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Abstract

An alternating permutation of length n is a permutation π = π1π2 · · ·πn such
that π1 < π2 > π3 < π4 > · · · . Let An denote the set of alternating permu-
tations of {1, 2, . . . , n}, and let An(σ) be the set of alternating permutations in
An that avoid a pattern σ. Recently, Lewis used generating trees to enumerate
A2n(1234), A2n(2143) and A2n+1(2143), and he posed some conjectures on the
Wilf-equivalence of alternating permutations avoiding certain patterns of length
four. Some of these conjectures have been proved by Bóna, Xu and Yan. In
this paper, we prove two conjectured relations |A2n+1(1243)| = |A2n+1(2143)| and
|A2n(4312)| = |A2n(1234)|.
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1 Introduction

The objective of this paper is to prove two conjectures of Lewis on the Wilf-equivalence
of alternating permutations avoiding certain patterns of length four.

We begin with some notation and terminology. Let [n] = {1, 2, . . . , n}, and let Sn be
the set of permutations of [n]. A permutation π = π1π2 · · · πn is said to be an alternating
permutation if π1 < π2 > π3 < π4 > · · · . An alternating permutation is also called an
up-down permutation. A permutation π is said to be a down-up permutation if π1 >
π2 < π3 > π4 < · · · . We denote by An and A′

n the set of alternating permutations and
the set of down-up permutations of [n], respectively. For a permutation π = π1π2 · · · πn,
its reverse πr = πr

1π
r
2 · · · πr

n is defined by πr
i = πn+1−i for 1 ≤ i ≤ n. The complement of

π, denoted πc = πc
1π

c
2 · · · πc

n, is defined by πc
i = n+ 1− πi for 1 ≤ i ≤ n. It is clear that

the complement operation gives a one-to-one correspondence between An and A′
n.
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Given a permutation π = π1π2 · · · πn in Sn and a permutation σ = σ1σ2 · · ·σk ∈ Sk,
where k ≤ n, we say that π contains a pattern σ if there exists a subsequence πi1πi2 · · · πik
(1 ≤ i1 < i2 < · · · < ik ≤ n) of π that is order isomorphic to σ, in other words, for
1 ≤ l < m ≤ k, πil < πim if and only if σl < σm. Otherwise, we say that π avoids a
pattern σ, or π is σ-avoiding. For example, 74538126 is 1234-avoiding, while it contains
a pattern 3142 corresponding to the subsequence 7486.

Let An(σ) denote the set of σ-avoiding alternating permutations of [n], and let A′
n(σ)

denote the set of σ-avoiding down-up permutations of [n]. Mansour [8] showed that for
n ≥ 0, |A2n(132)| = Cn, where Cn is the Catalan number

1

n+ 1

(
2n

n

)
.

Meanwhile, Deutsch and Reifegerste showed that for n ≥ 0, |A2n(123)| = Cn, see Stanley
[9]. As pointed out by Lewis [5], |An(σ)| is a Catalan number for any n ≥ 0 and any
pattern σ ∈ S3. To be more specific, for n ≥ 0 and σ ∈ {123, 132, 213, 231, 312}, we
have |A2n(σ)| = Cn. For n ≥ 2 and σ = 321, we have |A2n(σ)| = Cn+1. For n ≥ 1 and
σ ∈ {123, 213, 312, 321}, we have |A2n−1(σ)| = Cn. For n ≥ 2 and σ ∈ {132, 231}, we
have |A2n−1(σ)| = Cn−1.

Lewis [5, 6, 7] studied the enumeration of alternating permutations avoiding a pattern
of length four. In [7], he constructed generating trees for A2n(1234), A2n(2143) and the
set of standard Young tableaux of shape (n, n, n). Then he showed that these generating
trees are pairwise isomorphic. From the hook-length formula for the number of standard
Young tableaux given by Frame, Robinson and Thrall [3], it follows that

|A2n(1234)| = |A2n(2143)| =
2(3n)!

n!(n+ 1)!(n+ 2)!
. (1.1)

The above number is called the n-th 3-dimensional Catalan number, and it will be
denoted by C

(3)
n . Notice that C

(3)
n also equals the number of walks in 3-dimensions using

steps (1, 0, 0), (0, 1, 0), and (0, 0, 1) from (0, 0, 0) to (n, n, n) such that after each step
we have z ≥ y ≥ x. Lewis also constructed a generating tree for A2n+1(2143) and a
generating tree for the set of shifted standard Young tableaux of shape (n+2, n+1, n).
It turns out that these two generating trees are exactly the same. Using the formula for
the number of shifted standard Young tableaux given by Schur [10], we have

|A2n+1(2143)| =
2(3n+ 3)!

n!(n+ 1)!(n+ 2)!(2n+ 1)(2n+ 2)(2n+ 3)
. (1.2)

The following conjectures were posed by Lewis [7].

