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Abstract: The additive hazards model has many applications in high-throughput genomic

data analysis and clinical studies. In this article, we study the weighted Lasso estimator

for the additive hazards model in sparse, high-dimensional settings where the number of

time-dependent covariates is much larger than the sample size. Based on compatibility,

cone invertibility factors, and restricted eigenvalues of the Hessian matrix, we establish some

non-asymptotic oracle inequalities for the weighted Lasso. Under mild conditions, we show

that these quantities are bounded from below by positive constants, thus the compatibility

and cone invertibility factors can be treated as positive constants in the oracle inequalities.

A multistage adaptive method with weights recursively generated from a concave penalty

is presented. We prove a selection consistency theorem and establish an upper bound for

dimension of the weighted Lasso estimator.
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1 Introduction

Censored survival data arises in such fields as epidemiological studies and clinical trials. The

additive hazards (AH) model is an important alternative to the Cox (1972) proportional

hazards model for studying the association between such data and risk factors (Cox and

Oakes (1984)). In a traditional biomedical study, the number of covariates p is usually

relatively small compared to the sample size n. Theoretical properties of the AH model

in the fixed p and large n setting have been well established. For example, Lin and Ying

(1994) proposed a least-squares type estimator of regression parameter in the AH model and

studied its asymptotic properties using martingale techniques; Kulich and Lin (2000) studied

the AH model when covariates are subject to measurement error; Martinussen and Scheike

(2002) proposed an efficient estimation approach in AH regression with current status data.

In recent years, advances in experimental technologies have brought in a wealth of high-

throughput and high-dimensional genomic data, where an important task is to find genetic

risk factors related to clinical outcomes, such as survival and age of disease onset. In such

high-dimensional settings, the standard approach to the AH model is not applicable, since

the number of potential genetic risk factors is typically much larger than the sample size,

and regularized methods that can do variable selection and estimation have been proposed.

Examples include the Lasso (Tibshirani (1996)), SCAD (Fan and Li (2001)) and MCP (Zhang

(2010)). Much of the work on the theoretical properties of these methods has focused on

linear and generalized linear regression models; see Bühlmann and van de Geer (2011), Fan

and Lv (2010), Zhang and Zhang (2012), and the references therein. Several authors have

studied these methods for the Cox regression model in sparse, high-dimensional settings.
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In particular, oracle inequalities for the prediction and estimation error of the Lasso in the

Cox model (Kong and Nan (2014); Lemler (2012); Huang et al. (2013)); Bradic, Fan and

Jiang (2011) extended the results of Fan and Li (2002) to a class of concave penalties in the

high-dimensional Cox model under certain sparsity and regularity conditions.

Variable selection for survival data has also been extended to the AH model. In fixed

dimensional settings, Leng and Ma (2007) proposed a weighted Lasso approach, and Mar-

tinussen and Scheike (2009) considered several regularization methods, including the Lasso

and the Dantzig selector. In high-dimensional settings, Gäıffas and Guilloux (2012) consid-

ered a general AH model in a non-asymptotic setting; Lin and Lv (2013) studied a class of

regularization methods for simultaneous variable selection and estimation in this model. In

view of the important role of the AH model in survival analysis and the basic importance

of the Lasso as a regularization method, it is of interest to understand the properties of the

weighted Lasso for this model in the p� n setting.

In this paper we establish the theoretical properties of the weighted Lasso in the high-

dimensional AH model concerning estimation error bounds, selection consistency, and s-

parsity. We obtain some non-asymptotic oracle inequalities for the weighted Lasso in the

high-dimensional AH model, extending the oracle inequalities for the Lasso in Cox regres-

sion (Huang et al. (2013)) to the AH model. Under mild conditions, we prove that the

compatibility and cone invertibility factors, and the corresponding restricted eigenvalue are

greater than a fixed positive constant. We provide sufficient conditions under which the

weighted Lasso is sign consistent in the AH model, generalizing the irrepresentable condition

for the sign consistence of the Lasso in linear regression (Zhao and Yu (2006)). The sparsity

property of the weighted Lasso in AH model is also proved.
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The remainder of this article is organized as follows. In Section 2, we describe the AH

model and introduce the weighted Lasso penalty. In Section 3, we establish some oracle

inequalities for the weighted Lasso in the high-dimensional AH model. The compatibility

and cone invertibility factors and the corresponding restricted eigenvalue of the Hessian

matrix are presented. In Section 4, a multistage adaptive method is provided, we give some

sufficient conditions for selection consistency, and provide an upper bound on the dimension

of the weighted Lasso estimator. Section 5 includes some concluding remarks. Proofs are in

the Appendix.

