
1

Energy-Efficient Decision Making
for Mobile Cloud Offloading

Huaming Wu, Member, IEEE , Yi Sun and Katinka Wolter

Abstract—Mobile cloud offloading migrates heavy computation from mobile devices to remote cloud resources or nearby cloudlets. It
is a promising method to alleviate the struggle between resource-constrained mobile devices and resource-hungry mobile applications.
Caused by frequently changing location mobile users often see dynamically changing network conditions which have a great impact on
the perceived application performance. Therefore, making high-quality offloading decisions at run time is difficult in mobile
environments. To balance the energy-delay tradeoff based on different offloading-decision criteria (e.g., minimum response time or
energy consumption), an energy-efficient offloading-decision algorithm based on Lyapunov optimization is proposed. The algorithm
determines when to run the application locally, when to forward it directly for remote execution to a cloud infrastructure and when to
delegate it via a nearby cloudlet to the cloud. The algorithm is able to minimize the average energy consumption on the mobile device
while ensuring that the average response time satisfies a given time constraint. Moreover, compared to local and remote execution, the
Lyapunov-based algorithm can significantly reduce the energy consumption while only sacrificing a small portion of response time.
Furthermore, it optimizes energy better and has less computational complexity than the Lagrange Relaxation based Aggregated Cost
(LARAC-based) algorithm.

Index Terms—Mobile cloud computing, cloudlet, offloading, energy-efficient, Lyapunov optimization, LARAC algorithm.

F

1 INTRODUCTION

1.1 Limitation of Mobile Devices

MOBILE devices, such as smartphones, smart watches,
tablets and notebooks, are constrained by limited

resources such as memory capacity, network bandwidth,
processor speed and battery power. These constraints pre-
vent mobile devices from widely running complex mobile
applications with heavy multimedia and signal processing.
This is not just a temporary limitation of current mobile
hardware technology, but is intrinsic to mobility [1].

Battery life is the top concern of mobile users. An inves-
tigation engaged by thousands of users around the world
indicated that “over 75 percent of respondents said better
battery life is the main feature they want from a future
converged device” [2]. Longer battery life is more important
than most other features, including camera and storage.
Mobile terminals are getting more advanced in terms of
processing speed, sharper screen and more sensors which
lead to higher energy consumption. Smartphones are no
longer used only for voice communication but are more
and more frequently used for watching videos, web surfing,
interactive gaming, augmented reality and other purposes
which consume huge amounts of energy and seriously
shorten the life of a smartphone battery. Further, these
applications are too computation intensive to be executed on
a mobile system. Even though battery technology has been

• H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin 300072, China (email: whming@tju.edu.cn). Y. Sun and K. Wolter
are with the Institut für Informatik, Freie Universität Berlin, Berlin
14195, Germany (email: {yi.sun, katinka.wolter}@fu-berlin.de.).

• This work was supported by Huawei Innovation Research Program
(HIRP) grant funded by the Huawei Technologies Co. Ltd (No.
HIRPO2017050307).

steadily improving, it has not been able to keep up with the
rapid growth of energy consumption of mobile systems [3].

1.2 Mobile Offloading
The emergence of cloud computing allows to resolve a
number of concerns of mobile computing, since the cloud
can be seen as a system characterized by unlimited resources
that can be accessed anytime and anywhere [4]. Mobile
Cloud Computing (MCC), which combines the strength
of the cloud with the convenience of mobile terminals, is
emerging as a new computing paradigm that aims to aug-
ment computational capabilities of mobile devices, taking
advantage of the abundant resources present in the cloud.

Along with the maturity of MCC, mobile cloud offload-
ing is becoming a promising method to alleviate the struggle
between resource-constrained mobile devices and resource-
hungry mobile applications. Its main idea is to migrate
compute-intensive tasks from the mobile device to remote
cloud servers and then receive results in return [5]. Offload-
ing can release the mobile devices from intensive processing
and increase the performance of mobile applications [6].
It brings many potential benefits, such as saving energy,
performance improvement, reliability improvement, conve-
nience for the software developers and better exploitation of
contextual information [7].

1.3 Challenges
Making good offloading decisions is very difficult, since the
mobility of users typically causes a dynamically changing
network environment [8]. The mobile network environment
has a great influence on the performance of task offloading.
For example, if a mobile device has a stable network con-
nectivity and plenty of network bandwidth, then offloading

2

will result in better performance in terms of both response
time and energy consumption. Thus, making a high-quality
offloading decision requires a good understanding of the
changes in network condition in mobile environments [9].

Mobile devices usually use heterogeneous wireless inter-
faces, such as cellular and WiFi networks to access the cloud
service for offloading of tasks. Different types of networks
have different bandwidth and network latency. While tradi-
tional cloud applications (e.g., iCloud and Siri [10]) have
been very successful, on mobile devices they still suffer
from a number of shortcomings due to the response time of
wireless communication at the edge of a network. Problems
include high latency and energy consumption caused by
the intermittent nature of wireless networks, which makes
executing applications locally more advantageous in certain
circumstances [11]. Since the overhead involved in trans-
mitting the migrated data via a wireless network may be
greater than the benefit from offloading, a decision of which
portion of an application should be offloaded and where to
place the execution (locally or remotely) should be made
based on different offloading-decision criteria.

1.4 Contributions
To prolong battery life time, mobile devices can offload
part of their computational workload via a nearby cloudlet
to a remote cloud server under varying wireless environ-
ment conditions. The design objective of our energy-efficient
offloading-decision algorithm is to determine under which
circumstances offloading is beneficial. We aim at minimizing
the average amount of energy consumed by the mobile
device while satisfying an application response time re-
quirement.

The main contributions of this paper are threefold:

• We propose a generic approach for offloading de-
cision making. Criteria such as minimum response
time and minimum energy consumption are studied
to decide whether an application should run locally,
or remotely on a cloud infrastructure, directly or via
a cloudlet. The tradeoff between energy consumption
and response time is analyzed.

• To save energy when meeting a deadline, we have
formulated a mathematical model for extending the
battery life time of the mobile device. We present a
dynamic algorithm based on Lyapunov optimization
for offloading decision making (i.e., to determine
which application components to be executed locally
and which to process remotely with the given avail-
able wireless networks). Simulation results show that
this algorithm can significantly reduce the energy
consumption on the mobile device while only sac-
rificing a small portion of response time.

• We develop an offloading-decision algorithm based
on Lagrangian Relaxation based Aggregated Cost
(LARAC). The aggregated cost function is redefined
for offloading decision-making. It is set to where
to offload, and instead of using Dijkstra’s algo-
rithm to find the shortest path, we use an itera-
tive method to find an optimal offloading-decision
combination vector. In comparison with the LARAC-
based offloading-decision algorithm, the proposed

Lyapunov-based offloading-decision algorithm re-
duces energy consumption more and has lower com-
putational complexity but a small delay penalty.

1.5 Roadmap

The remainder of this paper is organized as follows.
In Section 2, we review the related work. We give a
brief introduction of different mobile offloading systems
in Section 3. Section 4 discusses the partitioning problem
and offloading-decision criteria. Dynamic energy-efficient
offloading-decision algorithms using Lyapunov optimiza-
tion and the LARAC algorithm are presented in Section 5.
Section 6 contains the simulation and its results. Finally, the
paper is concluded in Section 7.

2 RELATED WORK

Extending battery lifetime is one of the most crucial de-
sign objectives of mobile devices because they are usually
equipped with limited battery capacity while applications
are becoming increasingly complex [12]. Many research
efforts like [13], [14] and [15] have been devoted to energy-
efficient offloading in mobile cloud computing.

Offloading decisions regarding where to execute compu-
tation should be made based on the ratio of communication
versus computation required by the application. Kumar et
al. [12], [16] argue that cloud computing could potentially
save energy for mobile users, but not all applications were
energy-efficient when migrated to the cloud. It depends on
whether the computational cost (i.e., time or energy) saved
due to offloading outperforms the extra communication
cost. A large amount of communication combined with a
small amount of computation should preferably be per-
formed locally on the mobile device, while a small amount
of communication with a large amount of computation
should preferably be executed remotely.

