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Abstract

We consider a minimization model with total variational regularization, which can be reformulated
as a saddle-point problem and then be efficiently solved by the primal-dual method. We utilize the
consistent finite element method to discretize the saddle-point reformulation; thus possible jumps of the
solution can be captured over some adaptive meshes and a generic domain can be easily treated. Our
emphasis is analyzing the convergence of a more general primal-dual scheme with a combination factor
for the discretized model. We establish the global convergence and derive the worst-case convergence
rate measured by the iteration complexity for this general primal-dual scheme. This analysis is new in the
finite element context for the minimization model with total variational regularization under discussion.
Furthermore, we propose a prediction-correction scheme based on the general primal-dual scheme, which
can significantly relax the step size for the discretization in the time direction. Its global convergence and
the worst-case convergence rate are also established. Some preliminary numerical results are reported to
verify the rationale of considering the general primal-dual scheme and the primal-dual-based prediction-
correction scheme.

Keywords: Total variation minimization, saddle-point problem, finite element method, primal-dual
method, convergence rate.

1 Introduction

We consider the total variation (TV) minimization model in [51]:

inf
u

{
E(u) := ‖Du‖+

α

2
‖u− g‖2L2(Ω)

}
, (1.1)

where E : BV (Ω) → R with a bounded Lipschitz domain Ω ⊂ R2 is an energy functional, g ∈ L2(Ω)
is a given function, α > 0 is a parameter, BV (Ω) is the bounded variation space consists of all functions
v ∈ L1(Ω) satisfying ‖Dv‖ < +∞, and ‖Dv‖ denotes the TV norm defined by

‖Dv‖ := sup
{∫

Ω
v divϕ dx : ϕ ∈ C1

c (Ω;R2), ‖ϕ‖∞ ≤ 1
}
. (1.2)

In (1.2), ‖ϕ‖∞ = supx∈Ω(
∑2

i=1 |ϕi(x)|2)1/2, “Dv” represents the gradient of v in the distributional sense,
“div” denotes the divergence operator, and C1

c (Ω;R2) is the set of once continuously differentiable R2-
valued functions with compact support in Ω. The BV (Ω) space endowed with norm ‖v‖BV := ‖v‖L1(Ω) +
‖Dv‖ is a Banach space. We refer the reader to, e.g., [3, 6, 7, 58], for more details. For the term ‖u−g‖2L2(Ω)
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in (1.1), it is well defined because the space BV (Ω) is continuously embedded into L2(Ω) for Ω ⊂ R2, see,
e.g., Theorem 10.1.3 in [6]. Note that the model (1.1) has a unique solution in BV (Ω) because of the strict
convexity of the quadratic term of the energy functional E(u). As well studied in the literature, the TV
regularization is capable of well preserving sharp edges of digital images or functions with the piecewise-
smooth structure; and it has found a variety of applications in areas such as image restoration [17, 22, 27],
optimal control and inverse problems [1, 23, 50], and parameter identification in partial differential equations
[21, 24, 26, 40]. For other applications of the model (1.1), we refer to, e.g., geometric measure theory [11],
and image denoising or function regularization [17, 25, 51, 53].

To find a numerical solution for (1.1), we can consider its formal Euler-Lagrange equation

− div
( ∇u
|∇u|

)
+ α(u− g) = 0, (1.3)

where ∇u is the gradient of u in L1(Ω), and | · | denotes the Euclidean norm in R2. In the literature, there
are various numerical schemes that are applicable to (1.3) or its regularized equation with homogeneous
Neumann boundary condition. For instance, the time marching scheme in [51], the linear semi-implicit
fixed-point method in [20, 28, 54], the interior-point primal-dual implicit quadratic methods in [22] and
some others in [7, 16, 19, 55]. Furthermore, we can consider the L2 gradient flow of the model (1.1) and its
regularized problem constructed by evolving the Euler-Lagrange equation:

∂tu− div
( ∇u
|∇u|

)
+ α(u− g) = 0 (1.4)

with Neumann boundary condition and initial data from the theoretical and computational aspects. In (1.4),
“∂t” means the time partial derivative. We refer to, e.g., [4, 10, 29, 33, 34, 41, 42, 51, 52], for more discus-
sions for (1.4). In particular, based on the methods in [8, 18], an algorithm for (1.4) with α = 0 was studied
in [10].

Replacing the term ∇u
|∇u| in (1.4) by a new variable p, we consider

∂tu− divp+ α(u− g) = 0, p ∈ ∂|∇u|, (1.5)

supplemented by Neumann boundary conditions, where ∂(| · |) denotes the subdifferential of the absolute
value function | · |. Indeed, (1.5) is the L2 gradient flow of the energy functional E(u). As indicated in [8],
by the equivalence

p ∈ ∂|∇u| ⇔ ∇u ∈ ∂IB(p),

where B = {p ∈ L1(Ω;R2) : ‖p‖∞ ≤ 1} and IB(·) denotes its indicator function, it motivates us to
consider the following system of evolution equations:

∂tu− divp+ α(u− g) = 0, −σ∂tp+∇u ∈ ∂IB(p) (1.6)

with a parameter σ > 0 as the scale for ∇u. Note that the system (1.6) can also be regarded as the simulta-
neous gradient flow for the saddle-point formulation of the model (1.1)

inf
u
E(u) = inf

u
sup
p

{
E(u, p) :=

α

2
‖u− g‖2L2(Ω) −

∫
Ω
u divp dx− IB(p)

}
. (1.7)

We call (1.7) a saddle-point problem because it aims at finding a solution point that minimizes the functional
E(u, p) in the u-direction and meanwhile maximizes the same functional in the p-direction. We refer to, e.g.,
[5], for more backgrounds and a fundamental work of saddle-point problems.

Different from most of the existing work using finite difference discretization, we utilize the finite el-
ement method as in [8, 9] to discretize the saddle-point reformulation (1.7) so that a generic domain Ω in
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(1.1) can be easily treated by finite element meshes and local effects of the solution of (1.1) such as possible
jumps inside the domain Ω can be captured over some adaptive meshes. Furthermore, the solution point of
(1.1) can be easily represented in an appropriate finite element space belonging to BV (Ω). Note that the
solution point of the finite-element-discretized model can be guaranteed to be unique if proper finite element
spaces belonging to BV (Ω) are chosen; and the error estimate for using the finite element discretization can
be easily derived. Indeed, only some low order polynomials will be chosen for the finite element spaces
because of the low regularity of the functions in the spaces BV (Ω) and L1(Ω). As mentioned in [8], the
piecewise constant and piecewise affine globally continuous finite element spaces are dense in BV (Ω) with
respect to weak* convergence in BV (Ω). In addition, it was demonstrated in [8] that in gernal the piecewise
constant finite element approximation for u cannot be expected to converge to an exact solution. Thus, the
following finite element spaces{

S1(Th) = {vh ∈ C(Ω̄) : vh|T is affine for each T ∈ Th},
L0(Th) = {qh ∈ L1(Ω) : qh|T is constant for each T ∈ Th},

are built in [8] to approximate the functions u and p in (1.7), respectively, where Ω̄ = Ω ∪ ∂Ω with ∂Ω
being the boundary of the domain Ω , Th denotes as a regular triangulation of Ω into triangles and h =
maxT∈Th diam(T ) as the maximal diameter. Furthermore, in [8], the L2 scalar product to equip L0(Th)2,
i.e., a space of piecewise constant vector fields, is based on the identity

‖Duh‖ = sup
ph∈L0(Th)2,‖ph‖∞≤1

∫
Ω
∇uh · ph dx.

Then, the TV minimization model (1.1) with finite element approximation can be reformulated as the fol-
lowing saddle-point problem:

inf
uh
E(uh) = inf

uh∈S1(Th)
sup

ph∈L0(Th)2

{
E(uh, ph) =

α

2
‖uh − g‖2L2(Ω) +

∫
Ω
∇uh · ph dx− IB(ph)

}
. (1.8)

Note that (1.8) can also be viewed as a discretized form of (1.7) because the discrete divergence operator
div is the conjugate operator of −∇ satisfying (divqh, vh) = −(qh,∇vh). For the discretized saddle-point
problem (1.8), it has a solution point (uh, ph) ∈ S1(Th) × L0(Th)2, because E(uh, ph) is a closed, proper
and convex-concave functional, see, e.g., [8].