2 AH model with the weighted `1 penalty

We adopt the counting process framework for the AH model (Lin and Ying (1994)). Consider

a set of n independent subjects such that the counting process {Ni(t); t ≥ 0} is the number

of observed events for the ith individual in time interval [0, t]. Assume that the intensity

function for Ni(t) is given by

dΛi(t) = Yi(t){dΛ0(t) + β′0Zi(t)dt}, (1)

where β0 = (β01, · · · , β0p)
′ is a p-vector of true regression coefficients, Λ0(t) =

∫ t
0
λ0(u)du

denotes the cumulative baseline hazard function, Yi(t) ∈ {0, 1} is a predictable at-risk indi-

cator process for the ith individual, and Z(·) = (Z1(·), · · · , Zp(·))′ is a predicable covariate

process. In the p � n setting, let S be any set of indices with S ⊇ {j : β0j 6= 0}, with Sc

the complement of S in {1, · · · , p}. Let d0 = |S| be the number of elements in S. Here we

are interested in the case where d0 is much smaller than the dimension of β0.
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Following Lin and Ying (1994), we introduce the pseudoscore estimating function

U(β) =
1

n

n∑
i=1

∫ τ

0

{Zi(t)− Z̄n(t)}{dNi(t)− Yi(t)β′Zi(t)dt},

where Z̄n(t) =
∑n

j=1 Yj(t)Zj(t)/
∑n

j=1 Yj(t), and τ is the maximum follow-up time. After

some algebra, we can get that U(β) = a−Aβ with a = n−1
∑n

i=1

∫ τ
0
{Zi(t)− Z̄n(t)}dNi(t)

and

A =
1

n

n∑
i=1

∫ τ

0

Yi(t){Zi(t)− Z̄n(t)}⊗2dt, (2)

where c⊗2 = cc′ for any vector c. For technical convenience, we rewrite the estimating

function U(β) in terms of a martingale, as suggested by Lin and Ying (1994),

U(β) =
1

n

n∑
i=1

∫ τ

0

{Zi(t)− Z̄n(t)}dMi(t),

where Mi(t) = Ni(t)−
∫ t

0
Yi(u){λ0(u) + β′0Zi(u)}du is a martingale. By integrating −U(β)

with respective to β, we obtain a least-squares-type loss function (Martinussen and Scheike

(2009)),

L(β) =
1

2
β′Aβ − a′β. (3)

The gradient of L(β) is L̇(β) = ∂L(β)/∂β = Aβ − a, and the Hessian matrix of L(β) is

L̈(β) = A. Here A is free of β, which is a major difference with the theory for Cox model

(Huang et al. (2013)).

Since A is singular in the p � n setting, it is difficult to derive the estimator for β0 by

minimizing (3) directly, so we employ the regularized approach. Let ŵ ∈ Rp be a (possibly

estimated) weight vector with nonnegative elements ŵj, 1 ≤ j ≤ p, and Ŵ = diag(ŵ). We

consider the weighted `1-penalized least-squares-type loss criterion

Q(β;λ) = L(β) + λ|Ŵβ|1, (4)
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where λ ≥ 0 is a penalty parameter. Hereafter, we use the notation |v|q = {
∑p

i=1 |vj|q}1/q

for 1 ≤ q < ∞, and |v|∞ = max1≤j≤p |vj| for any v ∈ Rp. For a given λ, the weighted

`1-penalized estimator, or the weighted Lasso estimator is

β̂(λ) = arg min
β
Q(β;λ). (5)

The weighted Lasso estimator can be characterized by the Karush-Kuhn-Tucker (KKT)

conditions. Since L(β) is convex, a vector β̂ = (β̂1, · · · , β̂p)′ is a solution to (5) if and only if
L̇j(β̂) = −λŵjsgn(β̂j), if β̂j 6= 0,

|L̇j(β̂)| ≤ λŵj, if β̂j = 0,

(6)

where L̇(β) = (L̇1(β), · · · , L̇p(β))′ = ∂L(β)/∂β is the gradient of L(β). The (unweighted)

Lasso is a special case of (5), with the choice ŵj = 1, 1 ≤ j ≤ p.

3 Non-asymptotic oracle inequalities

In this section, we establish some non-asymptotic oracle inequalities for the estimation error

of weighted Lasso in the high-dimensional AH model. Let W = diag(w) for a possibly

unknown vector w ∈ Rp with elements wj ≥ 0. As in Huang and Zhang (2012), we define

z∗ = max{|L̇(β0)S|∞, |W−1
Sc L̇(β0)Sc|∞},

Ω0 = {ŵj ≤ wj,∀j ∈ S} ∩ {wj ≤ ŵj,∀j ∈ Sc}.

Hereafter, for any p-vector v = (v1, · · · , vp)′ and sets A and C, vA = (vj : j ∈ A)′, MAC

denotes the A× C subblock of a matrix M and MA = MAA.
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Lemma 1 Let β̂ be the weighted Lasso estimator, and ê = β̂ − β0. Then in the event Ω0,

(λ− z∗)|WSc êSc |1 ≤ D(β̂,β0) + (λ− z∗)|WSc êSc |1 ≤ (λ|wS|∞ + z∗)|êS|1.

Furthermore, for any ξ > |wS|∞, |WSc êSc|1 ≤ ξ|êS|1 in the event Ω0∩{z∗ ≤ λ(ξ−|wS|∞)/(ξ+

1)}, where D(β̂,β) = (β̂ − β)′{L̇(β̂) − L̇(β)} = (β̂ − β)′A(β̂ − β) is the Bregman diver-

gence(Gäıffas and Guilloux (2012)) and A is defined in (2).