Many offloading systems are able to make offloading
decisions dynamically. MAUI [17] is a system that enables
energy-aware offloading of mobile code to the infrastructure
by deciding at run time which methods should be executed
remotely. It saves most possible energy under the mobile
device’s current connectivity constraints. Its main aim is to
optimize energy consumption of a mobile device by estimat-
ing and trading off the energy consumed by local processing
vs. transmission of code and data for remote execution. The
offloading inference engine proposed in [18] can adaptively
make decisions at run time, dynamically partition an ap-
plication and offload part of the application execution to
a powerful server. We have explored the tradeoff between
reducing the execution time and extending the battery life
of mobile devices for mobile cloud offloading by using
combined metrics [19], [20], [21]. Some researchers consider
a response time constraint when partitioning application
tasks for execution on mobile devices and servers, which
is an important issue for many interactive applications. To
reduce energy consumption while meeting a given deadline
dynamic offloading algorithms were presented in [22] and
[23]. This publication presented a solution of low complexity
to solve the problem of offloading decision making (i.e., to
determine which software components to execute remotely

3

under mobile network environments). Beraldi et al. [11]
showed that rather than always offloading the whole ap-
plication, running partial components locally can be more
advantageous. They proposed a novel generic architecture
that can be integrated into any mobile application. The ar-
chitecture aims at automating the offloading decision and at
improving the application response time while minimizing
the overall energy consumed by the mobile device.

Mobile users can also offload applications to nearby
resource-rich devices to reduce energy consumption and
improve performance, not using the cloud since this would
normally come at higher latency with lower available band-
width. Satyanarayanan et al. [1] proposed a type of MCC
known as Cloudlet, in which the mobile device connects
through a WLAN network and receives service from a
cloudlet (e.g., coffee shop) as an intermediary node. In
essence, cloudlets make use of mobile devices as thin clients
to access local resources rather than connecting to a remote
cloud server directly. A Mobile Cloud Middleware (MCM)
is also introduced in [24] as an intermediary between the
mobile device and the cloud in order to manage the asyn-
chronous delegation of mobile tasks to cloud resources and
to decrease the offloading time to the cloud from the mobile
device. Mobile task computation then happens at the cloud
provider and a connection between the MCM and the cloud
provider is maintained during the task execution.

In previous work on energy-efficient mobile cloud of-
floading, no dynamic offloading-decision algorithms were
proposed for mobile users using a nearby cloudlet or mid-
dleware. That is the main focus of this paper.

3 SYSTEM OVERVIEW

A variety of cloud systems with different characteristics are
emerging these days for data storage and processing, e.g.,
Amazon EC2, Apple iCloud, Microsoft Windows Azure,
and Google App Engine. Such systems use proprietary
cloud platforms to provide different kinds of services. For
example, a cloud data center specifically designed for health
care services provides a platform for large data storage and
parallel computing capabilities for data mining [25].

iCloud

4G LTE

Celular
Network WiFi AP3G

WiFi AP

Cloudlet Cloudlet

Fig. 1: A general mobile cloud offloading system

As illustrated in Fig. 1, a general offloading model can be
organized as a two-level or three-level hierarchy [26]. An ap-
plication can deploy its components on multiple application
processing nodes such as a mobile device, a cloudlet and the
cloud, i.e., there can be multiple offloading destinations and
targets. Offloading the same application to different places
may achieve a different amount of computation within the
same time interval due to the different speed of cloud
servers. It may incur different communication cost and
communication time due to the specific wireless network
and cloud availability.

3.1 Two-Level Offloading Systems
Rather than running applications locally and directly re-
questing data from content providers, a mobile device can
offload parts of its workload to the cloud, taking advan-
tage of the abundant cloud resources to help gather, store,
and process data [27]. This offloading scheme critically
depends on a reliable end-to-end communication and on
the availability of the cloud [13]. In addition, it suffers from
high network access latency and low network bandwidth.
Access to the cloud is usually influenced by uncontrollable
factors, such as the instability and intermittency of wireless
networks.

As shown in Fig. 2(a), computation offloading consists
of three steps: sending the required data to the cloud,
waiting for the cloud to complete execution of the offloaded
computation and receiving execution results from the cloud.
We define the total response time from the perspective of
the mobile device as the duration between sending the
application to the cloud and receiving the results back from
the cloud. According to Fig. 2(a), it includes the transmission
delays and the time to process the requested task in the
cloud. Therefore, the response time and the energy con-
sumed to handle a cloud service request can be calculated
as follows:

T2-level = ttr + ts, (1)
E2-level = ptr · ttr + pi · ts, (2)

where ttr = D/B is the transmission time taken across the
radio link for the cloud service request, including the time
to transmit the request to the cloud and the time to send the
response back to the mobile device, the definitions of D and
B refer to Table 1. The time to perform the actual service at
the cloud server is ts, the power for sending and receiving
data is ptr and pi is the power used while the mobile device is
idle. We ignore the effects of contention for the cloud service
and assume that the cloud is able to handle many service
requests at the same time.

There may be several ways to access the cloud, e.g.,
via a costly cellular connection or intermittently available
WLAN hotspots. The cellular connection can provide a near-
ubiquitous coverage for mobile terminals in a wide area and
support high mobility [13]. However, due to factors such
as channel fading and traffic congestion the connectivity
between mobile devices and the cloud often has relatively
low data rate and sometimes is unstable.

3.2 Three-Level Offloading Systems
Rather than relying on direct access to a remote cloud a
mobile device can use a nearby cloudlet or MCM via WLAN

4

Mobile device Cloud

Request transmission

Response transmission

C
loud process

ts
ttr {

{

{
(a) Two-level offloading service

Mobile device Cloudlet

Request transmission

Response transmission

Cloud

Request transmission

Response transmission

C
loud process

{
{
{

{
{

{
{

tsttr tte
tc

(b) Three-level offloading service

Fig. 2: Different mobile cloud offloading services [24]

TABLE 1: Parameters for Offloading Decisions

Symbol Meaning
tm Execution time on the mobile device
ts Time taken to process the actual service on the cloud server
tc Time taken to process the request in the cloudlet
tte Transmission time between the cloudlet and the cloud
ttr Transmission time between the mobile device and the cloud/cloudlet
D Transmitted data between the mobile device and the cloud
B Bandwidth between the mobile device and the cloud
B1 Bandwidth between the mobile device and the cloudlet
B2 Bandwidth between the cloudlet and the cloud
pm Power for computing
pi Power while being idle
ptr Power for sending and receiving data

to connect to the cloud at lower latency and lower energy
consumption. A cloudlet is viewed as a trusted, resource-
rich computer or cluster of computers that is well-connected
to the Internet and is available for use by nearby mobile
devices [1]. It works like a middleware, does some prepro-
cessing, and reduces the latency to the cloud in some cases.
The computation task is first transmitted to the cloudlet
and then forwarded onto the remote cloud via a stable
Internet connection. The mobile device does not need to
communicate with the remote cloud directly, but only with
the cloudlet. This architecture often reduces latency by using
a single-hop network and potentially saves battery by using
WiFi or short-range radio instead of a broadband wireless
network which typically consumes more energy [17]. Be-
sides, loss or destruction of a cloudlet is not catastrophic
since it only contains soft state such as cached copies of data
or code that is also available elsewhere.

Three-level offloading is a technique which can be ap-
plied in Mobile Edge Computing (MEC) [28]. The cloudlet
becomes a better choice for mobile offloading when direct
offloading to the cloud is unstable. As shown in Fig. 2(b)
the model of three-level offloading service consists of a local
tier of mobile devices, a middle tier of nearby cloudlets,
typically located at the mobile devices’ access point but
characterized by limited resources, and a remote tier of
cloud servers, which have practically infinite resources [29].
It takes five steps to perform computation offloading: the

mobile device sends the required data to the cloudlet, the
cloudlet sends the required data to the cloud, waits for the
cloud to complete execution, the cloudlet receives the execu-
tion results from the cloud, and the mobile device receives
execution results from the cloudlet [30]. Consequently, the
total response time and energy consumption are calculated
as:

T3-level = ttr + tte + tc + ts, (3)
E3-level = ptr · ttr + pi · (tte + tc + ts), (4)

where ttr is the transmission time across the radio link for
the service invocation between the mobile device and the
cloudlet. The value includes the time taken to transmit the
request to the cloudlet and the time to send the response
back to the mobile device. The transmission time between
the cloudlet and the cloud is tte and tc is the time taken to
process the request at the cloudlet.