For solving a saddle-point problem including the special form (1.8), the primal-dual method has received
much attention from different areas, see, e.g., earlier work on the inexact Uzawa method [5, 14, 30, 35, 36,
49, 59] for saddle-point linear systems resulted from the numerical approximation of elasticity problems or
stokes equations, and quadratic programming problems with linear constraints. Moreover, in some work
such as [13, 18, 31, 56, 57], its particular applications to various image processing problems have been
intensively investigated. As analyzed in [31, 56], the primal-dual method is a variant of the inexact Uzawa
method [5, 30]. In [8], it is suggested to solve the saddle-point problem (1.8) by the following iterative
scheme: 

(
dtu

n+1
h + α(un+1

h − g), vh
)

+
(
pnh,∇vh

)
= 0, ∀ vh ∈ S1(Th),

ũn+1
h = un+1

h + τdtu
n+1
h ,(

− σdtpn+1
h +∇ũn+1

h , qh − pn+1
h

)
≤ 0, ∀ qh ∈ B1(L0(Th)2),

(1.9)

where dtvn = (vn+1−vn)/τ with τ > 0 being the step size in the time direction for any sequence {vn}n∈N,
and the parameter σ > 0 plays the role of the ratio of the step sizes used for the two subproblems of
(1.9). The scheme (1.9) can be viewed as a semi-implicit difference scheme for (1.6) with finite element
discretization in space, and the convergence of the sequence {unh} by (1.9) is analyzed in [8] under the
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condition τ2‖∇‖2/σ ≤ 1. It is easy to see that the scheme (1.9) is the variational form of the following
primal-dual scheme: 

un+1
h = arg min

vh∈S1(Th)

{
E(vh, p

n
h) +

1

2τ
‖vh − unh‖2L2(Ω)

}
,

ũn+1
h = 2un+1

h − unh,

pn+1
h = arg max

qh∈L0(Th)2

{
E(ũn+1

h , qh)− σ

2τ
‖qh − pnh‖2L2(Ω)

}
.

(1.10)

Note that τ can be understood as the step size for implementing gradient-based iterative methods for the
minimization and maximization subproblems in (1.10).

Inspired by the work [18, 37], in this paper we consider a more general primal-dual scheme, which
includes the scheme (1.10) as a special case, for the model (1.8). More specifically, we consider the following
scheme for solving (1.8):

un+1
h = arg min

vh∈S1(Th)

{
E(vh, p

n
h) +

1

2τ
‖vh − unh‖2L2(Ω)

}
,

ũn+1
h = un+1

h + θ(un+1
h − unh),

pn+1
h = arg max

qh∈L0(Th)2

{
E(ũn+1

h , qh)− σ

2τ
‖qh − pnh‖2L2(Ω)

}
,

(1.11)

where the combination factor θ ∈ [−1, 1]. Clearly, (1.10) is a special case of (1.11) with θ = 1. Note
that it is in [18] that θ was extended to [0, 1] and then in [37] to [−1, 1] in the optimization context. This
generalization can accelerate the convergence numerically as shown in [37], and it provides more insights in
algorithmic design as shown in [48].

Our contributions can be summarized as follows. 1) We propose the general primal-dual scheme (1.11)
for the discretized saddle-point problem (1.8) and prove its convergence. 2) We establish the worst-case con-
vergence rate measured by the iteration complexity for the scheme (1.11). 3) We propose a new prediction-
correction scheme in which the output of (1.11) needs to be refreshed by a correction step (5.3). This
primal-dual-based prediction-correction scheme can significantly relax the restriction on the discretization
step size τ from O(h2) to O(h). 4) We also establish the convergence and the worst-case convergence rate
measured by the iteration complexity for the primal-dual-based prediction-correction scheme.

The rest of this paper is organized as follows. In Section 2, some known results which are useful for
further analysis are summarized. In Section 3, we focus on the general primal-dual scheme (1.11) and give
some remarks. Then, the analysis of convergence and convergence rate for the general primal-dual scheme
is presented in Section 4. In Section 5, we propose a primal-dual-based prediction-correction scheme and
analyze its convergence and convergence rate. Some preliminary numerical results are reported in Section
6 to verify the effectiveness of the general primal-dual scheme and the new primal-dual-based prediction-
correction scheme. Finally, some conclusions are made in Section 7.

2 Preliminary

In this section, we summarize some known results in the literature for the convenience of further analysis.
Most of the results can be found in [8]. Throughout this paper, the notation (·, ·) stands for the inner product
in L2 or (L2)2.

First, the first-order optimality condition for the minimization of the energy functional E(u) in S1(Th)
is stated in the following lemma.
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Lemma 2.1 ([8]). The function uh ∈ S1(Th) minimizes the energy functional E(u) in S1(Th) if and only if
there exists ph ∈ B1(L0(Th)2) := {qh ∈ L0(Th)2 : ‖qh‖∞ ≤ 1} such that{ (

ph,∇vh
)

+ α
(
uh − g, vh

)
= 0, ∀ vh ∈ S1(Th),(

∇uh, qh − ph
)
≤ 0, ∀ qh ∈ B1(L0(Th)2).

(2.1)

Notice that the optimality condition (2.1) can be rewritten as the following variational inequality (VI) in
a compact form: Finding µh ∈ S1(Th)× B1(L0(Th)2) such that(

F (µh), νh − µh
)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2), (2.2)

where

µh =

(
uh
ph

)
, νh =

(
vh
qh

)
, F (µh) =

(
−divph + α(uh − g)

−∇uh

)
. (2.3)

It is easy to see that the mapping F (·) in (2.3) satisfies(
F (µh)− F (νh), µh − νh

)
= α‖uh − vh‖2L2(Ω). (2.4)

It follows from (2.2), (2.4) and Lemma 2.1 that the first component uh of a solution pair of (1.8) is
unique. But the second one ph is not unique in general.

The error of the finite element approximation of function u in (1.8) is given by the following theorem.

Theorem 2.1 ([8, 10]). Let Ω = (0, 1)2, we have uh → u in L2(Ω) as h → 0. If u ∈ Lip(β, L2(Ω)) for
some 0 < β ≤ 1, then

‖u− uh‖2L2(Ω) ≤ ch
β

1+β ;

if u ∈ BV (Ω) ∩ L∞(Ω), then
‖u− uh‖L2(Ω) ≤ ch1/4.

We say u ∈ Lip(β, L2(Ω)) if

sup
t>0

t−β sup
|y|≤t

(∫
Ω
|u(x+ y)− u(x)|2dx

)1/2
< +∞.

It is mentioned in [8] that the condition u ∈ Lip(β, L2(Ω)) is satisfied if g ∈ Lip(β, L2(Ω)); and if
g ∈ L∞(Ω) then u ∈ Lip(1

2 , L
2(Ω)).

3 A General Primal-Dual Scheme

In this section, we specify the general primal-dual scheme (1.11) for solving (1.8) and present the resulting
algorithm. Let us use the notation

dtv
n+1 =

vn+1 − vn

τ
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for a sequence {vn}n∈N, where τ > 0 is the discretization step size.

Algorithm 1: A general primal-dual scheme for (1.8)
Input: Choose an initial iteration (u0

h, p
0
h) ∈ S1(Th)× L0(Th)2. Choose constants τ, σ > 0 and

θ ∈ [−1, 1] such that (
θ2 +

(1− θ)2

2ατ

)τ2‖∇‖2

σ
< 1. (3.1)

for n = 0, 1, 2, · · · , do
Step 1 Update un+1

h by solving

un+1
h = arg min

vh∈S1(Th)

{α
2
‖vh − g‖2L2(Ω) +

∫
Ω
∇vh · pnh dx+

1

2τ
‖vh − unh‖2L2(Ω)

}
; (3.2)

Step 2 Set
ũn+1
h = un+1

h + θτdtu
n+1
h ; (3.3)

Step 3 Update pn+1
h satisfying

pn+1
h = arg max

qh∈L0(Th)2

{(
qh,∇ũn+1

h

)
− IB(qh)− σ

2τ
‖qh − pnh‖2L2(Ω)

}
. (3.4)

end

Remark 3.1. As mentioned, Algorithm 1 with θ = 1 reduces to the primal-dual scheme in [8], and it is
noticed that pn+1

h satisfying (3.4) is given by

pn+1
h =

(
pnh + (τ/σ)∇ũn+1

h

)
/max

{
1, |pnh + (τ/σ)∇ũn+1

h |
}
.