It follows from Lemma 1 that in the event Ω0 ∩ {z∗ ≤ λ(ξ − |wS|∞)/(ξ + 1)}, for any

ξ > |wS|∞, the estimation error ê = β̂ − β0 belongs to the cone

Θ(ξ, S) = {b ∈ Rp : |WScbSc |1 ≤ ξ|bS|1}. (7)

To establish some useful oracle inequalities, for the cone in (7) and the Hessian matrix

A in (2), we set

κ(ξ, S;A) = inf
06=b∈Θ(ξ,S)

d
1/2
0 (b′Ab)1/2

|bS|1

as the compatibility factor (van de Geer (2007); van de Geer and Bühlmann (2009)), and

Fq(ξ, S;A) = inf
06=b∈Θ(ξ,S)

d
1/q
0 b′Ab

|bS|1|b|q
(8)

as the weak cone invertibility factor (Ye and Zhang (2010)). The two quantities are closely

related to the restricted eigenvalue (Bickel, Ritov and Tsybakov (2009); Koltchinskii (2009)),

defined as

RE(ξ, S;A) = inf
06=b∈Θ(ξ,S)

(b′Ab)1/2

|b|2
.

According to Ye and Zhang (2010), the compatibility and cone invertibility factors are

greater than the restricted eigenvalue. Therefore, using κ(ξ, S;A) and Fq(ξ, S;A) can yield

shaper oracle inequalities than the restricted eigenvalue.
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Theorem 1 If |Zi(t)−Zj(t)|∞ ≤ K uniformly in {t, i, j} for a finite K > 0, and β̂ be the

weighted Lasso estimator as (5), in the event Ω0 ∩ {z∗ ≤ λ(ξ − |wS|∞)/(ξ + 1)},

D(β̂,β0) ≤ ξ2λ2d0(1 + |wS|∞)2

(ξ + 1)2κ2(ξ, S;A)
, |β̂ − β0|1 ≤

λd0(1 + |wS|∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S;A)(ξ + 1)
, (9)

|β̂ − β0|q ≤
d

1/q
0 (λ|wS|∞ + z∗)

Fq(ξ, S;A)
, q ≥ 1. (10)

Remark 1 For wj = 1, 1 ≤ j ≤ p, the established error bounds for the AH model have the

same form as those for the linear model (Huang et al. (2013)), except for an improved factor

of 4ξ/(1 + ξ) ≥ 2 for the `1 oracle inequality as (9).

The oracle inequalities in Theorem 1 hold only in the event Ω0∩{z∗ ≤ λ(ξ−|wS|∞)/(ξ+

1)}, so a probabilistic upper bound for z∗ is needed. We have Ni(∞) ≤ 1 and L̇(β0) =

−n−1
∑n

i=1

∫ τ
0
{Zi(t) − Z̄n(t)}dMi(t). Without loss of generality, the martingale difference

generated by {Mi(t), t > 0} is bounded by 1. Then by martingale version of the Hoeffding

inequality (Azuma (1967)) and Lemma 3.3 of Huang et al. (2013), we can get that P{z∗ >

Kx} ≤ 2pe−nx
2/2.

Theorem 2 Suppose the conditions in Theorem 1 hold. Let ξ > |wS|∞ and λ = {(ξ+1)/(ξ−

|wS|∞)}K
√

(2/n) log(2p/ε) with a small ε > 0. Then in the event Ω0, for any Cκ > 0 and

CF,q > 0, we have

D(β̂,β0) ≤ ξ2λ2d0(1 + |wS|∞)2

(ξ + 1)2C2
κ

, |β̂ − β0|1 ≤
λd0(1 + |wS|∞)(ξ + min{wSc})2

4 min{wSc}C2
κ(ξ + 1)

,

|β̂ − β0|q ≤
ξd

1/q
0 λ(|wS|∞ + 1)

(ξ + 1)CF,q
, q ≥ 1,

all hold with probability at least P{κ(ξ, S;A) ≥ Cκ, Fq(ξ, S;A) ≥ CF,q} − ε.
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Remark 2 By Theorem 2, to ensure the error |β̂−β0|q is small with high probability, it is

required that p = exp{o(n/d1/q
0 )}. If d0 is bounded, then p can be as large as exp(o(n)).

We have established non-asymptotic oracle inequalities expressed in terms of compatibil-

ity and weak cone invertibility factors. As the Hessian matrix is based on the cross-products

of time-dependent covariates in censored risk sets, these quantities are random variables.

We provide some sufficient conditions under which they can be treated as constants, and

since these factors appear in the denominator of the error bounds, it suffices to bound them

from below. To simplify the statement of the results, we use Φ(ξ, S;A) to denote any of the

quantities:

Φ(ξ, S;A) = κ2(ξ, S;A), Fq(ξ, S;A), and RE2(ξ, S;A). (11)

If we make a claim about Φ(ξ, S;A), then the claim holds for any quantity in (11).

Lemma 2 Let κ2(ξ, S;A), Fq(ξ, S;A),RE2(ξ, S;A) and Φ(ξ, S;A) be defined in (11). De-

note Aij as the elements of A and let B is another nonnegative-definite matrix with elements

Bij, then

(i) for 1 ≤ q ≤ 2,

min{κ2(ξ, S;A), (1 + min{wSc}−1ξ)2/q−1Fq(ξ, S;A)} ≥ RE2(ξ, S;A) ≥ Λmin(A),

where Λmin(·) denotes the smallest eigenvalue,

(ii) Φ(ξ, S;A) ≥ Φ(ξ, S;B)− d0(1 + min{wSc}−1ξ)2 max1≤i≤j≤p |Aij −Bij|,
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(iii) if A ≥ B, then Φ(ξ, S;A) ≥ Φ(ξ, S;B), where A ≥ B means A − B is nonnegative

definite.