4 OFFLOADING DECISIONS

In this section we formulate the problem of offloading
decision making. We first focus on decision criteria (e.g.,
minimum response time or energy consumption) to decide
when to perform the computation locally and when to dele-
gate it directly or via a cloudlet to cloud resources, and then
with such criteria some realistic experiments are performed.
Finally, a mathematical model of where to offload is built.

5

4.1 Offloading-Decision Criteria

The communication cost between the mobile device and
the cloud depends on the network bandwidth. Since the
bandwidth of WLAN networks is considerably higher than
the bandwidth provided by radio access to a mobile device,
different wireless technologies offer competing choice to
connect to a nearby cloudlet and then to the cloud. As
depicted in Fig. 3, the bandwidth between the mobile device
and the cloudlet is B1, which generally uses Bluetooth
or a high-bandwidth WLAN. The connection between the
cloudlet and the cloud is usually wired with bandwidth B2,
using broadband technology like Internet. The connection
between the mobile device and the cloud is mostly wireless
with bandwidth B, which uses a cellular or WiFi interface.
Mostly, we have B ≤ B1 and B1 ≤ B2.

Cloudlet

Cloud

WiredWiFi

Cellular network

B1 B2

B,D

Bluetooth

Mobile device

Fig. 3: Model of mobile offloading systems [31]

It is more profitable to offload the application directly
to the cloud (i.e., two-level offloading) instead of executing
locally on the mobile device if:

pm · tm > ptr ·
D

B
+ pi · ts, (5)

that is to say, we compare the energy consumed by local
execution with the energy consumption when offloading to
the cloud, and if the former is greater than the latter, then
we decide to perform the application at the remote cloud
server.

Similarly, it is encouraged to offload the application via
its nearby cloudlet to the remote cloud (i.e., three-level
offloading) when the following condition is satisfied:

pm · tm > ptr ·
D

B1
+ pi ·

(D
B2

+ tc + ts
)
, (6)

which is obtained by substituting ttr = D/B1 and tte =
D/B2 into Eq. (4). We compare the local energy consump-
tion with the energy cost when offloading via a cloudlet to
the cloud, and if the former is greater than the latter, then
we decide to migrate the application to the remote cloud.

According to Eqs. (5) and (6) it is straight forward to see
that the three-level offloading scheme performs better than
the two-level offloading only if it satisfies:

ptr ·
D

B
> ptr ·

D

B1
+ pi ·

(D
B2

+ tc
)
. (7)

An offloading decision-making process based on the pre-
dicted energy consumption is explained in Fig. 4. Given an
application, we first estimate the average bandwidth of the

current network, trigger the energy consumption predictor
to get an expected energy consumption of the mobile device
and then use the offloading-decision criteria to take an
offloading decision [5]. On one hand, if the predicted energy
consumption satisfies both Eq. (6) and Eq. (7), we will apply
the three-level offloading model; on the other hand, if the
predicted energy consumption does not satisfy Eq. (7) but
Eq. (5), we choose the two-level offloading scheme. In all
other cases, the application is preferably executed locally on
the mobile device.

Eq. (7)

Eq. (6)

Eq. (5) Local
Execution

Two-Level
Offloading

Three-Level
Offloading

Finished

Start

Yes

Yes

No

Yes

No

No

•

Fig. 4: Offloading decision making based on the predicted
energy consumption

4.2 Offloading-Decision Engine

Building on our previous work [32], [33], an offloading-
decision engine based on different decision criteria is de-
veloped to capture the tradeoff between computation and
communication.

At the cloud side, a server of Freie Universität Berlin is
used which processes with 4 cores of the type Intel Xeon
CPU E5649 2.53 GHz, with a main memory of 7786 MB.
The server runs Apache Tomcat 6 and uses Java 1.6. At
the mobile side up to date mobile devices (see Table 2) are
applied in mobile cloud environments with various mobile
communication networks. The server is about 17 times faster
than the slow device (Xiaomi Redmi 2) and 1.1 times faster
than the fast device (Samsung Galaxy S6). Communication
with the server is based on the basic query/response struc-
ture. PowerTutor1 is adopted for battery usage calculations.

Figure 5 shows an overview of the offloading-decision
engine. The left screen shows all the relevant parameters
such as the speedup factor (i.e., the ratio of the cloud
server’s execution speed compared to the speed of the
mobile device), the bandwidth, the network and server
availability information. On the main screen, we can choose
different amounts of computation (FLOPS) and communica-
tion data (MB). Offloading decisions can be made based on
one of the three criteria, i.e., time-saving, energy-saving, and
time- and energy-saving. The right screen shows the estimated

1. PowerTutor is an application for Android phones that
provides accurate, real-time power consumption estimates for
power-intensive hardware components, http://ziyang.eecs.umich.
edu/projects/powertutor/

6

TABLE 2: Mobile Device Specifications

Device CPU Memory Communication Method Technology
WiFi IEEE 802.11g

Xiaomi Red 2 Quad-core 2.1 GHz Cortex-A57 1GB RAM 3G HSPAP/HSUPA
4G LTE

WiFi IEEE 802.11g
Samsung Galaxy S6 Quad-core 1.2 GHz Snapdragon 410 3GB RAM 3G HSPAP/HSUPA

4G LTE

Fig. 5: The offloading-decision engine based on different criteria

and real costs for both local and remote executions. The
engine will decide whether the task should be offloaded or
not, depending on which estimated option (local or remote)
has relatively lower cost.

From Figs. 6 and 7 it can be observed that the real cost
matches the estimates produced by the offloading-decision
engine well when taking into account both the bandwidth
and round-trip time (RTT). It is also of interest to observe the
point where offloading starts being beneficial. For a small
amount of data (100 KB), only about 17 MFLOPS are needed
to reach this point, while the point arrives around 100
MFLOPS for a large volume of data (1 MB). As the data size
grows, the RTT loses relevance and the bandwidth becomes
the main factor. When choosing the energy-saving criterion
even more computation is needed to reach the critical point.
As shown in Fig. 7 the fast device can not benefit so much
from offloading the computation to the server as the slow
device does. We observe that offloading is only beneficial if
the amount of computation is very large (GFLOPS).

Further, the utilization of cellular networks such as 3G
and 4G LTE technologies for offloading will suffer from
high latency when compared with WiFi [34]. In spite of this
the offloading-decision engine still works very well since
it considers the relative relationship of communication and
computation.

4.3 Mathematical Model
A graphical illustration of where to perform the computa-
tion (locally, delegate it directly or via a cloudlet to cloud
resources) is depicted in Fig. 8. The mobile device, the
cloud and the cloudlet are represented as queueing nodes to
capture the resource contention on these systems. We define
1/µm, 1/µcloud and 1/µcloudlet as the expected execution time
on the mobile device, the cloud and the cloudlet, respec-
tively [30]. The wireless access network and the Internet

are denoted as simple delay centers representing average
network delays when a task is remotely executed, where
1/µ0, 1/µ1 and 1/µ2 are the expected execution time on the
different networks. Different application tasks are generated
on a mobile device according to some process. We assume
a simple model where functions in an application are not
hierarchically called and all tasks run sequentially without
parallelism. Suppose there areN+1 application components
that can be classified into two classes [35], where each time a
component is executed a decision must be taken into which
class it belongs to:

• Unoffloadable: in general, not all application com-
ponents can be offloaded, we assume there are m
components that should be unconditionally executed
locally on the mobile device, either because transfer-
ring relevant information would take too long and
consume too much energy or because these tasks
must access local components (e.g., cameras, sensors
and user interfaces) [17]. Local processing consumes
the CPU power of the device and, in particular, the
battery power. Fortunately, there are no communica-
tion costs or delays.

• Offloadable: N + 1−m application components are
flexible tasks that can be processed either on the
mobile device or remotely in a cloud infrastructure,
offloaded directly or via a cloudlet to the cloud.
Many tasks fall into this category and the offloading
decision depends on whether the communication
costs outweigh the local processing costs [12].