Remark 3.2. The solution points un+1
h and pn+1

h of the first and third steps in Algorithm 1 satisfy the
following inequalities, respectively:(

dtu
n+1
h + α(un+1

h − g), vh
)

+
(
pnh,∇vh

)
= 0, ∀ vh ∈ S1(Th), (3.5)(

− σdtpn+1
h +∇ũn+1

h , qh − pn+1
h

)
≤ 0, ∀ qh ∈ B1(L0(Th)2), (3.6)

and they can be viewed as the discretization of the systems{
∂tuh = −∂vE(uh, ph),
σ∂tph ∈ ∂qE(uh, ph),

(3.7)

which are the finite element approximations of the evolution systems (1.6). Moreover, the parameter τ in
Algorithm 1 plays the role of a step size of the discretization in the time direction.

Remark 3.3. An inverse estimate in [15] shows that there exists c > 0 such that ‖∇vh‖L2(Ω) ≤ ch−1
min‖vh‖L2(Ω)

for all vh ∈ S1(Th), where hmin = minT∈Th diam(T ). We denote

‖∇‖ = sup
vh∈S1(Th)\{0}

‖∇vh‖L2(Ω)

‖vh‖L2(Ω)
≤ ch−1

min, (3.8)

which will be used in the theoretical analysis later. For a regular mesh Th, it yields from the above estimate
that ‖∇‖ ≤ ch−1.
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4 Convergence Analysis for Algorithm 1

In this section, we prove the convergence for Algorithm 1 and establish its worst-case convergence rate
measured by the iteration complexity. As in [37], our analysis follows the framework for contraction type
methods in [12].

4.1 Convergence

First, for the iteration µn+1
h = (un+1

h ; pn+1
h ) ∈ S1(Th) × B1(L0(Th)2) generated by Algorithm 1, it is easy

to see from (3.5) and (3.6) that it satisfies the VI:(
F (µn+1

h ) +M(µn+1
h − µnh), νh − µn+1

h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2) (4.1)

with

M =

(
1
τ I div
−θ∇ σ

τ I

)
. (4.2)

We prove two lemmas prior to the main convergence theorem. In the following lemma, a useful inequality
is proved.

Lemma 4.1. Let the sequence {µn+1
h = (un+1

h ; pn+1
h )} be generated by Algorithm 1 with θ ∈ [−1, 1]. Then,

we have (
G(µn+1

h − µnh), νh − µn+1
h

)
≥ α‖vh − un+1

h ‖2L2(Ω) +
(
F (νh), µn+1

h − νh
)

− (1− θ)
(
∇(vh − un+1

h ), pnh − pn+1
h

)
,

∀ νh = (vh; qh) ∈ S1(Th)× B1(L0(Th)2),

(4.3)

where

G =

(
1
τ I θdiv
−θ∇ σ

τ I

)
. (4.4)

Proof. We can rewrite (4.1) as(
F (µn+1

h ) +G(µn+1
h − µnh), νh − µn+1

h

)
− (1− θ)

(
∇(vh − un+1

h ), pn+1
h − pnh

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2).

(4.5)

Then, adding
(
F (νh), µn+1

h − νh
)

to both sides of (4.5) yields(
G(µn+1

h − µnh), νh − µn+1
h

)
≥
(
F (νh)− F (µn+1

h ), νh − µn+1
h

)
+
(
F (νh), µn+1

h − νh
)

− (1− θ)
(
∇(vh − un+1

h ), pnh − pn+1
h

)
, ∀ νh ∈ S1(Th)× B1(L0(Th)2),

(4.6)

which completes the proof by using the property (2.4) of F .

The following lemma is also useful for further analysis.

Lemma 4.2. Let us define

Q =

(
1
τ I θdiv

−θ∇
(
σ
τ −

(1−θ)2‖∇‖2
2α

)
I

)
. (4.7)

Then both the operators G defined in (4.4) and Q in (4.7) are positive definite if (3.1) holds.
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Proof. Based on the definitions of G and Q, it suffices to prove the positive definiteness of Q. For any
nonzero function νh = (vh, qh) ∈ S1(Th)× B1(L0(Th)2), under the condition (3.1), we have

‖νh‖2Q = (Qνh, νh) =
1

τ
‖vh‖2L2(Ω) − 2θ(∇vh, qh) +

(σ
τ
− (1− θ)2‖∇‖2

2α

)
‖qh‖2L2(Ω)

≥ 1

τ
‖vh‖2L2(Ω) − 2|θ|‖∇‖‖vh‖L2(Ω)‖qh‖L2(Ω) +

(σ
τ
− (1− θ)2‖∇‖2

2α

)
‖qh‖2L2(Ω)

>

(
1√
τ
‖vh‖L2(Ω) −

√
σ

τ
− (1− θ)2‖∇‖2

2α
‖qh‖L2(Ω)

)2

≥ 0,

(4.8)

which completes the proof.

Using the results proved in the above lemmas, we can show that the sequence generated by Algorithm
1 is strictly contractive (see, e.g., [12, 39], for the definition) with respect to the solution set of (1.8) under
some conditions. We summarize the result in the following theorem.

Theorem 4.1 (Contraction). Let µh be the solution point of (1.8) and {µn+1
h } be the sequence generated by

Algorithm 1 with θ ∈ [−1, 1]. Under the condition (3.1), we have

‖µn+1
h − µh‖2G ≤ ‖µnh − µh‖2G − ‖µnh − µn+1

h ‖2Q, (4.9)

where G and Q are defined in (4.4) and (4.7), respectively.

Proof. Using Cauchy-Schwarz inequality and the definition of ‖∇‖ in (3.8) for the estimation (4.3), we have(
G(µn+1

h − µnh), νh − µn+1
h

)
≥ α‖vh − un+1

h ‖2L2(Ω) +
(
F (νh), µn+1

h − νh
)

− α

‖∇‖2
‖∇(vh − un+1

h )‖2L2(Ω)

− (1− θ)2‖∇‖2

4α
‖pnh − pn+1

h ‖2L2(Ω)

≥
(
F (νh), µn+1

h − νh
)
− (1− θ)2‖∇‖2

4α
‖pnh − pn+1

h ‖2L2(Ω),

∀ νh ∈ S1(Th)× B1(L0(Th)2).

(4.10)

Applying the identity (
G(b− a), b

)
=

1

2

(
‖b‖2G − ‖a‖2G + ‖a− b‖2G

)
(4.11)

to the term on the left-hand side of (4.10) with b = µn+1
h − νh and a = µnh − νh, we derive

2
(
F (νh), µn+1

h − νh
)
≤ ‖µnh − νh‖2G − ‖µn+1

h − νh‖2G

−
(
‖µnh − µn+1

h ‖2G −
(1− θ)2‖∇‖2

2α
‖pnh − pn+1

h ‖2L2(Ω)

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)2).

(4.12)

Thus, combining the last two terms in the above inequality, we obtain

2
(
F (νh), µn+1

h − νh
)
≤ ‖µnh − νh‖2G − ‖µn+1

h − νh‖2G − ‖µnh − µn+1
h ‖2Q,

∀ νh ∈ S1(Th)× B1(L0(Th)2).
(4.13)

Setting νh = µh in (4.13) and using the optimality condition (2.2), then we get the result (4.9).
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The strict contraction of the sequence generated by Algorithm 1, which is implied by the assertion (4.9),
essentially means that the convergence of the sequence {µn+1

h }. We summarize the convergence result in the
following theorem.

Theorem 4.2 (Convergence). Let {µn+1
h = (un+1

h ; pn+1
h )} be the sequence generated by Algorithm 1 with

θ ∈ [−1, 1]. Under the condition (3.1), the sequence {un+1
h } converges to the unique minimizer of the

problem (1.1) in S1(Th).

Proof. According to (4.9), for any integer N > 0, we have

N∑
n=0

‖µnh − µn+1
h ‖2Q ≤ ‖µh − µ0

h‖2G.

Thus, we conclude
lim
n→∞

‖µnh − µn+1
h ‖2Q = 0.