Conjecture 1.1 For n ≥ 1 and σ ∈ {1243, 2134, 1432, 3214, 2341, 4123, 3421, 4312}, we
have

|A2n(σ)| = |A2n(1234)| = |A2n(2143)|. (1.3)
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Conjecture 1.2 For n ≥ 0 and σ ∈ {2134, 4312, 3214, 4123}, we have

|A2n+1(σ)| = |A2n+1(1234)|. (1.4)

Conjecture 1.3 For n ≥ 0 and σ ∈ {1243, 3421, 1432, 2341}, we have

|A2n+1(σ)| = |A2n+1(2143)|. (1.5)

By showing that a classical bijection on pattern avoiding permutations preserves the
alternating property, Bóna [2] proved that

|A2n(1243)| = |A2n(1234)|, (1.6)

|A2n+1(2134)| = |A2n+1(1234)|. (1.7)

Xu and Yan [11] constructed bijections leading to the following relations

|A2n(4123)| = |A2n(1432)| = |A2n(1234)|, (1.8)

|A2n+1(1432)| = |A2n+1(2143)|, (1.9)

|A2n+1(4123)| = |A2n+1(1234)|. (1.10)

As for the above conjectures, there are essentially two unsolved cases, namely,

|A2n+1(1243)| = |A2n+1(2143)|, (1.11)

and
|A2n(4312)| = |A2n(1234)|, (1.12)

because the remaining cases can be deduced by the reverse and complement operations.

In this paper, we prove the relations (1.11) and (1.12) conjectured by Lewis. To
prove (1.11), we construct a generating tree for A2n+1(1243) which coincides with the
generating tree for A2n+1(2143) as given by Lewis [7]. This construction can be adapted
to obtain a generating tree for A2n(1243), which turns out to be isomorphic to the
generating tree for A2n(1234) as given by Lewis [7]. This leads to an alternative proof
of relation (1.6) conjectured by Lewis and proved by Bóna.

To prove (1.12), we show that the generating tree for A2n+1(1243) constructed in
Section 2 is isomorphic to the generating tree for shifted standard Young tableaux of
shape (n+ 2, n+ 1, n) as given by Lewis [7]. We adopt the notation SHSY T (λ) for the
set of shifted standard Young tableaux of shape λ. A label (a, b) in the generating tree for
A2n+1(1243) corresponds to a label (a+1, b) in the generating tree for SHSY T (n+2, n+
1, n). By restricting the correspondence to certain labels of these two generating trees,
we obtain that |A2n(4312)| = |SHSY T (n+ 2, n, n− 2)|. Since SHSY T (n+ 2, n, n− 2)

and A2n(1234) are both enumerated by C
(3)
n , we arrive at (1.12). Moreover, we obtain a

generating tree for A2n(4312), leading to another proof of relation (1.11).
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2 Generating trees for A2n+1(1243) and A2n(1243)

In this section, we construct a generating tree P1243 for A2n+1(1243) which turns out
to be the same as the generating tree for A2n+1(2143) given by Lewis. This proves
(1.11), that is, |A2n+1(1243)| = |A2n+1(2143)| for n ≥ 0. We also obtain a generating
tree Q1243 for A2n(1243) that is easily seen to be isomorphic to the generating tree for
A2n(1234) given by Lewis. This provides an alternative proof of relation (1.6), that is,
|A2n(1243)| = |A2n(1234)| for n ≥ 1.

Theorem 2.1 The generating tree P1243 for {A2n+1(1243)}n≥0 is given by{
root : (0, 2),

rule : (a, b) 7→ {(x, y) | 1 ≤ x ≤ a+ 1 and x+ 2 ≤ y ≤ b+ 2}.
(2.1)

Theorem 2.2 The generating tree Q1243 for {A2n(1243)}n≥1 is given by{
root : (1, 3),

rule : (a, b) 7→ {(x, y) | 1 ≤ x ≤ a+ 1 and x+ 2 ≤ y ≤ b+ 2}.
(2.2)

It is clear that the above generating tree Q1243 is isomorphic to the following gener-
ating tree for {A2n(1234)}n≥1 due to Lewis{

root : (2, 3),

rule : (a, b) 7→ {(x, y) | 2 ≤ x ≤ a+ 1 and x+ 1 ≤ y ≤ b+ 2}.
(2.3)

To present the proofs of the above theorems, let us give an overview of the terminology
on generating trees. Given a sequence {Σn}n≥1 of finite sets with |Σ1| = 1, a generating
tree is a rooted, labeled tree such that the vertices at level n are the elements of Σn and
the label of each vertex determines the labels of its children. A generating tree may be
described by a recursive definition consisting of

(1) the label of the root,
(2) a set of succession rules explaining how to derive, given the label of a parent, the

labels of its children.