The problem of taking offloading decisions correctly
does not exist for unoffloadable components. However, as
for the offloadable ones, since offloading all computation
components of an application to the remote cloud is not
necessary or effective under all circumstances, it is of inter-
est to consider when they should be executed locally on the

7

Computation (MFLOPS)
0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

0

0.5

1

1.5

Local estimated
Remote estimated
Real execution

(a) Communication data 100 KB
Computation (MFLOPS)

0 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

(J
)

0

0.2

0.4

0.6

0.8

1

1.2

Local estimated
Remote estimated
Real execution

(b) Communication data 100 KB

Computation (MFLOPS)
0 50 100 150 200 250 300

T
im

e
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

Local estimated
Remote estimated
Real execution

(c) Communication data 1 MB
Computation (MFLOPS)

0 50 100 150 200 250 300

E
ne

rg
y

(J
)

0

0.5

1

1.5

2

2.5

3

3.5

Local estimated
Remote estimated
Real execution

(d) Communication data 1 MB

Fig. 6: Behavior of the slow device with different amounts of computation

Computation (GFLOPS)
0 5 10 15 20 25 30

T
im

e
(s

)

0

5

10

15

20

25

30

Local estimated
Remote estimated
Real execution

(a) Communication data 100 KB
Computation (GFLOPS)

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

)

0

5

10

15

20

25

30

35

40

Local estimated
Remote estimated
Real execution

(b) Communication data 1 MB

Fig. 7: Behavior of the fast device with different amounts of computation

mobile device, when they should be offloaded directly onto
the remote cloud for execution and when they should be
offloaded through a nearby cloudlet to the remote cloud for
further processing based on available networks, response
time or energy consumption. The mobile device has to take
an offloading decision based on the result of a dynamic
optimization problem.

We further analyze the mathematical model by including
offloading-decision criteria. ∀n ∈ {0, 1, · · · , N}, the nth

application component’s response time is selected as:

Tn(t) =
{
T local
n (t), T cloud

n (t), T cloudlet
n (t)

}
, (8)

where T local
n (t) is the time taken locally without offloading,

T cloud
n (t) = T sn + Dn

B(t) is the time taken when offloading

directly to the cloud and T cloudlet
n (t) = Dn

B1(t)
+ Dn

B2(t)
+T cn+T sn

is the time taken when offloading via a cloudlet to the cloud.
T sn and T cn is the time taken to process the nth component
on the cloud and cloudlet, respectively.

Similarly, the energy consumption can be expressed as:

En(t) =
{
Elocal
n (t), Ecloud

n (t), Ecloudlet
n (t)

}
, (9)

where Elocal
n (t) = pm · T local

n (t) is the energy consumed
locally, Ecloud

n (t) = ptr · Dn

B(t) +pi ·T sn is the energy consumed
when offloading directly to the cloud, and Ecloudlet

n (t) =
ptr · Dn

B1(t)
+ pi ·

(
Dn

B2(t)
+ T cn + T sn

)
is the energy consumed

when offloading via a cloudlet to the cloud.

8

locally

unoffloadable

offloadable

completed
New tasks

cloud

cloudcloudlet

mobile device

decision

0

1 2

m

Wireless

network

Internet
Wireless

network

cloud

cloudlet

m
N+1 components

N+1-m

cloud

Fig. 8: A mathematical model of adaptive decision making for mobile cloud offloading

We consider a deadline-aware offloading scenario where
the user has a processing deadline and all tasks must be
completed before this time. Without deadline the user may
defer tasks to process locally or in the cloud in future stages
expecting that the penalty of failed tasks may be less. Thus,
the total response time may be very long. The deadline
forces the user to offload tasks to reduce energy consump-
tion while satisfying the given response time requirement.
Taking the average in Eqs. (8) and (9) we obtain the average
response time and average energy consumption as follows:

min Ē , lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=0

E{En(τ)},

s.t. T̄ , lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=0

E{Tn(τ)} ≤ Td,

where Td is a deadline and the processing of all application
components have to be finished within this time.

5 ENERGY-EFFICIENT DYNAMIC OFFLOADING-
DECISION ALGORITHMS

5.1 Partitioning Problem

Our objective is to minimize the average energy consump-
tion on the mobile device while satisfying a given response
time requirement. There are three constraints of the pro-
posed approach [22]:

• Minimizing the average energy consumption of the
mobile device.

• Satisfying the given deadline on run time of the data
processing for each application.

• Opportunistic partitioning of the application compo-
nents into different categories (e.g., run on mobile
device, cloudlet or cloud).

We consider a graph G = (R,S) with |R| = N + 1
to represent the relationship among the N + 1 application
components (one must be executed locally, the other N
components are offloadable). Each vertex v ∈ R denotes a
component and Duv along the undirected edge (u, v) repre-
sents the size of data migrating from vertex u to v. When
there is a request for application execution, a controller
in the mobile device determines which components to be

executed locally and which ones to be executed remotely in
the cloud (e.g., Amazon EC2 or Microsoft Azure) [22].

At the tth execution, let the offloading-decision vector be
defined as:

ω(t) =
{
ωn(t)|n ∈ {0, 1, · · · , N}, ωn(t) ∈ {0, 1, 2}

}
1×(N+1)

,

(10)
where ωn(t) = 1 denotes that the nth component is executed
locally, ωn(t) = 0 represents that it is directly offloaded
to the remote cloud, and ωn(t) = 2 denotes that it is first
migrated to a nearby cloudlet and then offloaded from
the cloudlet to the cloud. The component with index 0
is assumed to be unoffloadable and it should always be
executed locally. Therefore we always have ω0(t) = 1. The
other N components are offloadable such that ωn(t) can be
selected from {0, 1, 2}.

5.1.1 Total Response Time
The total response time is equal to the time taken by the
components running locally and those running remotely
plus the additional communication time when they reside
in different places.

T (ω(t)) =
∑
v∈R

ωv(t) · Tm
v (t)︸ ︷︷ ︸

local

+
∑
v∈R
|1− ωv(t)| · T r

v(t)︸ ︷︷ ︸
remote

+

∑
(u,v)∈S

[
2− |ωu(t)− ωv(t)|

]
· Tuv(t)︸ ︷︷ ︸

communication

, (11)

where ωv(t) and ωu(t) are elements from Eq. (10), the

local execution time is: Tm
v (t) =

{
> 0 if ωv(t) = 1
0 otherwise , the

remote execution time is: T r
v(t) =

{
T s
v(t) if ωv = 0 or 2

0 otherwise ,

and the transfer time from task u to v is:

Tuv(t) =

Duv

B(t) if ωu(t)⊕ ωv(t) = 1
Duv

B1(t)
+ Duv

B2(t)
+ T c

v(t) if ωu(t)� ωv(t) = 0

0 otherwise
,

Duv is the communication data from component u to v, and
⊕ and � are XOR computation and NOR computation for
binary variables, respectively.

The total response time when all components are exe-
cuted locally on the mobile device is Tlocal(t) =

∑
v∈R T

m
v (t).

9

5.1.2 Total Energy Consumption
The total energy consumption is the energy consumed by
the components running locally, plus the energy consumed
in idle state when some components are executed remotely,
plus the energy consumed for communication.

E(ω(t)) =
∑
v∈R

ωv(t) · Em
v (t)︸ ︷︷ ︸

local

+
∑
v∈R
|1− ωv(t)| · Ei

v(t)︸ ︷︷ ︸
idle

+

∑
(u,v)∈S

(
2− |ωu(t)− ωv(t)|

)
· Euv(t)︸ ︷︷ ︸

communication

, (12)

where Em
v (t) = pm · Tm

v (t) is the local energy consumption,
Ei
v(t) = pi·T r

v(t) is the energy consumed in the idle state due
to offloading and the energy consumed for data transfer:

Euv(t) =

ptr

Duv

B(t) if ωu(t)⊕ ωv(t) = 1

ptr
Duv

B1(t)
+ pi

[
Duv

B2(t)
+ T c

v(t)
]

if ωu(t)� ωv(t) = 0

0 otherwise
.