As Q is positive definite under the condition (3.1), then limn→∞(µnh − µ
n+1
h ) = 0. It is implied from (4.9)

that the sequence {µnh} is bounded, and we denote by µ∗h a cluster point of {µnh}. Substituting it into (4.1),
we obtain that (

F (µ∗h), νh − µ∗h
)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2),

which means µ∗h is a solution point of (2.2). From (2.2) and (2.4), the first component of the solution µ∗h to
(1.8) is unique. Thus, the sequence {un+1

h } converges to the unique minimizer of energy functional E in
S1(Th) by Lemma 2.1.

4.2 Convergence Rate

In this subsection, we estimate a worst-case O( 1
N ) convergence rate measured by the iteration complexity

for Algorithm 1 with θ ∈ [−1, 1] under the condition (3.1), whereN denotes the iteration counter. Following
the seminal work [43, 45] and many others, a worst-case O( 1

N ) convergence rate means the accuracy to a
solution under certain criteria is of the order O( 1

N ) after N iterations of an iterative scheme; or equivalently,
it requires at most O(1

ε ) iterations to achieve an approximate solution with an accuracy of ε.
First, we introduce a criterion to measure the accuracy of an approximate solution point of the VI (2.2).

Theorem 4.3. The solution set of VI (2.2) is convex and can be characterized as

Θ =
⋂
νh

{
µ̃h ∈ S1(Th)× B1(L0(Th)2) :

(
F (νh), νh − µ̃h

)
≥ 0
}
.

Proof. The proof can refer to Theorem 2.3.5 in [32] or Theorem 2.1 in [38].

According to [44], we define

DU (µ̃h) := {νh ∈ S1(Th)× B1(L0(Th)2) : ‖νh − µ̃h‖U ≤ 1}

with U a symmetric and positive definite operator. Then, Theorem 4.3 implies that we can say that µ̃h ∈
S1(Th)× B1(L0(Th)2) is an approximate solution of VI (2.2) with an accuracy of ε if(

F (νh), µ̃h − νh
)
≤ ε, ∀ νh ∈ DU (µ̃h). (4.14)

The result in the following theorem shows that we can find µ̃N such that (4.14) is satisfied with ε =
O( 1

N ) after N iterations of Algorithm 1. Therefore, a worst-case O( 1
N ) convergence rate is established for

Algorithm 1.
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Theorem 4.4 (Convergence rate in the ergodic sense). Let {µn+1
h } be the sequence generated by Algorithm

1 with θ ∈ [−1, 1] under the condition (3.1). For any integer N > 0, let

µ̃N =
1

N + 1

N∑
n=0

µn+1
h .

Then, we have (
F (νh), µ̃N − νh

)
≤ 1

2(N + 1)
‖νh − µ0

h‖2G, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (4.15)

Proof. It follows from (4.13) that(
F (νh), µn+1

h − νh
)
≤ 1

2

(
‖νh − µnh‖2G − ‖νh − µn+1

h ‖2G
)
, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (4.16)

Summarizing (4.16) with n = 0, 1, · · · , N , we have

(
F (νh),

N∑
n=0

µn+1
h − (N + 1)νh

)
≤ 1

2

(
‖νh − µ0

h‖2G − ‖νh − µN+1
h ‖2G

)
, (4.17)

which yields the result (4.15).

This theorem shows a worst-case O( 1
N ) convergence rate in the ergodic sense for Algorithm 1. The

ergodic sense is because of the fact that the approximate solution with an accuracy ofO( 1
N ) is the average of

all theN iterations generated by Algorithm 1. For the special case θ = 1 of Algorithm 1, i.e., the primal-dual
scheme in [8], we can obtain a stronger worst-case O( 1

N ) convergence rate in a nonergodic sense. But it is
not clear if this convergence rate in a nonergodic sense can be extended to the general case of Algorithm 1
with θ ∈ [−1, 1). The main reason is that the matrix-form operator M defined in (4.2) is not symmetric if
θ 6= 1. Hence, it becomes difficult to define a norm with this matrix-form operator to measure the progress of
proximity to the solution set. We summarize the stronger worst-case O( 1

N ) convergence rate in a nonergodic
sense for Algorithm 1 in the following theorem. This is a by-produce of our main results.

Theorem 4.5 (Convergence rate for θ = 1 in a nonergodic sense). Let µh be the solution of (1.8) and {µn+1
h }

be the sequence generated by Algorithm 1 with θ = 1 under the condition (3.1). Then for any integerN > 0,
it exists

‖µNh − µN+1
h ‖2G ≤

1

(N + 1)
‖µh − µ0

h‖2G. (4.18)

Proof. First, it follows from (4.1) when θ = 1 that(
F (µn+1

h ) +G(µn+1
h − µnh), νh − µn+1

h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (4.19)

It also holds(
F (µn+2

h ) +G(µn+2
h − µn+1

h ), νh − µn+2
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (4.20)

Setting νh = µn+2
h in (4.19) and νh = µn+1

h in (4.20), and then combining them together, we obtain(
F (µn+1

h )− F (µn+2
h ), µn+2

h − µn+1
h

)
−
(
G((µn+2

h − µn+1
h )− (µn+1

h − µnh)), µn+2
h − µn+1

h

)
≥ 0.

(4.21)
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Applying the equalities (4.11) and (2.4) to (4.21) yields

‖µn+1
h − µn+2

h ‖2G ≤ ‖µnh − µn+1
h ‖2G − 2α‖un+1

h − un+2
h ‖2L2(Ω)

− ‖(µn+2
h − µn+1

h )− (µn+1
h − µnh)‖2G

≤‖µnh − µn+1
h ‖2G.

(4.22)

With θ = 1 and the definition of Q in (4.7), it follows from Theorem 4.1 that

‖µh − µn+1
h ‖2G ≤ ‖µh − µnh‖2G − ‖µnh − µn+1

h ‖2G. (4.23)

Summarizing (4.23) over n = 0, 1, · · · , N , we obtain

N∑
n=0

‖µnh − µn+1
h ‖2G ≤ ‖µh − µ0

h‖2G. (4.24)

The estimate (4.22) reveals that ‖µnh − µ
n+1
h ‖2G is monotonically non-increasing. Then we obtain

(N + 1)‖µNh − µN+1
h ‖2G ≤ ‖µh − µ0

h‖2G, (4.25)

which yields the result (4.18).

It is follows from (4.19) that µN+1
h belongs to the solution set of VI (2.2) if ‖µNh − µ

N+1
h ‖2G = 0 since

G is positive definite under the condition (3.1) with θ = 1. In other words, if ‖µNh − µ
N+1
h ‖2G = 0, we have(

F (µN+1
h ), νh − µN+1

h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2),

which implies µN+1
h is a solution of (1.8) characterized by VI (2.2). Then the quantity ‖µNh − µ

N+1
h ‖2G can

be used to measure the accuracy of an approximate solution of (1.8). Thus, the assertion in Theorem 4.5
shows a worst-case O( 1

N ) convergence rate measured by the iteration complexity in a nonergodic sense for
Algorithm 1 with θ = 1.

5 A Primal-Dual Based Prediction-Correction Scheme

In Section 3, we propose Algorithm 1 which is more general than the primal-dual scheme in [8]. We will
show in Section 6.1 that this general scheme with θ 6= 1 can accelerate the convergence numerically; it
thus makes sense to consider the generalization for θ ∈ [−1, 1]. Meanwhile, we have analyzed that the
convergence of Algorithm 1 can be guaranteed under the condition (3.1). As indicated in Remark 3.3, we
have ‖∇‖2 ≤ ch−2 with the regular mesh Th; and when θ 6= 1 for Algorithm 1, (3.1) indicates τ ≤ ch2. Here
τ stands for the discretization step size in the time direction if we regard Algorithm 1 as the discretizations
of (3.7) (which is the evolution systems (1.6) with finite element approximation in space). In this sense, it
is interesting to consider relaxing the requirement on τ from the order of O(h2) to O(h). This is the main
motivation we consider the new primal-dual based prediction-correction scheme in this section.