A generating tree for a sequence {Σn}n≥1 is also called a generating tree for the
set Σn. To illustrate the idea of generating trees, we consider the construction of a
generating tree for Sn. We need to determine the children of each permutation in Sn.
Given π ∈ Sn, we can generate n + 1 permutations in Sn+1. For 1 ≤ i ≤ n + 1, let
i 7→ π denote the permutation τ = τ1τ2 · · · τn+1 in Sn+1 generated by π, where τ1 = i
and τ2τ3 · · · τn+1 is order isomorphic to π. Apparently, i 7→ π can be obtained from π by
adding i to the beginning of π and increasing each element in {i, i+ 1, . . . , n} by 1. For
example, 3 7→ 3142 = 34152 is a child of 3142 in the generating tree.
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Notice that Lewis [7] used the notation π ← i to denote the permutation τ =
τ1τ2 · · · τn+1 in Sn+1 such that τn+1 = i and τ1τ2 · · · τn is order isomorphic to π. The idea
of a generating tree is to give succession rules for the structure of the generating tree by
assigning labels to the vertices. For the case of permutations, given π = π1π2 · · · πn ∈ Sn,
we associate it with a label (π1, n). Then we obtain the following generating tree for Sn{

root : (1, 1),

rule : (i, n)→ {(j, n+ 1) | 1 ≤ j ≤ n+ 1}.

By the recursive construction of alternating permutations, Lewis [7] obtained gener-
ating schemes for A2n and A2n(σ), where σ is a given permutation pattern in Sk. Here
we describe the recursive constructions of A2n and A2n(σ) by adding elements at the
beginning.

For n ≥ 1, let u = u1u2 · · ·u2n be an alternating permutation in A2n. The generating
tree is constructed based on the following procedure. Consider alternating permutations
w = w1w2w3 · · ·w2n+2 in A2n+2 such that w3w4 · · ·w2n+2 is order isomorphic to u. Such
permutations are set to be the children of u in the generating tree. One can also use
this recursive procedure to generate pattern avoiding alternating permutations. Given
u ∈ A2n(σ), where σ is a permutation pattern in Sk, the set of children of u is given by

{w | w = v1 7→ (v2 7→ u), w ∈ A2n+2(σ)}.

Analogously, one can describe the procedure to generate pattern avoiding alternating
permutations of odd length.

We now proceed to construct the generating trees P1243 and Q1243 for A2n+1(1243)
and A2n(1243), respectively. It turns out that these two generating trees have the same
succession rules, but with different roots. Here we shall only present the derivation of
the succession rules of P1243. First, we introduce two statistics on sequences of positive
integers. For n ≥ 0, let s = s1s2 · · · sn be a sequence of positive integers. We define

f(s) = max{0, sj | there exists i such that i < j and si > sj},

e(s) = max{0, si | there exist j and k such that i < j < k and si < sk < sj}.

For example, let s = 48152967, which is a permutation of [9]\{3}. Then we have f(s) = 7
and e(s) = 5. In fact, for any permutation u ∈ Sn, f(u) = 0 if u contains no 21-pattern;
otherwise, f(u) is the largest entry among the smaller elements of 21-patterns of u.
Similarly, e(u) = 0 if u contains no 132-pattern; otherwise, e(u) is the largest entry
among the smallest elements of 132-patterns of u. Since each 132-pattern contains a
21-pattern, we have f(u) ≥ e(u). Moreover, f(u) = e(u) if and only if u = 12 · · ·n.

To derive the succession rules of P1243, we need to characterize the set of 1243-avoiding
alternating permutations in A2n+3 that are generated by an alternating permutation u in
A2n+1(1243). Recall that for an alternating permutation u in A2n+1(1243), a permutation
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w ∈ A2n+3(1243) is said to be a child of u if w is of the form w = v1 7→ (v2 7→ u). The
following theorem shows exactly how to generate the set of children of an alternating
permutation in A2n+1(1243).

Theorem 2.3 For n ≥ 0, given a permutation u = u1u2 · · · u2n+1 ∈ A2n+1(1243), the
set of children of u consists of sequences of the form w = v1 7→ (v2 7→ u), where

e(u) < v1 ≤ v2, (2.4)

max{u1 + 1,f(u) + 1} ≤ v2 ≤ 2n+ 2. (2.5)

Proof. Suppose that w = w1w2 · · ·w2n+3 is a child of u, that is, w is an alternating
permutation in A2n+3(1243) and it is of the form w = v1 7→ (v2 7→ u). We proceed to
prove relations (2.4) and (2.5). Since w is alternating on [2n+3], we have v1 ≤ v2 ≤ 2n+2
and v2 ≥ u1 + 1. By the order of the insertions of v1 and v2, we see that w1 = v1 and
w2 = v2 + 1. Since w is 1243-avoiding, we claim that v2 ≥ f(u) + 1. Assume to the
contrary that v2 ≤ f(u). Then there exist i < j such that ui > uj and v2 ≤ uj. This
implies that w1w2wi+2wj+2 forms a 1243-pattern, a contradiction. So the claim is proved.
We continue to show that v1 > e(u). Assume to the contrary that v1 ≤ e(u). Then there
exist i < j < k such that ui < uk < uj and v1 ≤ ui. Using the fact that wi+2 > ui ≥ v1,
we deduce that w1wi+2wj+2wk+2 is of pattern 1243, a contradiction. This proves that
v1 > e(u). Hence (2.4) and (2.5) are verified.