Similarly, the total local energy consumption when all
components are executed locally on the mobile device is
Elocal(t) =

∑
v∈RE

m
v (t).

After each decision, all components should meet the
following conditions: Xlocal = {Xa|a ∈ [1, 2, · · · , k]},
Xcloud = {Xb|b ∈ [1, 2, · · · , s]}, Xcloudlet = {Xc|c ∈
[1, 2, · · · , N + 1 − k − s]}, Xlocal ∩ Xcloud ∩ Xcloudlet = ∅
and Xlocal ∪Xcloud ∪Xcloudlet = X , where X is the set of all
components, Xlocal is the subset of the components that are
executed locally, Xcloud is the subset of the components that
are directly offloaded to the cloud and Xcloudlet is the subset
of the components that are offloaded through a cloudlet to
the cloud [36].

1 2

4

Mobile device Cloudlet Cloud

3

1

2

1

2

3

Case 1

Case 2

Case 3

2

3

2

4

4 4

Fig. 9: A partitioning example of where to offload

As a partitioning example three cases after offloading
decision making are listed in Fig. 9. Suppose component
1 is unoffloadable and can only be executed locally, while
the other components are offloadable and can either be
processed locally or offloaded to the cloud, directly or via
a cloudlet. We use a dotted arrow to represent offloading
via the cloudlet to the cloud. In case 1, component 3 is

executed on the mobile device, component 4 is offloaded
directly to the cloud while component 2 is offloaded via
the cloudlet to the cloud, thus the decision combination
vector is ω1(t) = {1, 2, 1, 0}. In case 2, components 2
and 4 are offloaded via the cloudlet to the cloud while
component 3 is offloaded directly to the cloud. Hence we
have ω2(t) = {1, 2, 0, 2}. In case 3, all three components
are offloaded directly to the remote cloud and the decision
combination vector is ω3(t) = {1, 0, 0, 0}.

Challenges: Let Φ be the set of all possible decision
combinations. When the application has N offloadable com-
ponents, we can obtain |Φ| = 3N . For each execution, the
number of steps to search for the optimal solution (i.e., to de-
termine whether ωn(t) should be 0, 1 or 2, ∀n = 1, 2, · · · , N)
grows exponentially with the number of vertices [36]. There-
fore, it is difficult to obtain the optimal solution directly.

5.2 A Lyapunov-based Offloading-Decision Algorithm

For a given decision combination vector ω(t), the corre-
sponding energy consumption for different executions may
change due to the variation in the available wireless net-
work. In this case it will be difficult to obtain the optimal
solution. Therefore, we suppose that the available wireless
network remains constant during the tth execution.

The constraint is that the total response time of that
partition should be less than or equal to a deadline Td. Let
the execution indicator variable be defined as:

σ
(
ω(t)

)
=

{
0 if T

(
ω(t)

)
≤ Td

1 otherwise . (13)

A decision combination vector ω(t) is feasible if the total
response time satisfies the delay constraint which is denoted
as σ

(
ω(t)

)
= 0. Otherwise we have σ

(
ω(t)

)
= 1. A feasi-

ble decision combination vector ω∗(t) with the minimum
energy consumption is the optimal solution among all the
feasible decision vectors. Formally, we have:

min
ω(t)

lim sup
t→∞

1

t

t−1∑
τ=0

E
{
E (ω(τ))

}
, (14)

s.t. lim sup
t→∞

1

t

t−1∑
τ=0

E
{
σ (ω(τ))

}
≤ ρ, (15)

where ρ is the violation ratio, i.e. the ratio of the number
of executions which do not meet the deadline to the total
number of executions. Eq. (15) ensures that the system is
stable.

We define the dynamic offloading system as:

Q(t+ 1) = max[Q(t)− ρ, 0] + σ
(
ω(t)

)
∀t ∈ {0, 1, · · · ,∞},

(16)
whereQ(t) is defined as the system state at the tth execution,
which depends on the violation ratio ρ. Therefore, the larger
Q(t), the longer the application response time.

Before further discussing the decision function, we first
present a Lemma from [37], which is related to the deriva-
tion of the decision function.

Lemma 1. Let W , U , µ, and A be non-negative real numbers
and W = max[U −µ, 0]+A, then W 2 ≤ U2 +µ2 +A2−
2U(µ−A).

10

For each execution, define the Lyapunov function [38] as:

L(Q(t)) =
1

2
Q2(t). (17)

Then the Lyapunov drift is defined as the change in this
function from one execution to the next. We have:

L(Q(t+ 1))− L(Q(t)) =
1

2

[
Q2(t+ 1)−Q2(t)

]
=

1

2

{[
max[Q(t)− ρ, 0] + σ

(
ω(t)

)]2 −Q2(t)
}

≤ ρ2 + σ2(ω(t))

2
+Q(t) ·

[
σ
(
ω(t)

)
− ρ

]
(by Lemma 1) (18)

The conditional Lyapunov drift ∆(Q(t)) is the expected
change in the continuous execution of the Lyapunov func-
tion. Given that the current state at the tth execution is Q(t),
we have:

∆(Q(t)) , E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}
. (19)

According to Eq. (18) ∆(Q(t)) for a general control policy
satisfies:

∆(Q(t)) ≤ C − ρQ(t) + E
{
Q(t)σ

(
ω(t)

)
|Q(t)

}
, (20)

where C , E
{
ρ2+σ2(ω(t))

2 |Q(t)
}

=ρ
2

2 + E
{
σ2(ω(t))

2 |Q(t)
}

.
To stabilize the queue state while minimizing the av-

erage energy consumption, we incorporate the expected
energy consumption over one execution. It can be designed
to make control actions that greedily minimize a bound on
the following drift-plus-penalty term at each execution [38]:

∆(Q(t)) + V E
{
E
(
ω(t)

)
|Q(t)

}
, (21)

where V ≥ 0 is a control parameter that represents an “im-
portance weight” on how much we emphasize the energy
minimization compared to the violation rate of the deadline.
In other words, V can be thought of as a threshold on the
system queue state on which the control algorithm takes
offloading decision. So V controls the tradeoff between the
energy consumption and response time. Then substituting
Eq. (20) into Eq. (21), yields:

∆(Q(t)) + V E
{
E
(
ω(t)

)
|Q(t)

}
≤ C − ρQ(t)

+V E
{
E
(
ω(t)

)
|Q(t)

}
+ E

{
Q(t)σ

(
ω(t)

)
|Q(t)

}
= C − ρQ(t) + E

{[
V E

(
ω(t)

)
+Q(t)σ

(
ω(t)

)]
|Q(t)

}
. (22)

Note that our objective is to minimize the average
energy consumption. If we minimize the right-hand-side
of Eq. (22), we can reduce the energy consumption while
keeping Eq. (16) stable. This is accomplished by searching
for a feasible ω(t) that greedily minimizes the decision
criterion as follows:

arg min
ω(t)

[
V E

(
ω(t)

)
+Q(t)σ

(
ω(t)

)]
. (23)

Since the average violation rate is E
{
σ
(
ω(t)

)}
≤ ρ, the

system is stable. We define the decision function as:

d
(
Q(t),ω(t)

)
= V E

(
ω(t)

)
+ σ

(
ω(t)

)
Q(t). (24)

For the tth execution, we choose a decision combination
vector ω∗(t) such that d

(
Q(t),ω∗(t)

)
is minimized. We ap-

ply a 1-opt local search algorithm that seeks for an optimal

solution around the initial estimate, whose vectors of can-
didates are composed by all possible solutions with unitary
Hamming distance. The algorithm has low computational
complexity that in terms of run time is O(|d|3) [39].