As in Huang et al. (2013), we can bound the quantities of type Φ(ξ, S;A) from below

in two ways: bound the matrix A from below, or approximate A under the supreme norm

for its elements. Here we choose a suitable truncation of A = L̈(β0) as a lower bound

of the matrix. This is done by truncating the maximum event time under consideration.

Since L̈(β0) = n−1
∑n

i=1

∫ τ
0
Yi(t){Zi(t) − Z̄n(t)}⊗2dt, then L̈(β0) ≥ Ā(t∗) with Ā(t∗) =∫ t∗

0
Σ̄n(t)dt, where Σ̄n(t) = n−1

∑n
i=1 Yi(t){Zi(t) − Z̄n(t)}⊗2, and t∗ > 0. Suppose that

{Yi(t),Zi(t), t > 0} are i.i.d. stochastic processes of {Y (t),Z(t), t > 0}. The population

version of Ā(t∗) is A(t∗) = E(
∫ t∗

0
Σn(t)dt), where Σn(t) = n−1

∑n
i=1 Yi(t){Zi(t) − µ(t)}⊗2

with µ(t) = E{Y (t)Z(t)}/E(Y (t)). Let Fn(t) =
√

(2/n) log t, then we have the following

results.

Theorem 3 Suppose that {Yi(t),Zi(t), t ≥ 0} are i.i.d. processes as {Y (t),Z(t), t ≥ 0}

with supt P{|Zi(t)−Z(t)|∞ ≤ K} = 1. If t∗ be a positive constant and r∗ = EY (t∗), then

Φ(ξ, S; L̈(β0)) ≥ Φ(ξ, S;A(t∗))− d0(1 + min{wSc}−1ξ)2K2t∗{Fn(p(p+ 1)/ε) + (2/r∗)t
2
n,p,ε}

with probability at least 1 − 2ε, where tn,p,ε is the solution of p(p + 1) exp{−nt2n,p,ε/(2 +

2tn,p,ε/3)} = ε/2.221. Furthermore, for 1 ≤ q ≤ 2,

min{κ2(ξ, S;A), (1 + min{wSc}−1ξ)2/q−1Fq(ξ, S;A)}

≥ RE2(ξ, S; L̈(β0))

≥ Λmin(A(t∗))− d0(1 + min{wSc}−1ξ)2K2t∗{Fn(p(p+ 1)/ε) + (2/r∗)t
2
n,p,ε}

with probability greater than 1− 2ε, where Λmin(·) denotes the smallest eigenvalue.
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Accordingly, the compatibility and cone invertibility factors and the restricted eigenvalue

can be treated as constants in the high-dimensional AH model with time-dependent covari-

ates. Our discussion focuses on the quantities in Φ(ξ, S;A) for the Hessian matrix A. But,

since L̈(β0 + b̃) = L̈(β0) = A, for any b̃ ∈ Rp, Theorem 3 provides lower bounds for these

quantities at any β. This conclusion is different from those for Cox regression model (Huang

et al. (2013)), which only provide lower bounds for these quantities with β not far from β0

in terms of `1-distance.

An earlier result on oracle inequalities for the high-dimensional AH model is due to

Gäıffas and Guilloux (2012), who considered a data-driven `1 penalization and proved oracle

inequalities for a more general non-parametric AH model. They only focused on the time-

independent covariates case. Lin and Lv (2013) studied the properties of a class of concave

penalties, including the Lasso for the AH model. They obtained `∞ error bounds and asymp-

totic oracle properties for the regression coefficient under different conditions from what we

assumed here. A key assumption in their results is a strong version of the irrepresentable

condition, which is not required in our results on the error bounds.

4 Multistage adaptive method and selection consisten-

cy

In this section, we consider how to choose the weights ŵj in (4), for j = 1, · · · , p. A multistage

adaptive approach is proposed with weights recursively generated from a concave penalty

function, e.g. SCAD (Fan and Li (2001)) and MCP (Zhang (2010a)). Let Pλ(t) be a concave
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penalty with Ṗλ(0+) = λ. The maximum concavity of this penalty is

$ = sup
0<t1<t2

|Ṗλ(t2)− Ṗλ(t1)|
t2 − t1

, (12)

where Ṗλ(t) = (∂/∂t)Pλ(t).

Theorem 4 If φ > 1, ξ ≥ (φ + 1)/(φ − 1), β̃ is an initial estimator of β0, and β̂ is the

weighted Lasso estimator in (5) with weights ŵj = Ṗλ(|β̃j|)/λ, for j = 1, · · · , p. Then in the

event Ω0 ∩ {z∗ ≤ λ/φ},

|β̂ − β0|1 ≤
d0

F1(ξ, S;A)

{
|Ṗλ(|β0S|)|1 +

d0λ

φ
+$|β̃ − β0|1

}
, (13)

where Pλ(·) is a concave penalty, and F1(ξ, S;A) is defined in (8) with q = 1.

Thus the weighted Lasso β̂ improves its initial estimator β̃, and we can repeatedly apply

this procedure with the multistage algorithm (Zhang (2010b)),

β̂(k+1) = arg min
β

{
L(β) +

p∑
j=1

Ṗλ(β̂
(k)
j )|βj|

}
, k = 0, 1, · · · ,

where L(β) is defined in (3).