Conversely, we assume that w = v1 7→ (v2 7→ u), where v1 and v2 satisfy conditions
(2.4) and (2.5). We proceed to show that w is an alternating permutation in A2n+3(1243).
Since u is alternating, it is easy to see that w is alternating. It remains to verify that w
is 1243-avoiding. Assume to the contrary that w contains a 1243-pattern, that is, there
exist t < i < j < k such that wtwiwjwk is of pattern 1243. Since u is 1243-avoiding,
we deduce that t = 1 or 2. If w2wiwjwk forms a 1243-pattern, then w1wiwjwk is also a
1243-pattern. Hence we can always choose t = 1. To prove w is 1243-avoiding, we show
that it is impossible for w1wiwjwk to form a 1243-pattern.

We now assume that w1wiwjwk forms a 1243-pattern. If i = 2, we have w2 < wk.
Since w2 = v2+1 and wk ≤ uk−2+2, we get v2 ≤ uk−2. Using the fact that uj−2uk−2 forms
a 21-pattern, we find that uk−2 ≤ f(u). It follows that v2 ≤ f(u), which contradicts the
condition that v2 ≥ f(u) + 1. Hence we get i > 2.

We claim that w1 ≤ ui−2. Assume to the contrary that w1 > ui−2. Since w1 = v1
and v1 ≤ v2, we see that ui−2 < v1 ≤ v2. Moreover, we have wi = ui−2 since w =
v1 7→ (v2 7→ u). This yields wi < w1, which contradicts the assumption that w1wiwjwk

forms a 1243-pattern. So the claim is proved. Clearly, ui−2uj−2uk−2 is a 132-pattern. It
follows that ui−2 ≤ e(u). Thus v1 = w1 ≤ ui−2 ≤ e(u), which contradicts the condition
v1 > e(u). So the assumption that w1wiwjwk is a 1243-pattern is false. Hence w is
1243-avoiding and the proof is complete.

In light of the above characterization, we are led to a labeling scheme for alternating
permutations in A2n+1(1243). For u ∈ A2n+1(1243), we associate a label (a, b) to u,
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where

a = 2n+ 2−max{u1 + 1, f(u) + 1}, (2.6)

b = 2n+ 2− e(u). (2.7)

For example, the permutation 1 ∈ A1(1243) has label (0, 2), and the permutation
2546173 ∈ A7(1243) has label (3, 6).

The above labeling scheme enables us to derive succession rules of the generating tree
P1243 for A2n+1(1243).

Theorem 2.4 For n ≥ 0, given u = u1u2 · · ·u2n+1 ∈ A2n+1(1243) with label (a, b) , the
set of labels of children of u is given by

{(x, y) | 1 ≤ x ≤ a+ 1, x+ 2 ≤ y ≤ b+ 2}.

Proof. Assume that w = v1 7→ (v2 7→ u) is a child of u. Write w = w1w2 · · ·w2n+3.
According to Theorem 2.3, we have e(u) < v1 ≤ v2 and max{u1 + 1, f(u) + 1} ≤ v2 ≤
2n+2. Let (x, y) be the label of w. Since w ∈ A2n+3(1243), from the labeling rules (2.6)
and (2.7) it follows that

x = 2n+ 4−max{w1 + 1, f(w) + 1}, (2.8)

y = 2n+ 4− e(w). (2.9)

To determine the range of the label (x, y), we proceed to compute f(w) and e(w). Notice
that the insertions of v1 and v2 to u may cause new 21-patterns and new 132-patterns.
Let s = w3w4 · · ·w2n+3. To determine f(w), it suffices to compare f(s) with the smaller
element in each new 21-pattern. Similarly, e(w) can be obtained by comparing e(s) with
the smallest element in each new 132-pattern. Here are two cases.

Case 1: e(u) < v1 < v2. It is easily seen that e(s) = e(u). To compute e(w), we
consider new 132-patterns caused by the insertions of v1 and v2 into u. Since w2 = v2+1
and v2 > f(u), we find that w2 does not appear as the smallest entry of any 132-
pattern of w. Since v1(v2 + 1)v2 is a 132-pattern and v1 > e(u) = e(s), we see that
e(w) = max{v1, e(s)} = v1.

To compute f(w), we first determine f(s). There are two cases. If e(u) < v1 ≤ f(u),
then f(u) ̸= 0. Noting that v2 > f(u) ≥ v1, we get f(s) = f(u) + 1. If f(u) < v1 < v2,
it is obvious that f(s) = f(u). Therefore, in either case we have f(s) ≤ f(u) + 1.

