarity
measurement and the method by using a simple cosine sim-
ilarity measurement on most data sets. Moreover, EnsemSP
is determined to be robust even under varying parameter
settings. EnsemSP is superior to LPBoost even when the
labels are noisy.

Ensemble learning with SOI has been initially explored;
hence, there are certain limitations of the proposed method.
For example, the SOI is inferred only for pairwise classifiers.
As previous studies may simultaneously record the perfor-
mances of triple classifiers, SOI may be inferred for some
triple classifiers. In addition, only the performance ordering
information in previous literature is used. However, the
extent that one classifier is better than another classifier is
not used.

5 CONCLUSIONS

In various machine learning techniques, supplementary in-
formation is achievable and has been utilized to improve
learning performances. This study explores the implicit SOI
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for a set of trained classifiers to improve learning for the
ensemble of the trained classifiers. Our study confronts two
challenges, namely, the similarity measurement between
two learning (classification) tasks and the pursuance of the
optimal combination weights with the estimated SOI for
classifiers to ensemble. To address these two challenges,
a new learning method called EnsemSP is proposed. In
EnsemSP, a new metric learning problem, namely, MLPU,
is presented and solved. The learned measurement func-
tion can measure the similarity between two learning tasks
according to the meta-features of their corresponding data
sets. For the second challenge, the SOI is transformed into a
set of ordered soft constraints for the classifiers to ensemble.
Inspired by goal programming, this study establishes a new
optimization problem. Solving this problem can yield the
optimal ensemble weights. The experimental results verify
the effectiveness of the proposed method.

In this study, SOI is only for pairwise classifiers. In the
future, SOI for triple classifiers will be explored. In addition,
further investigation will be conducted on mining the his-
torical performance data for existing learning algorithms to
benefit for the new learning algorithm design.

APPENDIX A: THE SOLVING DETAILS OF (14)

Given a soft constraint (e.g., f(x) ≥ t), goal programming
introduces two additional variables, namely, negative devi-
ation (φ) and positive deviation (ω). A soft constraint is then
transformed into the following form:

f(x) + φ− ω = t. (15)

The variable φ quantifies the under-satisfaction of the con-
straint and ω quantifies the over-satisfaction of the con-
straint. If φ > 0, then ω = 0 and the constraint is not
satisfied; if ω > 0, then φ = 0 and the constraint is satisfied.
In general, the constraint is particularly satisfied if the value
of φ is low. By introducing negative and positive derivations
into (15), it can be transformed into the following form:

min
ρ,φn,φr+N ,β

− ρ+ λ1

N

∑
n
φn + λ2

R

∑
r
Qr · φr+N

s.t. ynβ
Txn + φn−ωn = ρ n = 1, · · · , N

β(i)− β(j) + φ1+N − ω1+N = 0 i, j ∈ [1, H]

· · ·
β(k)− β(l) + φR+N − ωR+N = 0 k, l ∈ [1, H]
H∑

h=1

β(h) = 1,β(h) ≥ 0

φi ≥ 0 ωi ≥ 0 i = 1, · · · , N +R

,

(16)
where λ1 and λ2 are the balance parameters that indicate the
strength of the corresponding soft constraints; Qr indicates
the reliability degree of the rth soft constraint; φr+N is the
variable that quantifies the under-satisfaction of the rth soft
constraint. In this work, we set that the value of λ2 is smaller
than that of λ1. The above problem can be solved with
conventional mathematical optimization methods such as
preconditioned conjugate gradients.
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