We would reiterate that the convergence analysis for Algorithm 1 in Section 4 mainly follows the analytic
framework for contraction type methods. For its analysis, a key technique is that the condition (3.1) can
ensure the positive definiteness of the matrix-form operators G in (4.4) and Q in (4.7). With their positive
definiteness, we can measure the progress of proximity between two consecutive iterations and eventually
establish the strict contraction property for the sequence generated by Algorithm 1 which essentially implies
the convergence. It is seen from (4.4) that the off-diagonal entries ofG is not zero operator, which means that
it renders two non-square terms in the expansion of any quadratic term associated with theG-norm. This fact
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essentially raises the reason of considering the condition (3.1) to sufficiently ensure the positive definiteness
of G. For the purpose of relaxing the restriction on τ , we may consider only keeping the diagonal entries of
G as the matrix form operator for defining the norm when measuring the progress of proximity between two
consecutive iterations. That is, the analysis is based on H-norm with

H :=

(
1
τ I 0
0 σ

τ I

)
. (5.1)

Based on this analysis, we will follow the idea in [37] and modify Algorithm 1 as a new prediction-
correction scheme. Each of its iteration consists of the primal-dual step (3.2)-(3.4) and a correction step (5.3).
With the additional correction step, the requirement on τ can be relaxed from O(h2) to O(h). Moreover,
the worst-case convergence rate in both the ergodic and nonergodic senses can be established for the new
primal-dual-based prediction-correction scheme.

5.1 Algorithm

We summarize the new primal-dual-based prediction correction scheme as follows.

Algorithm 2: A primal-dual-based prediction-correction scheme for (1.8)
Input: Choose an initial iteration (u0

h, p
0
h) ∈ S1(Th)× L0(Th)2. Choose constants γ ∈ (0, 1],

θ ∈ [−1, 1], and τ > 0 and σ > 0 such that

τ2‖∇‖2

σ
< 1. (5.2)

for n = 0, 1, 2, · · · , do
Prediction step: Obtain the predictor µ̄nh by Algorithm 1 with input µnh, i.e. (3.2)-(3.4);
Correction step: Generate the new iteration µn+1

h by solving(
(un+1

h − unh) + γ(unh − ūnh), vh
)
− τγ

(
∇vh, pnh − p̄nh

)
= 0, ∀ vh ∈ S1(Th),(

(pn+1
h − pnh) + γ(pnh − p̄nh), qh

)
− γθ τ

σ

(
∇(unh − ūnh), qh

)
= 0, ∀ qh ∈ B1(L0(Th)2).

(5.3)

end

Remark 5.1. For the correction step (5.3), it can be rewritten as the compact form(
H(µn+1

h − µnh), νh
)

+ γ
(
M(µnh − µ̄nh), νh

)
= 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2), (5.4)

where M and H are defined in (4.2) and (5.1), respectively. It is noticed that the correction step (5.3) in
Algorithm 2 is not difficult to compute because it is essentially a system of linear equations with a banded,
symmetric and positive-definite mass matrix.

Remark 5.2. The parameter γ ∈ (0, 1] in (5.3) is a relaxation factor which can potentially accelerate
numerical performance. Instead, we can simply take γ ≡ 1 if the number of parameters is a concern for
implementation.

5.2 Convergence

In this subsection, we prove the convergence for Algorithm 2. First, we prove an inequality which is im-
portant for the convergence analysis. Let us recall (4.1). Thus, the predictor µ̄nh generated by Algorithm 2
satisfies (

F (µ̄nh) +M(µ̄nh − µnh), νh − µ̄nh
)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (5.5)
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Lemma 5.1. Let {µn+1
h } be the sequence generated by Algorithm 2 with θ ∈ [−1, 1] and γ ∈ (0, 1]. Then

we have

2
(
H(µnh − µn+1

h ), µnh − νh
)
− ‖µnh − µn+1

h ‖2H ≥
1

4

(
1− τ2‖∇‖2

σ

)
‖µnh − µn+1

h ‖2H
+2γ

(
F (νh), µ̄nh − νh

)
, ∀ νh ∈ S1(Th)× B1(L0(Th)2),

(5.6)

where H is defined in (5.1).

Proof. Adding
(
F (νh), µ̄nh − νh

)
to both sides of (5.5), we have(

F (µ̄nh)− F (νh) +M(µ̄nh − µnh), νh − µ̄nh
)
≥
(
F (νh), µ̄nh − νh

)
, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (5.7)

Then, we derive(
M(µnh − µ̄nh), µnh − νh

)
≥
(
M(µnh − µ̄nh), µnh − µ̄nh

)
+
(
F (νh), µ̄nh − νh

)
+ α‖vh − ūnh‖2L2(Ω), ∀ νh ∈ S

1(Th)× B1(L0(Th)2).
(5.8)

With (5.4), we obtain(
H(µnh − µn+1

h ), µnh − νh
)

= γ
(
M(µnh − µ̄nh), µnh − νh

)
≥ γ

(
M(µnh − µ̄nh), µnh − µ̄nh

)
+ γ
(
F (νh), µ̄nh − νh

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)2).

(5.9)

Using the definition of M in (4.2) and H in (5.1), we can expand the term on the right-hand side of (5.9) as(
M(µnh − µ̄nh), µnh − µ̄nh

)
= ‖µnh − µ̄nh‖2H − (1 + θ)

(
∇(unh − ūnh), pnh − p̄nh

)
. (5.10)

With (5.4), we also have

‖µnh − µn+1
h ‖2H = γ

(
M(µnh − µ̄nh), µnh − µn+1

h

)
= γ

(
H(µnh − µn+1

h ), H−1M(µnh − µ̄nh)
)

= γ2
(
M(µnh − µ̄nh), H−1M(µnh − µ̄nh)

)
,

(5.11)

whose last term can be evaluated by the definitions of H and M as(
M(µnh − µ̄nh), H−1M(µnh − µ̄nh)

)
= ‖µnh − µ̄nh‖2H + τ‖div(pnh − p̄nh)‖2

+ θ2 τ

σ
‖∇(unh − ūnh)‖2

− 2(1 + θ)
(
∇(unh − ūnh), pnh − p̄nh

)
.

(5.12)
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Then, together with (5.9)-(5.12) and the definition of ‖∇‖ in (3.8), we get

2
(
H(µnh − µn+1

h ), µnh − νh
)
− ‖µnh − µn+1

h ‖2H
≥ 2γ

(
M(µnh − µ̄nh), µnh − µ̄nh

)
− γ2

(
M(µnh − µ̄nh), H−1M(µnh − µ̄nh)

)
+ 2γ

(
F (νh), µ̄nh − νh

)
= (2γ − γ2)‖µnh − µ̄nh‖2H − 2(1 + θ)(γ − γ2)

(
∇(unh − ūnh), pnh − p̄nh

)
− γ2

(
τ‖div(pnh − p̄nh)‖2 + θ2 τ

σ
‖∇(unh − ūnh)‖2

)
+ 2γ

(
F (νh), µ̄nh − νh

)
≥
(

(2γ − γ2)−
(
(1 + θ)(γ − γ2) + θ2γ2

)τ2‖∇‖2

σ

)1

τ
‖unh − ūnh‖2L2(Ω)

+
((

(2γ − γ2)− (1 + θ)(γ − γ2)
)
− γ2 τ

2‖∇‖2

σ

)σ
τ
‖pnh − p̄nh‖2L2(Ω)

+ 2γ
(
F (νh), µ̄nh − νh

)
≥ γ2

(
1− τ2‖∇‖2

σ

)
‖µnh − µ̄nh‖2H + 2γ

(
F (νh), µ̄nh − νh

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)2).

(5.13)

Therefore, because of (5.11) and (5.12), using Cauchy-Schwarz inequality, the definition of ‖∇‖ in (3.8) and
the condition (5.2), we can derive

‖µnh − µn+1
h ‖2H = γ2

(
‖µnh − µ̄nh‖2H + τ‖div(pnh − p̄nh)‖2 + θ2 τ

σ
‖∇(unh − ūnh)‖2

− 2(1 + θ)
(
∇(unh − ūnh), pnh − p̄nh

))
≤ γ2

(
1 +

(
θ2 + 1 + θ

)τ2‖∇‖2

σ

)1

τ
‖unh − ūnh‖2L2(Ω)

+ γ2
(

1 +
τ2‖∇‖2

σ
+ (1 + θ)

)σ
τ
‖pnh − p̄nh‖2L2(Ω)

≤ 4γ2‖µnh − µ̄nh‖2H .