We now consider new 21-patterns caused by the insertions of v1 and v2 into u. Since
v1 < v2 and w2 = v2 +1, we see that (v2 +1)v2 is a 21-pattern of w. Moreover, it can be
seen that v2 is the largest among the smaller elements of the newly formed 21-patterns.
From the fact that f(s) ≤ f(u) + 1 ≤ v2, we deduce that f(w) = max{v2, f(s)} = v2.
Hence from (2.8) and (2.9) we have

x = 2n+ 4−max{w1 + 1, f(w) + 1} = 2n+ 3− v2,
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y = 2n+ 4− e(w) = 2n+ 4− v1.

Since e(u) < v1 < v2 and max{u1 + 1, f(u) + 1} ≤ v2 ≤ 2n+ 2, we obtain

1 ≤ x ≤ 2n+ 3−max{u1 + 1, f(u) + 1}, (2.10)

2n+ 5− v2 ≤ y ≤ 2n+ 3− e(u). (2.11)

Since a = 2n + 2 −max{u1 + 1, f(u) + 1} and b = 2n + 2 − e(u) as given in (2.6) and
(2.7), we may rewrite (2.10) and (2.11) as follows

1 ≤ x ≤ a+ 1, (2.12)

x+ 2 ≤ y ≤ b+ 1. (2.13)

It is easily checked that for any pair (x, y) of integers satisfying conditions (2.12) and
(2.13), there exists a unique child w = v1 7→ (v2 7→ u) of u with the label (x, y) such
that e(u) < v1 < v2. Consequently, the set of labels of children of u considered in this
case is given by

{(x, y) | 1 ≤ x ≤ a+ 1 and x+ 2 ≤ y ≤ b+ 1}.

Case 2: v1 = v2. By (2.5), namely, max{u1 + 1, f(u) + 1} ≤ v2 ≤ 2n + 2, we have
v1 = v2 > f(u). It follows that f(s) = f(u). Clearly, (v2+1)(v2−1) is a 21-pattern of w.
Moreover, it is obvious that v2−1 is the largest among the smaller elements in the newly
formed 21-patterns. Since v2 − 1 ≥ f(u) = f(s), we have f(w) = max{v2 − 1, f(s)} =
v2 − 1.

By (2.4), namely, e(u) < v1 ≤ v2, we deduce that e(s) = e(u). Since v1 = v2 > f(u),
the insertions of v1 and v2 do not create any new 132-pattern. It yields that e(w) =
e(s) = e(u). From the labeling rules (2.8) and (2.9) we have

x = 2n+ 4−max{w1 + 1, f(w) + 1} = 2n+ 3− v2, (2.14)

y = 2n+ 4− e(w) = 2n+ 4− e(u). (2.15)

Since f(u) ≥ e(u), using (2.4) and (2.5) we get

max{u1 + 1, f(u) + 1} ≤ v1 = v2 ≤ 2n+ 2.

This implies that
1 ≤ x ≤ 2n+ 3−max{u1 + 1, f(u) + 1}. (2.16)

Combining (2.6) and (2.16), we get 1 ≤ x ≤ a + 1. By the labeling rule (2.7), (2.15)
becomes y = b + 2. Conversely, for any pair (x, y) of integers satisfying 1 ≤ x ≤ a + 1
and y = b+ 2, there exists a unique child w = v1 7→ (v2 7→ u) of u with label (x, y) such
that v1 = v2. Hence the set of labels of children of u considered in this case is given by

{(x, y) | 1 ≤ x ≤ a+ 1 and y = b+ 2}.
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1
label(0,2)

132
label(1,3)

24153
label(2,4)

25143
label(1,4)

34152
label(2,5)

35142
label(1,3)

45132
label(1,5)

231
label(1,4)

Figure 2.1: The first few levels of the generating tree P1243

Combining Case 1 and Case 2, the set of labels of children of u is given by

{(x, y) | 1 ≤ x ≤ a+ 1, x+ 2 ≤ y ≤ b+ 2}.

as required.

Using Theorem 2.4, we obtain the generating tree P1243 given in Theorem 2.1. Figure
2.1 gives the first few levels of the generating tree P1243.

Comparing the above description of the generating tree P1243 and the generating tree
for A2n+1(2143) as given by Lewis [7], we arrive at the assertion that there is a bijection
between A2n+1(1243) and A2n+1(2143). This proves relation (1.11).

The construction of the generating tree P1243 can be easily adapted to give the gen-
erating tree Q1243. The following theorem provides a similar characterization of the set
of 1243-avoiding alternating permutations in A2n+2 that are generated by an alternating
permutation u in A2n(1243).

Theorem 2.5 For n ≥ 1, given a permutation u = u1u2 · · ·u2n ∈ A2n(1243), the set of
children of u consists of sequences of the form w = v1 7→ (v2 7→ u), where

e(u) < v1 ≤ v2, (2.17)

max{u1 + 1,f(u) + 1} ≤ v2 ≤ 2n+ 1. (2.18)

Based on the above characterization, we assign a label (a, b) to an alternating per-
mutation u = u1u2 · · ·u2n ∈ A2n(1243), where

a = 2n+ 1−max{u1 + 1, f(u) + 1},

b = 2n+ 1− e(u).
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It is easy to check that the succession rules of Q1243 are exactly the same as the succession
rules of P1243. Note that 12 ∈ A2(1243) has label (1, 3). So we obtain the generating
tree Q1243 as given in Theorem 2.2.