Performance Bounds: For any control parameter V >
0, we achieve the average energy consumption and queue
backlog satisfying the following constraints [38]:

Ē = lim sup
t→∞

1

t

t−1∑
τ=0

E
{
E (ω(τ))

}
≤ C

V
+ E∗, (25)

Q̄ = lim sup
t→∞

1

t

t−1∑
τ=0

E{Q(τ)} ≤ C + V (E∗ − Ē)

ε
. (26)

Discussion: It can be seen from Eqs. (25) and (26) that
performance of the dynamic offloading decision algorithm
depends on V , which controls the energy-delay tradeoff.
Since the system state is closely related to the response
time, the tradeoff between energy consumption and
response time [O(1/V), O(V)] follows. The average energy
consumption Ē can be arbitrarily close to the optimum
E∗ with a diminishing gap (1/V) while maintaining
queue stability. However, this reduction is achieved at
the expense of a larger delay because the average system
state Q̄ increases linearly with V . Therefore, we can tune
V to flexibly trade off between energy consumption and
response time. When the power constraint is stringent (e.g.
the mobile device is running out of battery), choosing a
larger V can save more energy at the expense of higher
average response time and instead, when the battery supply
is not so critical (e.g. a charger is available), we can reduce
V to shorten the response time and enjoy better quality of
service [40].

Proof: Because our decision combination vector ω(τ) mini-
mizes the right-hand-side of the drift-plus-penalty inequal-
ity we have at every τ th execution

(
given the observed

Q(τ)
)
:

∆
(
Q(τ)

)
+ V E

{
E
(
ω(τ)

)
|Q(τ)

}
≤ C − ρQ(τ)+

V E
{
E
(
ω∗(τ)

)
|Q(τ)

}
+ E

{
Q(τ)σ

(
ω∗(τ)

)
|Q(τ)

}
≤ C − ρQ(τ) + V E∗ +Q(τ)(ρ− ε) = C + V E∗ − εQ(τ),

where ω∗(τ) is any other (possibly randomized) transmis-
sion decision that can be made at the τ th execution andE∗ is
the minimum energy consumption. Since E

{
σ
(
ω∗(τ)

)}
≤ ρ,

there exists some ω∗(τ) and an arbitrarily small ε > 0 that
meet the requirement that E

{
σ
(
ω∗(τ)

)}
≤ ρ− ε.

Taking expectations of the above inequality and using
the law of iterated expectations yields:

E
{
L
(
Q(τ + 1)

)}
− E

{
L
(
Q(τ)

)}
+ V E

{
E
(
ω(τ)

)}
≤ C +

V E∗ − εE{Q(τ)}.

Summing the above inequality over τ ∈ {0, 1, · · · , t−1}
for some positive integer t yields:

E
{
L
(
Q(t)

)}
− E

{
L
(
Q(0)

)}
+ V

t−1∑
τ=0

E
{
E
(
ω(τ)

)}
≤ Ct+

V E∗t− ε
t−1∑
τ=0

E{Q(τ)}.

11

Since E
{
L
(
Q(t)

)}
and E{Q(τ)} are non-negative elim-

inating one or both terms from the above inequality the
following two inequalities still hold:

−E
{
L
(
Q(0)

)}
+ V

t−1∑
τ=0

E
{
E
(
ω(τ)

)}
≤ Ct+ V E∗t,

−E
{
L
(
Q(0)

)}
+ V

t−1∑
τ=0

E
{
E
(
ω(τ)

)}
≤ Ct+ V E∗t

−ε
t−1∑
τ=0

E{Q(τ)}.

Rearranging terms in the above inequalities yields:

1

t

t−1∑
τ=0

E
{
E
(
ω(τ)

)}
≤ E∗ +

C

V
+

E
{
L
(
Q(0)

)}
V t

,

1

t

t−1∑
τ=0

E{Q(τ)} ≤
C + V

[
E∗ − 1

t

∑t−1
τ=0 E

{
E
(
ω(τ)

)}]
ε

+
E
{
L
(
Q(0)

)}
εt

.

Taking limits as t→∞, we derive Eqs. (25) and (26).

5.3 A LARAC-based Offloading-Decision Algorithm
For comparison we propose a dynamic offloading-decision
algorithm according to LAgrangian Relaxation based Aggre-
gated Cost (LARAC), which uses the concept of aggregated
cost and provides an efficient method to find the optimal
multiplier based on Lagrange relaxation [41].

Our objective is still the same, i.e., to find an offloading
scheme that can minimize the mean energy consumption
subject to the constraint that the average response time
should not exceed the given deadline Td. A decision combi-
nation vector ω(t) is feasible if the total response time meets
the deadline. A feasible decision combination vector ω∗(t)
with the minimum average energy consumption is the op-
timal solution among all the feasible decision combination
vectors. Mathematically, we have:

min
ω(t)

lim sup
t→∞

1

t

t−1∑
τ=0

E
{
E (ω(τ))

}
, (27)

s.t. lim sup
t→∞

1

t

t−1∑
τ=0

E
{
T (ω(τ))

}
≤ Td, (28)

Specifically, we define an aggregated cost function as:

f(λ) = E
{
E
(
ω(t)

)
+ λT

(
ω(t)

)}
− λTd, (29)

where λ is the Lagrange multiplier [23].
Using the principle of Lagrange duality, we obtain:

f(λ) ≤ E
{
E
(
ω∗(t)

)}
, (30)

which gives a lower bound for the optimal solution of the
offloading policy.

To find an optimal combination vector ω∗(t) among all
the possible offloading decision combinations, we formulate
the LARAC-based offloading decision algorithm as shown
in Algorithm 1. If we can find a minimum-energy combina-
tion vector that satisfies the deadline and this combination
is the solution. However, if the minimum-time combination

vector violates the deadline, there is no solution; other-
wise we repeatedly update ωE(t) and ωT (t) to search
for the optimal ω∗(t). Although we cannot guarantee to
find the optimal decision combination, a lower bound for
the optimal solution can be achieved. The computational
complexity of the LARAC algorithm in terms of run time
is O(|f |2log4|f |) [41]. Hence, the LARAC algorithm has a
higher complexity than the Lyapunov-based algorithm.

6 SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
Lyapunov-based offloading-decision algorithms in compar-
ison with different offloading-decision schemes.

6.1 Parameter Settings
Since our algorithms rely on the knowledge of current
states (i.e., the current network bandwidth is supposed to
be known), they closely depend on the bandwidth estima-
tion. We could use the predictors proposed in [42] which
consider the classical bandwidth predictors synthetically.
The framework unifies such decision models by formulat-
ing the problem as a statistical decision problem that can
either be treated “classically” or using a Bayesian approach.
However, we will not focus on bandwidth estimation here.
Instead we assume that the current network bandwidth is
well predicted and can be directly used.

We need to estimate the achievable bandwidth B(t),
B1(t) and B2(t) at the beginning of the tth execution and
they stay constant during each execution. Suppose thatB(t),
B1(t) and B2(t) follow uniform distributions on [1, 200],
[1, 400], and [1, 500] Kbps, respectively. Among N + 1
application components, one must be executed locally, for
the other N components, offloading decisions must be
taken. According to the power models developed in [43],
we set the parameters as: N = 4, pm = 0.3 W, pi = 0.03
W and ptr = 0.2 W. We assume that the communication
data between different components is Duv = 10 Kbits, the
violation ratio ρ = 0.2, the deadline Td = 600 s, the local
processing time T local

n = 100 s, the cloud processing time
T s
n = 10 s and the cloudlet processing time T c

n = 10 s, where
n ∈ {0, · · · , N}. The algorithm is simulated 10 000 times for
each value of the control parameter V ranging from 1 to 400.