(5.14)

Then the result is obtained from (5.13) and (5.14).

Using the result in the above lemma, we can easily derive that the sequence generated by Algorithm 2 is
strictly contractive with respect to the solution set of VI (2.2). We summarize it in the following theorem.

Theorem 5.1 (Contraction). Let µh be the solution of (1.8) and {µn+1
h } be the sequence generated by

Algorithm 2 with θ ∈ [−1, 1] under the condition (5.2). Then we have

‖µn+1
h − µh‖2H ≤ ‖µnh − µh‖2H −

1

4

(
1− τ2‖∇‖2

σ

)
‖µnh − µn+1

h ‖2H . (5.15)

Proof. Obviously, we have

‖µn+1
h − νh‖2H = ‖µnh − νh − (µnh − µn+1

h )‖2H
= ‖µnh − νh‖2H − 2

(
H(µnh − µn+1

h ), µnh − νh
)

+ ‖µnh − µn+1
h ‖2H .

(5.16)

Applying the result (5.6) in Lemma 5.1 to (5.16), setting νh = µh and noticing
(
F (µh), µ̄nh − µh

)
≥ 0, we

obtain (5.15).

With the strict contraction property established in the last theorem, it becomes easy to prove the conver-
gence for Algorithm 2. The convergence of Algorithm 2 is summarized in the following theorem.
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Theorem 5.2 (Convergence). Let {µn+1
h = (un+1

h , pn+1
h )} be the sequence generated by Algorithm 2 with

θ ∈ [−1, 1] and γ ∈ (0, 1] under the condition (5.2). Then, the sequence {un+1
h } converges to the unique

minimizer of energy functional E in S1(Th).

Proof. From (5.13) and (5.16), we obtain

‖µn+1
h − µh‖2H ≤ ‖µnh − µh‖2H − γ2

(
1− τ2‖∇‖2

σ

)
‖µnh − µ̄nh‖2H . (5.17)

Then, the above inequality and (5.15) imply that

lim
n→∞

(µnh − µn+1
h ) = lim

n→∞
(µnh − µ̄nh) = 0.

Thus, we have limn→∞ µ
n+1
h = limn→∞ µ̄

n
h. In addition, it follows from (5.17) that the sequence {µn+1

h }
is bounded. Let µ∗h be a cluster point of the sequence {µn+1

h }, with (5.5), we derive that µ∗h satisfies the
VI (2.2). So, the sequence {un+1

h } converges to the unique minimizer of energy functional E in S1(Th) by
(2.2), (2.4) and Lemma 2.1.

Note that Algorithm 2 requires an additional correction step compared with Algorithm 1; but it ensures
the condition (5.2) to be satisfied if τ ≤ ch for some c > 0 as ‖∇‖ ≤ ch−1. This is a significantly relaxed
condition compared with the requirement τ ≤ ch2 for Algorithm 1. This is the main advantage of Algorithm
2. We will numerically verify its superiority in Section 6.2.

5.3 Convergence Rate

In this subsection, we establish the worst-case O( 1
N ) convergence rate in both the ergodic and nonergodic

senses for Algorithm 2 with θ ∈ [−1, 1]. Recall the lack of worst-case convergence rate in a nonergodic
sense of Algorithm 1 with θ ∈ [−1, 1). Thus, the provable worst-case convergence rate in a nonergodic
sense is another theoretical advantage of Algorithm 2.

5.3.1 Convergence Rate in the Ergodic Sense

We first establish the worst-caseO( 1
N ) convergence rate in the ergodic sense for Algorithm 2 in the following

theorem. The proof is analogous to that of Theorem 4.4.

Theorem 5.3 (Convergence rate in the ergodic sense). Let {µn+1
h } be the sequence generated by Algorithm

2 with θ ∈ [−1, 1] and γ ∈ (0, 1] under the condition (5.2). For any integer N , let µ̄N be defined as

µ̄N =
1

N + 1

N∑
n=0

µ̄nh.

Then we have(
F (νh), µ̄N − νh

)
≤ 1

2γ(N + 1)
‖νh − µ0

h‖2H , ∀ νh ∈ S1(Th)× B1(L0(Th)2). (5.18)

Proof. It follows from (5.16) and (5.6) that(
F (νh), µ̄nh − νh

)
≤ 1

2γ

(
‖νh − µnh‖2H − ‖νh − µn+1

h ‖2H
)
,

∀ νh ∈ S1(Th)× B1(L0(Th)2).

(5.19)

15



Summarizing the inequality (5.19) for the cases of n = 0, 1, · · · , N , we obtain

(
F (νh),

N∑
n=0

µ̄nh − (N + 1)νh
)
≤ 1

2γ

(
‖νh − µ0

h‖2H − ‖νh − µN+1
h ‖2H

)
,

∀ νh ∈ S1(Th)× B1(L0(Th)2),

(5.20)

which leads to the result (5.18).

5.3.2 Convergence Rate in a Nonergodic Sense

Now we establish the worst-caseO( 1
N ) convergence rate in a nonergodic sense for Algorithm 2. The analysis

is based on the strict contraction property (5.15) and the monotonicity of the sequence {‖µnh − µ
n+1
h ‖2H}.

Lemma 5.2. Let {µn+1
h } be the sequence generated by Algorithm 2 with θ ∈ [−1, 1] and γ ∈ (0, 1]. Then,

we have
‖µn+1

h − µn+2
h ‖2H ≤ ‖µnh − µn+1

h ‖2H . (5.21)

Proof. Because of the optimality condition (5.5) of the prediction step, we have(
F (µ̄nh) +M(µ̄nh − µnh), νh − µ̄nh

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2), (5.22)

and (
F (µ̄n+1

h ) +M(µ̄n+1
h − µn+1

h ), νh − µ̄n+1
h

)
≥ 0, ∀ νh ∈ S1(Th)× B1(L0(Th)2). (5.23)

Taking νh = µ̄n+1
h in (5.22) and νh = µ̄nh in (5.23), and adding them together, we have(

M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
, µ̄nh − µ̄n+1

h

)
≥ 0. (5.24)

Adding the term (
M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
,
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

))
to both sides of (5.24), it yields(

M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
, µnh − µn+1

h

)
≥
(
M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
,
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

))
,

(5.25)

together with which, it follows from (5.4) that(
H
(
(µnh − µn+1

h )− (µn+1
h − µn+2

h )
)
, µnh − µn+1

h

)
≥ γ

(
M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
,
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

))
.

(5.26)

Now we use the identity
‖a‖2H − ‖b‖2H = 2(H(a− b), a)− ‖a− b‖2H

with a = µnh − µ
n+1
h and b = µn+1

h − µn+2
h and thus get

‖µnh − µn+1
h ‖2H − ‖µn+1

h − µn+2
h ‖2H

= 2
(
H
(
(µnh − µn+1

h )− (µn+1
h − µn+2

h )
)
, µnh − µn+1

h

)
− ‖(µnh − µn+1

h )− (µn+1
h − µn+2

h )‖2H .
(5.27)
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Then, it follows from (5.26), (5.27) and (5.4) that

‖µnh − µn+1
h ‖2H − ‖µn+1

h − µn+2
h ‖2H

≥ 2γ
(
M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
,
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

))
− ‖(µnh − µn+1

h )− (µn+1
h − µn+2

h )‖2H
= 2γ

(
M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
,
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

))
− γ2

(
M
(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

)
, H−1M

(
(µnh − µ̄nh)− (µn+1

h − µ̄n+1
h )

))
.

(5.28)

We can show that the right-hand side term of (5.28) is nonnegative, just as the same approach in (5.13). The
result (5.21) is thus proved.

Next we establish the worst-case O( 1
N ) convergence rate in a nonergodic sense for Algorithm 2. We

summarize the result in the following theorem.

Theorem 5.4 (Convergence rate in a nonergodic sense). Let µh be the solution of (1.8) and {µn+1
h } be the

sequence generated by Algorithm 2 with θ ∈ [−1, 1] and γ ∈ (0, 1] under the condition (5.2). Then for any
integer N > 0, it holds

‖µNh − µN+1
h ‖2H ≤

1

r(N + 1)
‖µh − µ0

h‖2H , (5.29)

where r is

r =
1

4

(
1− τ2‖∇‖2

σ

)
> 0.