Define ‖M‖∞ = max|u|∞≤1 |Mu|∞ as the `∞ to `∞ norm of a matrix M . We have the

following results on selection consistency and sparsity for the weighted Lasso estimator β̂ in

(5).

Theorem 5 (i) If B∗0 = {β : βSc = 0} and Sβ = {j : βj 6= 0}, and if

sup
β∈B∗0

|Ŵ−1
Sc AScSβ

A−1
Sβ
ŴSβ

sgn(βSβ
)|∞ ≤ κ0 < 1, (14)

sup
β∈B∗0

‖ Ŵ−1
Sc AScSβ

A−1
Sβ
‖∞≤ κ1 (15)

12



hold, then {j : β̂j 6= 0} ⊆ S in the event

Ω1 = Ω0 ∩ {z∗(1 + κ1) < (1− κ0)λ}. (16)

(ii) If B0 = {β : sgn(β) = sgn(β0)}, and (14) and (15) hold with B∗0 replaced by B0,

then sgn(β̂) = sgn(β0) in the event

Ω1 ∩
{

sup
β∈B0

‖ A−1
S ‖∞ (|ŵS|∞λ+ z∗) < min

j∈S
|βj0|

}
. (17)

By Theorem 5 and the probabilistic upper bound for z∗, we have the following.

Corollary 1 (i) If B∗0 = {β : βSc = 0}, Sβ = {j : βj 6= 0}, λ = {(1 + κ1)/(1 −

κ0)}K
√

(2/n) log(2p/ε) with a small ε > 0 (e.g. ε = 0.01), and (14) and (15) hold, then in

the event Ω0, {j : β̂j 6= 0} ⊆ S hold with at least probability 1− ε.

(ii) If B0 = {β : sgn(β) = sgn(β0)}, (14) and (15) hold with B∗0 replaced by B0, and

min
{

(1−κ0)/(1+κ1)λ, (supβ∈B0
‖ A−1

S ‖∞)−1 minj∈S |βj0|−|ŵS|∞λ
}

= K
√

(2/n) log(2p/ε),

then sgn(β̂) = sgn(β0) in the event Ω0 hold with at least probability 1− ε.

The proof of this corollary is similar to that of Theorem 2, so we omit the details. These

conditions of the Corollary 1 can be regarded as an extension of the irrepresentable condition

for Lasso in the linear regression model (Meinshausen and Bühlmann (2006); Zhao and Yu

(2006)) to the current setting.

We now derive an upper bound for the dimension of β̂. Take

κ+(m) = sup
|B|=m

{Λmax(W−2
B AB) : B ∩ S = ∅} (18)

as a restricted upper eigenvalue, where Λmax(·) denotes the largest eigenvalue, B ⊆ {1, · · · , p},

AB and WB are the restrictions of the Hessian of (3) and the weight W = diag{w} to RB.
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Theorem 6 If β̂ is the weighted Lasso estimator (5) and ξ > |wS|∞, then in the event

Ω0 ∩ {z∗ ≤ (ξ − |wS|∞)/(ξ + 1)λ}, we have

#{j : β̂j 6= 0, j /∈ S} < d1 = min

{
m ≥ 1 :

m

κ+(m)
>

ξ2λ2d0(1 + |wS|∞)2

(λ− z∗)2(ξ + 1)2κ2(ξ, S;A)

}
.

Corollary 2 If β̂ is the weighted Lasso estimator (5), ξ > |wS|∞, and λ = {(ξ + 1)/(ξ −

|wS|∞)}K
√

(2/n) log(2p/ε) with a small ε > 0, then in the event Ω0, for any Cκ > 0, we

have

#{j : β̂j 6= 0, j /∈ S} < d̃1 = min

{
m ≥ 1 :

m

κ+(m)
>
ξ2d0

C2
κ

}
holds with probability no less than P{κ(ξ, S;A) ≥ Cκ} − ε.

A direct consequence of this corollary is that #{j : β̂j 6= 0} ≤ d1 + d0. In particular,

under the condition κ+(m) < k∗+ for all m, we have

#{j : β̂j 6= 0} ≤ (1 + κ∗+ξ
2/C2

κ)d0.

This is an upper bound for the number of nonzero components of the weighted Lasso in the

high-dimensional AH model.

5 Concluding remarks

There exist several directions for research in the future. One reviewer suggests that it

would be useful to consider tests for individual coefficients and error control such as false

discovery rate control in the high-dimensional AH model (Zhong, Hu, and Li (2015)); some

treatments of this topic with the weighted Lasso would be interesting, and have practical

implications. The established results assume that the sequence of penalty parameters is
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fixed, which is not applicable to the case where the penalty parameters are selected based

on data-driven procedures, such as cross validation. This problem deserves further study,

but is beyond the scope of the current paper. It would be interesting to consider the more

general form of the AH model: dΛi(t) = Yi(t){dΛ0(t) + h(Zi(t))dt}, where h : Rp → R+ is

a nonparametric function. A particular case of interest is when h is an additive function,

dΛi(t) = Yi(t){dΛ0(t) +
∑p

j=1 hj(Zj(t))dt}. The linear AH model (1) is the parametric case

with h(x) = x′β. We expect that our methods would be useful for studying the properties

of the weighted Lasso in these models.
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Appendix

Here we prove Lemmas 1 - 2, Theorems 1-6, and Corollary 2.