6.2 Results of the Lyapunov-based Offloading Deci-
sions
As depicted in Fig. 10(a), the average energy consumption
decreases strongly at the beginning and then tends to de-
scend slowly while the average response time grows linearly
with V at first and then tends to increase slowly. This finding
confirms that there is a [O(1/V), O(V)] tradeoff between
the average energy consumption and the average response
time. A good operating point would be to pick a value of V
where a unit increase in V yields a very small reduction in
Q̄. At such a point the gain in the energy metric may not be
worth the increase in response time obtained by increasing
V [40]. There exists a sweet spot of value V (e.g., V = 100)
beyond which increasing V leads to a marginal energy
conservation yet leading to consistently growing delays. As
depicted in Fig. 10(b), the average violation rate E

{
σ
(
ω(t)

)}

12

Algorithm 1 A LARAC-based Offloading-Decision Algorithm
//Find the optimal solution with offloading decision combination vector ω∗(t)

Function
[
ω∗(t)

]
= LARAC

(
E
{
E (ω(t))

}
, E
{
T (ω(t))

}
, Td

)
Input: E

{
E (ω(t))

}
: the mean energy consumption

E
{
T (ω(t))

}
: the mean response time

Td: the deadline
Output: ω∗(t): the optimal offloading-decision combination vector

1: ωE(t) , argminω(t) E
{
E (ω(t))

}
2: ωT (t) , argminω(t) E

{
T (ω(t))

}
3: if E

{
T
(
ωE(t)

) }
≤ Td then

4: return ωE(t)
5: end if
6: if E

{
T
(
ωT (t)

) }
> Td then

7: return “There is no feasible solution”
8: end if
9: while true do

10: λ =
E
{
E(ωE(t))

}
−E

{
E(ωT (t))

}
E
{
T(ωT (t))

}
−E

{
T(ωE(t))

}
11: ω∗(t) = argminω(t) E

{
E (ω(t)) + λT (ω(t))

}
12: if E

{
E (ω∗(t)) + λT (ω∗(t))

}
== E

{
E
(
ωE(t)

)
+ λT

(
ωE(t)

) }
then

13: return ωT (t)
14: else
15: if E

{
T (ω∗(t))

}
≤ Td then

16: ωT (t) = ω∗(t)
17: else
18: ωE(t) = ω∗(t)
19: end if
20: end if
21: end while

Control Parameter V
0 50 100 150 200 250 300 350 400

E
ne

rg
y/

J

84

86

88

90

92

94

0 50 100 150 200 250 300 350 400

T
im

e/
s

460

480

500

520

540

560
Energy Consumption
Response Time

(a) Energy consumption and response time
Control Parameter V

0 50 100 150 200 250 300

A
ve

ra
ge

 v
io

la
tio

n
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

;=0.2

(b) Average violation rate

Fig. 10: The impact of V on the average energy consumption, response time and violation rate

first grows linearly with V and then tends to increase slowly,
finally, it approaches a fixed ratio ρ = 0.2, denoted by the
dotted red line. Because E

{
σ
(
ω(t)

)}
≤ ρ satisfies the stable

condition defined in Eq. (15), the queuing system state is
stable.

In Fig. 11(a) the average energy consumption increases
with the communication dataD, while the average response
time has a peak and then decreases again. However, there
is no benefit from offloading when D is very large and thus
all the application components are executed locally in this
case. From Fig. 11(b), when D is large enough (e.g., D ≥ 45
Kbits), the average system queue state is always 0, which
means T (t) ≤ Td, and all the components are executed

locally. This is because the transmission time is so large
that it dominates the response time. Then we would rather
perform the computation locally on the mobile device than
offload it to the remote cloud.

Because the average violation rate is much larger than
the constant ρ = 0.2 denoted by the red dotted line in
Fig. 12(c), the system is unstable when Td = 400 s. We
ignore this situation since the result under such deadline
is unreasonable. From Fig. 12(a) it can be seen that the
average energy consumption decreases with increasing Td
when V is small, while the average response time increases
as Td increases from 600 to 800 in Fig. 12(b). Therefore,
setting the deadline a little larger can reduce the average

13

Communication data D/bit #10 4

0 2 4 6 8 10

E
ne

rg
y

/J

0

100

200

#10 4

0 2 4 6 8 10

T
im

e
/s

0

500

1000

Energy Consumption
Response Time

(a) Energy consumption and response time
Communication data D/bit #10 4

0 2 4 6 8 10

S
ys

te
m

 s
ta

te

Q

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b) System state

Fig. 11: The impact of communication data on the average energy consumption, response time and system state, when
V = 100

Control Parameter V
0 50 100 150 200

E
ne

rg
y

/J

80

90

100

110

120

130

140

150

T
d
=400

T
d
=600

T
d
=700

T
d
=800

(a) Energy consumption
Control Parameter V

0 50 100 150 200

T
im

e
/s

450

500

550

600

650

700

750

800

T
d
=400

T
d
=600

T
d
=700

T
d
=800

(b) Response time
Control Parameter V

0 50 100 150 200

A
ve

ra
ge

 v
io

la
tio

n
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
d
=400

T
d
=600

T
d
=700

T
d
=800

;=0.2

(c) Average violation rate

Fig. 12: The impact of V on average the energy consumption, response time and violation rate under different deadlines

energy consumption but also leads to the increase of average
response time.

6.3 Comparison of the Different Decision Schemes
To gain insight on the proposed energy-efficient dynamic
offloading decision algorithm, we compare the average re-
sponse time and energy consumption using the following
methods:

• Local scheme: all application components are executed
locally on the mobile device.

• Cloud scheme: all offloadable application components
are directly offloaded to the cloud for further pro-
cessing.

• Cloudlet scheme: all offloadable application compo-
nents are offloaded via the cloudlet to the cloud for
further processing.

• Lyapunov scheme: using the Lyapunov-based dynamic
offloading-decision algorithm (e.g., V = 100).

• LARAC scheme: using the LARAC-based dynamic
offloading-decision algorithm.

Figure 13 shows the average response time and energy
consumption, respectively, normalized to the local scheme.
The red dotted line denotes the deadline. It can be seen that
our proposed Lyapunov scheme can help to save around

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

E
ne

rg
y/

T
im

e(
%

)

Response Time Energy Consumption

Cloud
Cloudlet

Local Lyapunov

LARAC
Local

Cloud

Cloudlet

Lyapunov
LARAC

Fig. 13: Comparison of average response time and energy
consumption under different schemes

50% of the energy consumption compared to the local
scheme while only sacrificing a small portion of response
time. This is because the Lyapunov scheme dynamically
offloads tasks according to changes in the network condition
and the transmit power, while both the cloud scheme and
the cloudlet scheme do not take the network conditions into
consideration. Especially when the network bandwidth is

14

very low offloading tasks to the cloud or via the cloudlet to
the cloud may not be beneficial. Besides, when comparing
it with the optimal schedule using the LARAC algorithm
our proposed scheme also saves more energy while only
sacrificing a small portion of response time.

7 CONCLUSION AND FUTURE WORK

Reducig the energy consumption by computation offloading
is not guaranteed on mobile devices if the evoked data
transfer via wireless networks consumes an unpredictable
amount of energy. Therefore, running a certain part of
the application locally on the mobile device can be ad-
vantageous and may save both energy and response time,
especially in the presence of intermittent wireless connec-
tivity. Accordingly, we present an approach for dynamic
offloading decisions based on different criteria and con-
sider all factors such as application responsiveness, energy
characteristics and particularly the changing landscape of
network connectivity (cellular network vs. WiFi to cloud vs.
cloudlet). The design objective is to minimize the energy
consumed by the mobile device, while meeting a given time
constraint. We have derived a control algorithm using Lya-
punov optimization which determines when to offload and
where to offload such that energy expenditure is minimized
with a low delay penalty. The algorithm is able to partition
individual portions of the offloading task pool into different
groups, each with very specific combinations of offloadable
characteristics. Numerical results show that this algorithm
can save around 50% of the energy needed as compared
with local execution while only slightly sacrificing response
time.

So far the validation of the approach is based on simu-
lation considering simplifying assumptions (e.g., the band-
width remains constant during each execution). Validation
based on real workloads and more realistic application
examples will be provided in the future to demonstrate
insights about the efficiency of the proposed algorithm.
Since the available bandwidth between a mobile device and
a nearby access point or base station is hard to predict or
measure accurately the most convincing way to validate the
proposed model will be to conduct extensive experiments.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” Pervasive Comput-
ing, IEEE, vol. 8, no. 4, pp. 14–23, 2009.

[2] CNN.com, “Battery life concerns mobile users,” in
http://edition.cnn.com/2005/TECH/ptech/09/22/phone.study/, 2005.

[3] T. Shi, “An energy-efficient, time-constrained scheduling scheme
in local mobile cloud,” Master’s thesis, University of Nevada, Las
Vegas, 2014.

[4] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berke-
ley view of cloud computing,” Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS, vol. 28,
2009.