It is clear that the generating tree Q1243 is isomorphic to the generating tree for
A2n(1234) given in (2.3) via the correspondence (a, b) → (a + 1, b). This gives another
proof of relation (1.6), which was proved by Bóna [2] by a direct bijection.

3 A restriction of the generating tree P1243

In this section, we give a proof of relation (1.12) conjectured by Lewis. We notice that
the generating tree P1243 for A2n+1(1243) is isomorphic to the generating tree for the set
of shifted standard Young tableaux of shape (n + 2, n + 1, n) as given by Lewis [7]. By
restricting this isomorphism to certain labels of these two generating trees, we obtain
a bijection between a subset of A2n+1(1243) and a subset of SHSY T (n + 2, n + 1, n),
which leads to the following assertion.

Theorem 3.1 For n ≥ 2, we have |A2n(4312)| = |SHSY T (n+ 2, n, n− 2)|.

By the formula for the number of shifted standard Young tableaux of a given shape,
we have |SHSY T (n+ 2, n, n− 2)| = C

(3)
n , where C

(3)
n is the n-th 3-dimensional Catalan

number as given by (1.1). Lewis [7] proved that |A2n(1234)| = C
(3)
n . So by Theorem

3.1, we obtain |A2n(4312)| = |A2n(1234| for n ≥ 2. Note that this relation also holds for
n = 1. This proves the relation (1.12).

Let us recall some notation and terminology on partitions and shifted standard Young
tableaux. A sequence λ = (λ1, λ2, . . . , λm) of positive integers is said to be a partition
of n if n = λ1 + λ2 + · · · + λm and λ1 ≥ λ2 ≥ · · · ≥ λm > 0, where each λi is called a
part of λ. A Young diagram of shape λ is defined to be a left-justified array of n boxes
with λ1 boxes in the first row, λ2 boxes in the second row and so on. If λ is a partition
with distinct parts, then the shifted Young diagram of shape λ is an array of cells with
m rows, where each row is indented by one cell to the right with respect to the previous
row, and there are λi cells in row i.

A standard Young tableau of shape λ is a Young diagram of λ whose boxes are filled
with the numbers 1, 2, . . . , n such that the entries are increasing along each row and each
column. A shifted standard Young tableau of shape λ is a filling of a shifted Young
diagram with the numbers 1, 2, . . . , n such that the entries are increasing along each row
and each column. We denote by SHSY T (λ) the set of shifted standard Young tableaux
of shape λ. Figure 3.1 gives examples of a standard Young tableau and a shifted standard
Young tableau.

As shown by Lewis [7], A2n(1234) is enumerated by the n-th 3-dimensional Catalan

number C
(3)
n . To prove relation (1.12), it suffices to demonstrate that A2n(4312) is
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1 3 7 9

2 5

4 6

8

1 2 4 8 10

3 5 6

7 9

11

Figure 3.1: A standard Young tableau of shape (4, 2, 2, 1) and a shifted standard Young
tableau of shape (5, 3, 2, 1)

also counted by C
(3)
n . In light of the correspondence between 4312-avoiding alternating

permutations and 1243-avoiding down-up permutations via complementation, we proceed
to consider the generating tree for A2n+1(1243).

It turns out that the generating tree P1243 is isomorphic to the following generating
tree for SHSY T (n+ 2, n+ 1, n) obtained by Lewis [7]:{

root : (1, 2),

rule : (a, b) 7→ {(x, y) | 2 ≤ x ≤ a+ 1 and x+ 1 ≤ y ≤ b+ 2}.
(3.1)

The above generating tree is based on the following labeling scheme. Assume that
T ∈ SHSY T (n + 2, n + 1, n), and let T (i, j) denote the entry of T in the i-th row and
the j-th column. We associate T with a label (a, b), where

a = 3n+ 4− T (2, n+ 2), (3.2)

b = 3n+ 4− T (1, n+ 2). (3.3)

The isomorphism can be easily established by mapping a label (a, b) in (3.1) to a label
(a− 1, b) in (2.1). Thus for n ≥ 0, we have

|A2n+1(1243)| = |SHSY T (n+ 2, n+ 1, n)|. (3.4)

The above isomorphism between the generating tree P1243 and the generating tree
for SHSY T (n + 2, n + 1, n) can be restricted to certain labels. Let Pn be the set of
alternating permutations in A2n+1(1243) with labels of the form (1, b) and Qn be the set
of shifted standard Young tableaux in SHSY T (n + 2, n + 1, n) with labels of the form
(2, b). By the isomorphism between the two generating trees, we see that |Pn| = |Qn|.