Proof of Lemma 1. Since L(β) is a convex function, and D(β̂,β0) = ê′{L̇(β0 + ê) −

L̇(β0)} ≥ 0, the first inequality holds. With êj = β̂j for j ∈ Sc,

ê′{L̇(β0 + ê)− L̇(β0)}

=
∑
j∈Sc

êjL̇(β0 + ê)j +
∑
j∈S

êjL̇(β0 + ê)j + ê′(−L̇(β0))

≤
∑
j∈Sc

β̂j
(
− λŵjsgn(β̂j)

)
+
∑
j∈S

|êj|λŵj + ê′Sc(−L̇(β0)Sc) + ê′S(−L̇(β0)S)

≤ −λ|WSc êSc|1 + λ|WS êS|1 + (WSc êSc)′
(
−W−1

Sc L̇(β0)Sc

)
+ ê′S(−L̇(β0)S)

≤ (z∗ − λ)|WSc êSc |1 + (z∗ + λ|wS|∞)|êS|1.

The first inequality here requires L̇(β0 + ê)j = −λŵjsgn(β̂j) only in the set Sc∩{j : β̂j 6= 0},

since êj = β̂j − β0j = 0 when j ∈ Sc and β̂j = 0. This completes the proof of Lemma 1. �

Proof of Lemma 2. (i) By the Hölder inequality, |b|q ≤ |b|2/q−1
1 |b|2−2/q

2 . It follows from

|b|1 ≤ (1 + min{wSc}−1ξ)|bS|1 in the cone, and |bS|1 ≤ d
1/2
0 |b|2, that

|bS|1|b|q/d1/q
0 ≤ (1 + min{wSc}−1ξ)2/q−1|bS|2/q1 |b|

2−2/q
2 /d

1/q
0 ≤ (1 + min{wSc}−1ξ)2/q−1|b|22.

Then, since |bS|1 ≤ d
1/2
0 |b|2, (i) holds.

(ii) From |b′Ab− b′Bb| ≤ |b|21 maxi,j |Aij −Bij| and

|b|1 ≤ (1 + min{wSc}−1ξ)|bS|1 ≤ (1 + min{wSc}−1ξ)d
1/q
0 |b|q,

it is easy to obtain the desired result.

(iii) The conclusion immediately follows from (11). This completes the proof of Lemma

2. �
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Proof of Theorem 1. Let ê = β̂ − β0 6= 0 and b = ê/|ê|1. Because of the convexity of

L(β),

x−1D(β0 + xb,β0) =
∂

∂x
{L(β0 + xb)− xb′L̇(β0)}

is an increasing function of x. Thus, in the event Ω0 ∩ z∗ ≤ λ(ξ− |wS|∞)/(ξ+ 1), by Lemma

1 we have

b′{L̇(β0 + xb)− L̇(β0)}+
λ(1 + |wS|∞)

ξ + 1
|WScbSc |1 ≤

ξλ(1 + |wS|∞)

ξ + 1
|bS|1, (19)

where x ∈ [0, |ê|1], and b ∈ Θ(ξ, S) which is defined in (7). Then for all nonnegative x, it

follows from xb′{L̇(β0 + xb) − L̇(β0)} = x2b′L̈(β0)b, the definition of κ(ξ, S;A), and (19)

that

xκ2(ξ, S;A)|bS|21/d0 ≤ xb′L̈(β0)b

≤ ξλ(1 + |wS|∞)

ξ + 1
|bS|1 −

λ(1 + |wS|∞)

ξ + 1
|WScbSc|1

≤ λ(1 + |wS|∞)(ξ + min{wSc})
ξ + 1

|bS|1 −
λmin{wSc}(1 + |wS|∞)

ξ + 1

≤ λ(1 + |wS|∞)(ξ + min{wSc})2

4 min{wSc}(ξ + 1)
|bS|21.

Therefore, for all x satisfying (19), we have

x ≤ λd0(1 + |wS|∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S;A)(ξ + 1)
. (20)

Since L is convex, b′{L̇(β0 + xb) − L̇(β0)} is an increasing function of x, the set of all

nonnegative x satisfying(19) is a closed interval [0, x̃] for some x̃. Thus, (20) yields

|ê|1 ≤ |x̃| ≤
λd0(1 + |wS|∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S;A)(ξ + 1)
,

which is the second part of (9). Furthermore, by Lemma 1 we have

κ2(ξ, S;A)|êS|21/d0 ≤ ê′L̈(β0)ê = D(β̂,β0) ≤ ξλ(1 + |wS|∞)|êS|1
ξ + 1

.
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Thus, the first part of (9) holds.

Lastly, from the definition of Fq(ξ, S;A) and Lemma 1, we can derive that

|ê|q ≤
d

1/q
0 ê′Aê

|êS|1Fq(ξ, S;A)
=
d

1/q
0 D(β0 + ê,β0)

|êS|1Fq(ξ, S;A)
≤ d

1/q
0 (λ|wS|∞ + z∗)

Fq(ξ, S;A)
,

so (10) holds. This completes the proof of Theorem 1. �

Proof of Theorem 2. Let x = λ(ξ − |w|∞)/{K(ξ + 1)} =
√

(2/n) log(2p/ε) in the prob-

ability bound P{z∗ > Kx} ≤ 2pe−nx
2/2, then it can be verified that the probability of the

event z∗ > (ξ−|w|∞)/(ξ+1)λ is at most ε. Then it follows from Theorem 1 that the desired

results hold. This completes the proof of Theorem 2. �

Proof of Theorem 3. By the definition of Ā(t∗) and Lemma 2 (iii), we have

Φ(ξ, S; L̈(β0)) ≥ Φ(ξ, S; Ā(t∗)). (21)

From the definition of Σn(t) and Σ̄n(t), we have

Σn(t) = Σ̄n(t) + n−1

n∑
i=1

Yi(t){Z̄n(t)− µ(t)}⊗2.