Proof. It follows from (5.15) that

r‖µnh − µn+1
h ‖2H ≤ ‖µh − µnh‖2H − ‖µh − µn+1

h ‖2H . (5.30)

Summarizing the inequalities (5.30) for the cases n = 0, · · · , N , we have

r
N∑
n=0

‖µnh − µn+1
h ‖2H ≤ ‖µh − µ0

h‖2H − ‖µh − µN+1
h ‖2H . (5.31)

From the result (5.21) of Lemma 5.2, we know that ‖µnh − µ
n+1
h ‖2H is monotonically non-increasing. There-

fore, it yields

(N + 1)‖µNh − µN+1
h ‖2H ≤

N∑
n=0

‖µnh − µn+1
h ‖2H . (5.32)

Then the assertion (5.29) is obtained by (5.31) and (5.32).

6 Numerical Experiments

In this section, we report some preliminary numerical results to show the efficiency of the proposed algo-
rithms. The rationale of considering the general primal-dual scheme (1.11) and the new primal-dual-based
prediction-correction scheme is thus verified. Our main purpose is to illustrate: 1) the combination factor
θ 6= 1 sometimes can accelerate the convergence of Algorithm 1 with θ = 1; and 2) Algorithm 2 with a
relaxed requirement on τ could be numerically faster than Algorithm 1. Note that our work uses the finite
element method to discretize the saddle-point reformulation of (1.1), and it is not comparable with those
work (e.g. [18, 46, 47]) using finite difference discretization. Thus no comparison results with these finite
difference discretization work are reported below.
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All codes were written in C++ based on the finite element library AFEPack1, and all experiments were
run on a Linux desktop with i5-4570s Intel 2.9GHz four Processors and 8GB Memory. The stopping criterion
for implementing Algorithms 1 and 2 is throughout chosen as

‖un+1
h − unh‖L2(Ω)

‖un+1
h ‖L2(Ω)

≤ Tol,

with the tolerance Tol > 0.

6.1 Numerical Results for Algorithm 1

We first verify that the combination factor θ 6= 1 may accelerate the convergence of Algorithm 1 with θ = 1.
Recall that Algorithm 1 with θ = 1 is the method considered in [8]. The example to be tested for this purpose
is similar as the one tested in [8].

Example 6.1. Let B(0, r) := {x ∈ R2 : |x| ≤ r}, Ω be a regular octagon inscribed in the circle B(0, 0.5),
α = 200, and g = g0 + δξh with g0 = ιB(0,0.2), which is the indicator function of B(0, 0.2), and ξh is a
mesh-dependent perturbation function.
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Figure 1: Triangular mesh over Ω (left) and the function g0 (right) for Example 6.1.

The domain Ω is partitioned by the triangulation mesh Th with 1023 nodes and 1980 elements, as shown
in the left part of Figure 1. The right part of Figure 1 shows the plot of g0 over the mesh Th. The discretized
function gh ∈ L0(Th) is defined by gh|T = g0(xT )+δξh|T for each T ∈ Th, where the perturbation function
ξh ∈ L0(Th) is a normally distributed random value in each element T ∈ Th. Note that using our mesh, we
have 1/‖∇‖2 ≈ 1.0×10−5 and empirically we use 1/‖∇‖2 = 1.0×10−5 to determine τ in our experiments.
The initial guess u0

h is taken as the projection of function gh onto the finite element space S1(Th), and p0
h

is initialized as zero function. The tolerance in the stopping criterion is set as Tol = 1.0 × 10−4 in the
experiments for Example 6.1.

To see the effectiveness of the combination factor θ, for Algorithm 1 we test the cases of θ ∈ [−1, 1] with
an equal distance of 0.1 and plot the iteration numbers and the values of the step size τ in Figure 2. From
this figure, we see that some cases of θ ∈ [−0.5, 1) require less iterations. Thus the numerical efficiency of
Algorithm 1 with θ 6= 1 is demonstrated. We can also observe in Figure 2 that the value of τ plays a key role
for the total iteration number of Algorithm 1 under the same stopping criterion, a larger value of τ satisfying
the convergence condition leads to less iteration numbers. It should be noticed that the largest step size τ to
guarantee the convergence for θ ∈ [−1, 1) can be larger than that of θ = 1.0 when the mesh size h is not

1http://dsec.pku.edu.cn/˜rli/source_code/AFEPack.tar.gz
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small enough, although τ = O(h) for θ = 1 and τ = O(h2) for θ ∈ [−1, 1) are required to guarantee the
convergence, just as shown in Figure 2, that the step size τ associated with θ ∈ [−0.5, 1) is larger than that
with θ = 1.0.
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Figure 2: Iteration step number (‘•’) and step size τ (‘◦’) with different θ for Example 6.1 with noise level
δ = 10% by Algorithm 1 with σ = 10.0.

Notice that the condition (3.1) can be rewritten as

τ < 2
σ

‖∇‖2
/((1− θ)2

2α
+

√
(1− θ)4

4α2
+ 4θ2

σ

‖∇‖2

)
.

As suggested by one referee, based on this inequality, we can seek a numerically “optimal” value of θ in
sense of maximizing the function ζ(θ) within the interval θ ∈ [−1, 1] where

ζ(θ) := 2
σ

‖∇‖2
/((1− θ)2

2α
+

√
(1− θ)4

4α2
+ 4θ2

σ

‖∇‖2

)
. (6.1)

We define by θ∗ the numerical approximation to the value of θ that maximizes ζ(θ) approached by imple-
menting Newton method; and Algorithm 1 with θ = θ∗ is denoted by “Alg1(θ∗)”. In the following, we
compare Alg1(θ∗) with Algorithm 1 with θ = 1 (“denoted by Alg1(1)”), i.e., the method in [8]. For both
Alg1(1) and Alg1(θ∗), we take τ = 0.98ζ(θ).

In Table 1, we compare the iteration numbers of Alg1(1) and Alg1(θ∗) for Example 6.1 with different
noise levels. For σ = 1.0, 2.0, 5.0, 10.0, 20.0, as listed in this table, the values of θ∗ are 0.303336, 0.199953,
0.10102, 0.0556989, 0.029435, respectively. Since the computation per iteration is the same for Alg1(1) and
Alg1(θ∗), we just compare their iteration numbers and omit the comparison in computing time. According
to this table, we see improvements of Algorithm 1 with the well-chosen parameter θ∗ over the special case
θ = 1 in [8], especially for relatively large parameter σ and noise level δ. Additionally, the numerical results
in Table 1 reveal that the case of θ = 1.0 seems sensitive to the parameter σ and the noise level of input data,
while the case with θ∗ is more robust.

In Table 2, we report the comparison of the iteration numbers for Alg1(1) and Alg1(θ∗). We focus
on the case of Example 6.1 with σ = 10.0 and test different noise levels and triangular meshes: “TVo”
(1023 nodes and 1980 elements), “TVo1” (2126 nodes and 4154 elements), “TVo2” (3667 nodes and 7204
elements), “TVo3” (5621 nodes and 11080 elements). Note that “TVo” denotes the mesh shown in Figure 1;
“TVo1”,“TVo2”,“TVo3” are refined meshes with approximate values of 1/‖∇‖2 as 4.4×10−6, 2.5×10−5

and 1.5× 10−5, respectively. These experimental results verify acceleration of Algorithm 1 via choosing the
combination parameter θ 6= 1.
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Table 1: Comparison in iteration numbers of Alg1(1) and Alg1(θ∗) for Example 6.1 with different noise
levels.

δ = 20% δ = 10% δ = 5% δ = 1%
σ Alg1(1) Alg1(θ∗) Alg1(1) Alg1(θ∗) Alg1(1) Alg1(θ∗) Alg1(1) Alg1(θ∗)

1.0 317 247 252 207 224 184 218 181
2.0 363 259 276 216 245 192 236 189
5.0 407 274 305 225 272 200 262 196

10.0 434 270 329 228 296 203 285 199
20.0 466 273 359 230 325 205 313 200

Table 2: Comparison in iteration numbers of Alg1(1) and Alg1(θ∗) with σ = 10.0 for Example 6.1 with
different meshes and noise levels.