To prove Theorem 3.1, we shall show that for n ≥ 1,

|Pn| = |A2n−1(1243)|+ |A2n(4312)|, (3.5)

and for n ≥ 2,

|Qn| = |SHSY T (n+ 1, n, n− 1)|+ |SHSY T (n+ 2, n, n− 2)|. (3.6)

11



Substituting (3.4) with n replaced by n− 1 into (3.5), we find that n ≥ 1,

|Pn| = |SHSY T (n+ 1, n, n− 1)|+ |A2n(4312)|. (3.7)

Since |Pn| = |Qn| for n ≥ 1, comparing (3.6) and (3.7) yields |A2n(4312)| = |SHSY T (n+
2, n, n− 2)| for n ≥ 2, as asserted in Theorem 3.1.

To prove (3.5), we need a characterization of alternating permutations in Pn.

Lemma 3.2 For n ≥ 0, an alternating permutation u = u1u2 · · ·u2n+1 ∈ A2n+1(1243)
is in Pn if and only if u2 = 2n+ 1, that is,

Pn = {u | u = u1u2 · · ·u2n+1 ∈ A2n+1(1243), u2 = 2n+ 1}. (3.8)

Proof. Assume that u = u1u2 · · ·u2n+1 is an alternating permutation in Pn. By the
definition of Pn, we see that u has a label of the form (1, b). Using the labeling scheme of
P1243, we have 2n+2−max{u1+1, f(u)+1} = 1. It follows that u1 = 2n or f(u) = 2n.
When u1 = 2n, we have u2 = 2n + 1 since u1 < u2 ≤ 2n + 1. When f(u) = 2n, by the
definition of f(u), we find that 2n + 1 precedes 2n in u since (2n + 1)(2n) is the only
21-pattern in u with 2n being the smaller element. We claim that u2 = 2n+ 1. Assume
to the contrary that u2 < 2n + 1. Then u1u2(2n + 1)(2n) forms a 1243-pattern of u, a
contradiction. Hence the claim is valid. So we have shown that u2 = 2n+ 1.

Conversely, assume that u ∈ A2n+1(1243) and u2 = 2n+1. We proceed to show that
u ∈ Pn, namely, 2n+2−max{u1+1, f(u)+1} = 1. Here are two cases. If u1 = 2n, by the
definition of f(u), we have f(u) < 2n. It follows that 2n+2−max{u1+1, f(u)+1} = 1.
If u1 ̸= 2n, from the assumption that u2 = 2n+ 1 we see that 2n appears after (2n+ 1)
in u, that is, (2n + 1)(2n) forms a 21-pattern of u. Hence we have f(u) = 2n. It can
be checked that in this case we also have 2n + 2 − max{u1 + 1, f(u) + 1} = 1. This
completes the proof.

The following correspondence implies relation (3.5).

Theorem 3.3 For n ≥ 1, there is a bijection between Pn and A2n(4312)∪A2n−1(1243).

Proof. We divide Pn into two subsets P ′
n and P ′′

n , where

P ′
n = {u |u = u1u2 · · ·u2n+1 ∈ A2n+1(1243), u2 = 2n+ 1 and u1 > u3},

P ′′
n = {u |u = u1u2 · · ·u2n+1 ∈ A2n+1(1243), u2 = 2n+ 1 and u1 < u3}.

We proceed to show that there is a bijection between P ′
n and A2n(4312) and there is a

bijection between P ′′
n and A2n−1(1243).

First, we define a map φ : P ′
n → A2n(4312). Given v = v1v2 · · · v2n+1 ∈ P ′

n, let
φ(v) = πc, where π = v1v3v4 · · · v2n+1. Clearly, we have π ∈ A′

2n(1243). It follows that
φ(v) = πc ∈ A2n(4312).
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To prove that φ is a bijection, we construct the inverse of φ. Define a map ϕ : A2n(4312)
→ P ′

n. Given w = w1w2 · · ·w2n ∈ A2n(4312), let

ϕ(w) = τ = (2n+ 1− w1)(2n+ 1)(2n+ 1− w2) · · · (2n+ 1− w2n).

We claim that τ is 1243-avoiding. Since w is 4312-avoiding, by complementation we
see that τ1τ3τ4 · · · τ2n+1 is 1243-avoiding. Note that τ2 = 2n + 1 does not occur in any
1243-pattern of τ . So the claim is verified. Evidently, τ is alternating, and hence we have
τ ∈ A2n+1(1243). Since w is alternating, we have w1 < w2, and so τ1 > τ3. It follows
that τ ∈ P ′

n. Moreover, it can be checked that ϕ is the inverse of φ. So we conclude that
φ is a bijection between P ′

n and A2n(4312).

We next construct a bijection between P ′′
n and A2n−1(1243). Given an alternating per-

mutation u = u1u2 · · ·u2n+1 in P ′′
n , define ψ(u) = st(r), where r = u1u3u5u6 · · ·u2nu2n+1

and st(r) is the permutation of [2n− 1] which is order isomorphic to r.