Thus,

Ā(t∗) =

∫ t∗

0

Σn(t)dt−
∫ t∗

0

n−1

n∑
i=1

Yi(t){Z̄n(t)− µ(t)}⊗2dt. (22)

Take Ȳn(t) = n−1
∑n

i=1 Yi(t) and Γ(t) = Ȳn(t){Z̄n(t) − µ(t)} = n−1
∑n

i=1 Yi(t){Zi(t) −

µ(t)}. Since Yi(t) is a non-increasing function in t, we have

0 ≤
∫ t∗

0

Ȳn(t){Z̄n(t)− µ(t)}⊗2dt ≤
∫ t∗

0
Γ⊗2(t)dt

Ȳn(t∗)
. (23)

Because Ȳn(t∗) is an average of i.i.d. random variables taking values 0 or 1 and EȲn(t∗) = r∗,

by the Hoeffding (1963) inequality, we have

P{Ȳn(t∗) < r∗/2} ≤ e−nr
2
∗/2.
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Since Γ(t) is an average of i.i.d. mean-zero random vectors, (n2
∫ t∗

0
Γ⊗2(t)dt)i,j is a degenerate

V-statistic for each (i, j), and the summands of these V-statistic are all bounded by K2t∗,

by Lemma 4.2 of Huang et al. (2013), we have

P

{
±
(∫ t∗

0

Γ⊗2(t)dt

)
i,j

> (K2t∗)t2

}
≤ 2.221 exp

(
−nt2/2
1 + t/3

)
.

By (22), (23), the two above probability bounds and Lemma 2 (ii), we can derive that

Φ(ξ, S; Ā(t∗)) ≥ Φ(ξ, S;

∫ t∗

0

Σn(t)dt)− d0(1 + min{wSc}−1ξ)2K2t∗(2/r∗)t
2
n,p,ε (24)

with at least probability 1− e−nr2∗/2 − ε.

Moreover, since
∫ t∗

0
Σn(t)dt is an average of i.i.d. matrices with mean A(t∗) and the

summands of (
∫ t∗

0
Σn(t)dt)i,j are uniformly bounded by K2t∗, thus by the Hoeffding (1963)

inequality, we get

P

{
max
i,j

(∫ t∗

0

Σn(t)dt−A(t∗)

)
i,j

≥ K2t∗t

}
≤ p(p+ 1)e−nt

2/2.

Then, it follows from (21), (24), the above inequality with t = Fn(p(p + 1)/ε), and Lemma

2 (ii) that

Φ(ξ, S; L̈(β0)) ≥ Φ(ξ, S;

∫ t∗

0

Σn(t)dt)− d0(1 + min{wSc}−1ξ)2K2t∗(2/r∗)t
2
n,p,ε

≥ Φ(ξ, S;A(t∗))− d0(1 + min{wSc}−1ξ)2K2t∗{Fn(p(p+ 1)/ε) + (2/r∗)t
2
n,p,ε}

with at least probability 1− e−nr2∗/2 − 2ε.

From Lemma 2 that

Φ(ξ, S;A(t∗) ≥ RE2(ξ, S;A(t∗)) ≥ Λmin(A(t∗)),

and the desired results follow. This completes the proof of Theorem 3. �
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Proof of Theorem 4. Let ê = β̂ − β0, wj = ŵj. Since |ŵ|∞ ≤ 1, we have

|ŵ|∞λ+ z∗

λ− z∗
≤
λ+ λ

φ

λ− λ
φ

=
φ+ 1

φ− 1
≤ ξ.

Thus, from the KKT condition (6) and the proof of Lemma 1, we can show that ê ∈ Θ(ξ, S)

and D(β̂,β0) ≤ |êS|1(|ŵS|1 + |L̇(β0)S|1). By the definition of F1(ξ, S;A) in (8), we get that

d−1
0 F1(ξ, S;A)|êS|1|ê|1 ≤ D(β̂,β0) ≤ |êS|1(|ŵS|1 + |L̇(β0)S|1).

Since |êS|1 = 0 implies ê = 0 for ê ∈ Θ(ξ, S),

d−1
0 F1(ξ, S;A)|ê|1 ≤ |ŵS|1 + |L̇(β0)S|1. (25)

It follows from ŵjλ = Ṗλ(|β̃j|) ≤ Ṗλ(|βj0|) +$ · |β̃j − βj0| that

|ŵS|1λ ≤ |Ṗλ(|β0S|)|1 +$|β̃ − β0|1. (26)

From (25) and (26), |β̂−β0|1 ≤ d0
F1(ξ,S;A)

{
|Ṗλ(|β0S|)|1 + |L̇(β0)S|1 +$|β̃ − β0|1

}
. Moreover,

|L̇(β0)S|1 ≤ z∗ ≤ φ/λ and |S| = d0 lead to the desired results. This ends the proof of