δ = 20% δ = 10% δ = 5% δ = 1%
mesh Alg1(1) Alg1(θ∗) Alg1(1) Alg1(θ∗) Alg1(1) Alg1(θ∗) Alg1(1) Alg1(θ∗)
TVo 434 270 329 228 296 203 285 199
TVo1 426 300 365 268 343 259 334 258
TVo2 453 350 393 311 373 298 364 294
TVo3 448 363 408 336 397 330 394 330

In Figure 3, we plot the values ofE(unh) at the iterations unh for the cases of δ = 10% and 5%. The curves
of this figure further show that the energy decreases more quickly for Algorithm 1 with θ∗ than θ = 1.0.
The acceleration of Algorithm 1 with θ 6= 1 is thus verified. We show the iterations unh for the cases of
θ∗ = 0.0556989 and θ = 1.0 in Figure 4, the cases with n = 0, 20, 40 and nstop are listed from top to
bottom, where nstop stands for the scenarios where the iteration is terminated, i.e., the iteration numbers are
228 and 329 for the cases of θ∗ and θ = 1, respectively.
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(a) noise level δ = 10%
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(b) noise level δ = 5%

Figure 3: Energy E(unh) of iterations unh by Algorithm 1 with θ∗ = 0.0556989 and θ = 1.0, respectively, for
Example 6.1 with σ = 10.0.

We also notice that there are a series of papers (e.g., [29, 34, 33, 41]) that consider finding numerical
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Figure 4: Iterations unh with n = 0, 20, 40, nstop by Algorithm 1 with σ = 10.0 for optimal θ∗ = 0.0556989
(left) and θ = 1.0 (right) for Example 6.1 with δ = 10%.
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solutions of the model (1.1) by solving its regularized L2 gradient flow, i.e.,

∂tu− div

(
∇u√
|∇u|2 + λ

)
+ α(u− g) = 0. (6.2)

This approach has been shown to be able to overcome the singularity of the diffusion term in (1.4). Partic-
ularly, in [34, 33], the following fully discretized implicit finite element scheme (IFEM) was proposed for
solving (6.2):(un+1

h − unh
τ

, vh

)
+

(
∇un+1

h√
|∇un+1

h |2 + λ
,∇vh

)
+ α(un+1

h − g, vh) = 0, ∀ vh ∈ S1(Th). (6.3)

Since (6.3) is a nonlinear system and it is generally not easy to solve it, the following semi-implicit finite
element scheme (SIFEM) was proposed in [29, 41]:(un+1

h − unh
τ

, vh

)
+

(
∇un+1

h√
|∇unh|2 + λ

,∇vh
)

+ α(un+1
h − g, vh) = 0, ∀ vh ∈ S1(Th), (6.4)

which results in a linear equation with respect to un+1
h .

In the following, we shall compare Algorithm 1 with the SIFEM (6.4) as well to further verify its effi-
ciency. We take λ = 1.0× 10−3 for the SIFEM (6.4) and the same step size τ as Algorithm 1.

Table 3: Comparison in computing time in seconds of Alg1(θ∗) and the SIFEM (6.4) for Example 6.1 with
different noise levels.

δ = 20% δ = 10% δ = 5% δ = 1%
σ Alg1(θ∗) SIFEM Alg1(θ∗) SIFEM Alg1(θ∗) SIFEM Alg1(θ∗) SIFEM

0.01 0.63 3.14 0.57 2.50 0.52 2.51 0.51 2.45
0.05 0.67 2.30 0.62 1.84 0.56 1.76 0.57 1.77
0.1 0.73 2.09 0.68 1.71 0.62 1.70 0.61 1.66
0.2 0.84 1.53 0.74 1.22 0.67 1.19 0.66 1.18
0.5 0.98 1.19 0.84 1.03 0.74 0.99 0.73 1.00
1.0 1.04 1.13 0.87 0.91 0.78 0.93 0.77 0.94

In Table 3, we list the computing time in seconds for Alg1(θ∗) and the SIFEM (6.4) for Example 6.1 with
different noise levels. For the cases of σ = 0.01, 0.05, 0.1, 0.5, 1.0, the values of θ∗ are 0.881256, 0.754343,
0.672078, 0.420204, 0.303336, respectively. Table 3 shows that Algorithm 1 performs much more efficiently
than the SIFEM (6.4) for Example 6.1. Since Algorithm 1 and the SIFEM (6.4) are in different natures and
the computation per iteration is different, we just compare them in terms of the computing time and omit the
iteration numbers.

6.2 Numerical Results for Algorithm 2

Then, we test Example 6.2 to verify that Algorithm 2 with a relaxed requirement on τ could be numerically
faster than Algorithm 1. The efficiency of Algorithm 2 is demonstrated by some comparisons with Algorithm
1.

Example 6.2. Let α = 400, g = g0 + δξh and ξh be a mesh-dependent perturbation function, where g0 be
the solution at t = 1.0 of the 2D Allen-Cahn equation [2] over Ω = (0, 1)2 subjected to periodic boundary
condition,

∂tu = D
(
ε∆u− 1

ε
F ′(u)

)
, (6.5)
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where F (u) = 1
4(u2 − 1)2, the initial value be taken as the following random initial value

u(x, 0) = 0.05(2rand− 1).

We obtain g0 by solving the Allen-Cahn equation (6.5), which describes the process of phase separation
in multi-component alloy systems, including order-disorder transitions. The image of g0 over the mesh
Th with 10, 201 nodes and 20, 000 elements is shown in Figure 5, which represents the concentration of
two metallic components of the alloy at time t = 1, respectively separated in the red and blue regions. It
is piecewise constant and exhibits jumps on the edges, and we consider it as an appropriate data for the
minimization model (1.1). The perturbation function ξh ∈ S1(Th) evaluated at each node of mesh Th is a
random value sampled from the normal distribution, the noise level δ is 0.2, the initial guess u0

h is set by
function gh and p0

h is chosen as 0.
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Figure 5: The function g0 over the uniformly triangular mesh with square edge length 1/100.

We fix σ = 0.1 and γ = 1.0 for Algorithms 1 and 2; and focus on some cases with θ ∈ [−0.9,−0.2] to
compare the difference of these two algorithms (because the difference of these two algorithms for Example
6.2 is less significant when θ is not that small, e.g., θ ∈ [−0.1, 1]). In Table 4, the iteration numbers and
computing time in seconds are listed for the cases of θ ∈ [−0.9,−0.2] with an equal distance of 0.1, where
the tolerance in the stopping criterion is set as Tol = 1.0 × 10−4. According to the table, we see that
Algorithm 2 converges with much larger values of τ than those for Algorithm 1. This coincides with our
theoretical assertion of τ ∼ O(h2) for Algorithm 1 and τ ∼ O(h) for Algorithm 2; see (3.1) and (5.2),
respectively. Moreover, the results in Table 4 show that Algorithm 1 seems to be more sensitive if the value
of τ is near its upper bound theoretically given by (3.1). The comparison of iteration numbers and computing
time in seconds is displayed in Figure 6. We test the cases of θ = −0.2,−0.4,−0.6,−0.8 with more values
of the step size τ ; and plot the results in Figure 7. This figure shows that the iteration numbers and computing
time of Algorithm 1 decrease first and then increase once it is convergent; while those of Algorithm 2 are
monotonically increasing with small values of the step size τ . In Figure 8, we plot the input u0

h and outputs
(first row: input u0

h; second row: output by Algorithm 1; third row: output by Algorithm 2) when θ = −0.4
(left) and −0.8 (right) for Example 6.2 with Tol = 1.0× 10−5.
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Figure 6: The iteration step (left) and CPU time (right) in seconds for Example 6.2 by Algorithm 1 and
Algorithm 2 with θ = −0.9, · · · ,−0.2 and their corresponding step size τ marked in Table 4.

7 Conclusions

In this paper, we focus on the application of primal-dual schemes to the saddle-point reformulation of a
minimization model with total variation regularization. We consider the context of using the consistent
finite element discretization and focus on the convergence study for some primal-dual schemes. We first
generalize the primal-dual scheme in [8], and then prove its convergence and establish its worst-case con-
vergence rate measured by the iteration complexity. Then, we propose a new primal-dual scheme in the
prediction-correction framework, whose requirement of the step size τ can be significantly relaxed. This
new primal-dual-based prediction-correction scheme keeps the same convergence and may perform better
than the generalized primal-dual scheme. We report some preliminary numerical results to verify the theo-
retical assertions.
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