[5] F. Xia, F. Ding, J. Li, X. Kong, L. T. Yang, and J. Ma, “Phone2cloud:
Exploiting computation offloading for energy saving on smart-
phones in mobile cloud computing,” Information Systems Frontiers,
vol. 16, no. 1, pp. 95–111, 2014.

[6] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: from concept to practice and beyond,”
Communications Magazine, IEEE, vol. 53, no. 3, pp. 80–88, 2015.

[7] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 26, no. 4, pp. 974–983, 2015.

[8] K. Lee and I. Shin, “User mobility-aware decision making for mo-
bile computation offloading,” in Cyber-Physical Systems, Networks,
and Applications (CPSNA), 2013 IEEE 1st International Conference on,
pp. 116–119, IEEE, 2013.

[9] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal
offloading partitioning algorithm in mobile cloud computing,”
in International Conference on Quantitative Evaluation of Systems,
pp. 311–328, Springer, 2016.

[10] APPLE, “iphone 4s - ask siri to help you get things done,” 2011.
http://www.apple.com/iphone/features/siri.html.

[11] R. Beraldi, K. Massri, M. Abderrahmen, and H. Alnuweiri, “To-
wards automating mobile cloud computing offloading decisions:
An experimental approach,” in ICSNC 2013 : The Eighth Interna-
tional Conference on Systems and Networks Communications, pp. 121–
124, 2013.

[12] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile Networks and
Applications, vol. 18, no. 1, pp. 129–140, 2013.

[13] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “eTime:
Energy-efficient transmission between cloud and mobile devices,”
in INFOCOM, 2013 Proceedings IEEE, pp. 195–199, IEEE, 2013.

[14] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang, “eTrain:
Making wasted energy useful by utilizing heartbeats for mobile
data transmissions,” in Distributed Computing Systems (ICDCS),
2015 IEEE 35th International Conference on, pp. 113–122, IEEE, 2015.

[15] F. Liu, P. Shu, and J. C. Lui, “Appatp: An energy conserving
adaptive mobile-cloud transmission protocol,” IEEE Transactions
on Computers, vol. 64, no. 11, pp. 3051–3063, 2015.

[16] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?,” Computer, vol. 43, no. 4,
pp. 51–56, 2010.

[17] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proceedings of the 8th international conference
on Mobile systems, applications, and services, pp. 49–62, ACM, 2010.

[18] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic,
“Adaptive offloading for pervasive computing,” Pervasive Com-
puting, IEEE, vol. 3, no. 3, pp. 66–73, 2004.

[19] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance
improvement and energy saving in mobile cloud offloading sys-
tems,” in Communications Workshops (ICC), 2013 IEEE International
Conference on, pp. 728–732, IEEE, 2013.

[20] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile of-
floading in heterogeneous networks,” IEEE Transactions on Mobile
Computing, vol. PP, no. 99, pp. 1–1, 2017.

[21] H. Wu, W. Knottenbelt, and K. Wolter, “Analysis of the energy-
response time tradeoff for mobile cloud offloading using com-
bined metrics,” in Teletraffic Congress (ITC 27), 2015 27th Interna-
tional, pp. 134–142, IEEE, 2015.

[22] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading al-
gorithm for mobile computing,” Wireless Communications, IEEE
Transactions on, vol. 11, no. 6, pp. 1991–1995, 2012.

[23] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling
policy for collaborative execution in mobile cloud computing,” in
INFOCOM, 2013 Proceedings IEEE, pp. 190–194, IEEE, 2013.

[24] H. Flores and S. N. Srirama, “Mobile cloud middleware,” Journal
of Systems and Software, vol. 92, pp. 82–94, 2014.

[25] H. Wu, Q. Wang, and K. Wolter, “Mobile healthcare systems with
multi-cloud offloading,” in Mobile Data Management (MDM), 2013
IEEE 14th International Conference on, vol. 2, pp. 188–193, IEEE,
2013.

[26] H. Wu, Analysis of offloading decision making in mobile cloud comput-
ing. PhD thesis, Freie Universität Berlin, 2015.

[27] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gear-
ing resource-poor mobile devices with powerful clouds: archi-
tectures, challenges, and applications,” Wireless Communications,
IEEE, vol. 20, no. 3, pp. 14–22, 2013.

[28] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-
efficient workload scheduling in cloud assisted mobile edge com-
puting,” in Quality of Service (IWQoS), 2017 IEEE/ACM 25th Inter-
national Symposium on, pp. 1–10, IEEE, 2017.

[29] H. Flores, S. N. Srirama, and C. Paniagua, “Towards mobile
cloud applications: Offloading resource-intensive tasks to hybrid

15

clouds,” International Journal of Pervasive Computing and Communi-
cations, vol. 8, no. 4, pp. 344–367, 2012.

[30] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. L. Presti, and V. Piccialli, “A game-theoretic approach to com-
putation offloading in mobile cloud computing,” Mathematical
Programming, vol. 157, no. 2, pp. 421–449, 2016.

[31] H. Wu, K. Wolter, and A. Grazioli, “Cloudlet-based mobile of-
floading systems: a performance analysis,” in IFIP WG 7.3 Perfor-
mance 2013 31 st International Symposium on Computer Performance,
Modeling, Measurements and Evaluation 2013 Student Poster Abstracts
September 24-26, Vienna, Austria, pp. 1–2, 2013.

[32] J. Martı́nez Ripoll, “Improving the performance and usability of
an offloading engine for android mobile devices with application
to a chess game,” Master’s thesis, Technical University of Berlin,
2013.

[33] M. Griera Jorba, “Improving the reliability of an offloading engine
for android mobile devices and testing its performance with in-
teractive applications,” Master’s thesis, Free University of Berlin,
2013.

[34] Z. Jia and P. Varaiya, “Heuristic methods for delay constrained
least cost routing using/spl kappa/-shortest-paths,” IEEE Transac-
tions on Automatic Control, vol. 51, no. 4, pp. 707–712, 2006.

[35] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the markov decision processes,” in World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015 IEEE
16th International Symposium on a, pp. 1–9, IEEE, 2015.

[36] B.-G. Chun and P. Maniatis, “Dynamically partitioning applica-
tions between weak devices and clouds,” in Proceedings of the
1st ACM Workshop on Mobile Cloud Computing and Services: Social
Networks and Beyond, p. 7, ACM, 2010.

[37] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and
cross-layer control in wireless networks. Now Publishers Inc, 2006.

[38] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[39] E. H. Aarts and J. K. Lenstra, Local search in combinatorial optimiza-
tion. Princeton University Press, 2003.

[40] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and
M. J. Neely, “Energy-delay tradeoffs in smartphone applications,”
in Proceedings of the 8th international conference on Mobile systems,
applications, and services, pp. 255–270, ACM, 2010.

[41] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relax-
ation based method for the qos routing problem,” in INFOCOM
2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2, pp. 859–868,
IEEE, 2001.

[42] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth
data to make computation offloading decisions,” in Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, pp. 1–8, IEEE, 2008.

[43] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Aug-
menting mobile 3g using wifi,” in Proceedings of the 8th international
conference on Mobile systems, applications, and services, pp. 209–222,
ACM, 2010.

Huaming Wu received the B.E. and M.S. de-
grees from Harbin Institute of Technology, China
in 2009 and 2011, respectively, both in electri-
cal engineering. He received the Ph.D. degree
with the highest honor in computer science at
Freie Universität Berlin, Germany in 2015. He
is currently an assistant professor in the Center
for Applied Mathematics, Tianjin University. His
research interests include model-based evalua-
tion, wireless and mobile network systems, mo-
bile cloud computing and deep learning.

Yi Sun received the B.E. and M.S. degrees
from Xidian University, China in 2008 and 2011,
respectively, both in electrical engineering. He
received the Ph.D. degree in computer science
at Freie Universität Berlin, Germany in 2016. His
current research interests include indoor position
and mobile computing.

Katinka Wolter received her PhD degree from
Technische Universität Berlin in 1999. She has
been Assistant professor at Humboldt-University
Berlin and lecturer at Newcastle University be-
fore joining Freie Universität Berlin as a profes-
sor for dependable systems in 2012. Her re-
search interests are model-based evaluation and
improvement of dependability, security and per-
formance of distributed systems and networks.