Theorem 4. �

Proof of Theorem 5. (i) Let ã = a−Aβ0 and λ be fixed. Take

β̂(λ, t) = arg min
β

{
1

2
β′Aβ − β′(tã + Aβ0) + tλ

p∑
j=1

ŵj|β|j : βSc = 0

}

as an artificial path for 0 ≤ t ≤ 1. Then for each t, the KKT conditions for β̂(λ, t) are:

gS(λ, t) = tλŴSµS(λ, t), µj(λ, t)


= sgn(β̂j(λ, t)), if β̂j(λ, t) 6= 0,

∈ [−1, 1], if β̂j(λ, t) = 0,

where g(λ, t) = −Aβ̂(λ, t) + Aβ0 + tã.
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Let St = {j : β̂j(λ, t) 6= 0}. By applying differentiation D = (∂/∂t) to the KKT

conditions, it follows that almost everywhere in t,

(Dg)St(λ, t) = ãSt −ASt{(Dβ̂)St(λ, t)} = λŴStµSt(λ, t).

Then we have

(Dβ̂)St(λ, t) = A−1
St
{ãSt − λŴStµSt(λ, t)}. (27)

An application of the chain rule leads to

(Dg)Sc(λ, t) = ãSc −AScStA
−1
St
{ãSt − λŴStµSt(λ, t)}.

As g(λ, t) is almost differentiable and β̂(λ, 0+) = β0, we have g(λ, 0+) = 0 and gSc(λ, 1−) =∫ 1

0
[ãSc −AScStA

−1
St
{ãSt − λŴStµSt(λ, t)}]dt. Thus, by (14) and (15), |Ŵ−1

Sc gSc(λ, 1−)|∞ ≤

|Ŵ−1
Sc ãSc|∞ + κ1|ãSc |∞ + κ0λ|µSt(λ, t)|∞, which is smaller than λ in the event (16). Then

β̂(λ, 1−) is the unique solution of the KKT condition (6) for β̂. This ends the proof of part

(i).

(ii) We note that (17) implies that S = {j : βj0 6= 0}. Because β̂(λ, 0+) = β0, there

exists t1 > 0, µS(λ, t) = sgn(β0S) for 0 < t < t1. By (27) and (17), for 0 < t < t1 and some

ε > 0, we have

|(Dβ̂)S(λ, t)|∞ ≤‖ A−1
St
‖∞ |ãS − λsgn(β0S)ŴS|∞ < min

j∈S
|β0j| − ε.

Due to β̂(λ, 0+), |β̂S(λ, t)−β0S|∞ < minj∈S |β0j|−ε, for all 0 < t < min{t1, 1}. Furthermore,

by the continuity of β̂(λ, t) in t, we know that sgn(β̂(λ, t)) = sgn(β0) for 0 < t ≤ 1. Then,

(14) and (15) are only needed for the smaller B0 in the proof of (i). Thus, β̂(λ, 1) = β̂. This

completes the proof of Theorem 5. �
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Proof of Theorem 6. Let ê = β̂ − β0, then it follows from (3) that Aê = L̇(β̂)− L̇(β0).

By the KKT conditions (6), we have

|(Aê)j| = |(L̇(β̂)− L̇(β0))j| ≥ ŵjλ− |L̇(β0)j| ≥ wj(λ− z∗) > 0, j /∈ S.

If B ⊆ {j /∈ S : β̂j 6= 0} with |B| ≤ d1, (18) implies that

max
|u|2=1

|(W−1A1/2u)B|22 = Λmax(W−2
B AB) ≤ κ+(d1).

Thus,

(λ− z∗)2|B| ≤ |(W−1Aê)B|22 ≤ κ+(d1)ê′Aê = κ+(d1)D(β0 + ê,β0).

From the predication bound in Theorem 2, we get

|B| ≤ κ+(d1)D(β0 + ê,β0)

(λ− z∗)2
≤ κ+(d1)ξ2λ2d0(1 + |wS|∞)2

(λ− z∗)2(ξ + 1)2κ2(ξ, S;A)
< d1. (28)

All subsets B ⊆ {j /∈ S : β̂j 6= 0} with |B| ≤ d1 satisfy |B| < d1, so #{j /∈ S : β̂j 6= 0} < d1.

This completes the proof of Theorem 6. �

Proof of Corollary 2. For B̃ ⊆ {j /∈ S : β̂j 6= 0} with |B̃| ≤ d̃1, since λ − z∗ ≥ (|wS|∞ +

1)/(ξ + 1)λ, similar to (28), we get

|B̃| ≤ κ+(d̃1)D(β0 + ê,β0)

(λ− z∗)2
≤ κ+(d̃1)ξ2λ2d0(1 + |wS|∞)2

(λ− z∗)2(ξ + 1)2κ2(ξ, S;A)

≤ κ+(d̃1)ξ2d0

κ2(ξ, S;A)
< d̃1. (29)

Let x = λ(ξ − |w|∞)/{K(ξ + 1)} =
√

(2/n) log(2p/ε). By the probability bound P{z∗ >

Kx} ≤ 2pe−nx
2/2, we see that the probability of the event z∗ > (ξ − |w|∞)/(ξ + 1)λ is at

most ε. Thus, by replacing κ(ξ, S;A) in (29) with Cκ , we have the desired result. This

completes the proof of Corollary 2. �
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