We aim to show that ψ(u) ∈ A2n−1(1243). Since u ∈ P ′′
n , we find that u1 < u3 < u4

and u2 = 2n + 1. We claim that u3 + 1 = u4. Otherwise, u1u3u4(u3 + 1) would form a
1243-pattern of u, contradicting the fact u is 1243-avoiding. Since u4 > u5, we deduce
that u3 > u5. It follows that ψ(u) is an alternating permutation of length 2n − 1. It is
clear that ψ(u) is 1243-avoiding. So we deduce that ψ(u) ∈ A2n−1(1243).

To prove that ψ is a bijection, we describe the inverse of ψ. Given q = q1q2 · · · q2n−1

in A2n−1(1243), define θ(q) = p, where p = p1p2 · · · p2n+1 is obtained from q by inserting
2n + 1 after q1 and inserting q2 + 1 after q2, and increasing each element of q which is
not less than q2 + 1 by 1. For example, for q = 34152 ∈ A5(1243), we have p = θ(q) =
3745162.

We need to show that p = θ(q) is an alternating permutation in P ′′
n . By the con-

struction of p, we have p1 = q1, p2 = 2n+ 1, p3 = q2, p4 = q2 + 1 and p5 = q3. Now it is
not difficult to check that p is alternating.

Next we show that p is 1243-avoiding. Assume to the contrary that ptpipjpk forms a
1243-pattern of p, where t < i < j < k. Since q is 1243-avoiding, from the construction
of p, we see that ptpipjpk contains either p2 or p4. Since p2 = 2n + 1 does not occur
in any 1243-pattern, p4 appears in ptpipjpk. Moreover, p3 appears in ptpipjpk. If not,
since p3 +1 = p4, then there is a 1243-pattern which does not contain p4 by replacing p4
with p3 in ptpipjpk, which contradicts the fact that p4 appears in ptpipjpk. Thus ptpipjpk
contains both p3 and p4.

To prove that p is 1243-avoiding, it is sufficient for us to show that ptpipjpk does not
contain both p3 and p4. Assume that both p3 and p4 appear in ptpipjpk. Since p3 < p4,
by the assumption that ptpipjpk forms a 1243-pattern, we have either ptpi = p3p4 or
pipj = p3p4. If ptpi = p3p4, that is, p3p4pjpk is a 1243-pattern of p, then p1p3pjpk forms
a 1243-pattern since p1 < p3 < p4, contradicting the assertion that p4 must appear in
any 1243-pattern of p as shown before. Hence we have ptpi ̸= p3p4. It follows that
pipj = p3p4, namely, ptp3p4pk is a 1243-pattern of p. However, this is not possible since
p3 + 1 = p4. So the claim is verified, that is, p is 1243-avoiding.
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3n+1

3n+2

3n+33n+1

3n+2

3n+3

Figure 3.2: The two cases when T (2, n+ 2) = 3n+ 2

It is easy to check that p ∈ P ′′
n . By the definition of P ′′

n , we only need to verify that
p2 = 2n + 1 and p1 < p3. But this is obvious from the construction of p. Thus θ is a
map from A2n−1(1243) to P

′′
n . Moreover, it is not difficult to verify that θ = ψ−1. Hence

ψ is a bijection between P ′′
n and A2n−1(1243).

The following theorem gives a bijection for relation (3.6). Recall that Qn is the set
of shifted standard Young tableaux in SHSY T (n + 2, n + 1, n) with labels of the form
(2, b).

Theorem 3.4 For n ≥ 2, there is a bijection between Qn and

SHSY T (n+ 1, n, n− 1) ∪ SHSY T (n+ 2, n, n− 2).

Proof. By the definition of Qn and the labeling scheme of the generating tree for
SHSY T (n+ 2, n+ 1, n), we have

Qn = {T |T ∈ SHSY T (n+ 2, n+ 1, n), T (2, n+ 2) = 3n+ 2}. (3.9)

Let

Q′
n = {T |T ∈ Qn, T (3, n+ 1) = 3n+ 1},

Q′′
n = {T |T ∈ Qn, T (1, n+ 2) = 3n+ 1}.

Clearly, Q′
n ∩Q′′

n = ∅. We claim that

Qn = Q′
n ∪Q′′

n.

In other words, for any T ∈ Qn we have either T (3, n+1) = 3n+1 or T (1, n+2) = 3n+1.

Let T be a shifted standard Young tableau in Qn. By (3.9) we have T (2, n + 2) =
3n+ 2. Since T is filled with 1, 2, . . . , 3n+ 3 and T contains the cell (3, n+ 2), we have
T (3, n + 2) = 3n + 3. Moreover, it can be seen that the element 3n + 1 appears in the
cell (3, n + 1) or in the cell (1, n + 2). This proves Qn = Q′

n ∪ Q′′
n. Figure 3.2 gives an

illustration of the two cases when T (2, n+ 2) = 3n+ 2.
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We now define a map χ from Qn to the set SHSY T (n+ 1, n, n− 1) ∪ SHSY T (n+
2, n, n − 2). Let T be a shifted standard Young tableau in Qn. If T ∈ Q′

n, then let
χ(T ) = T1, where T1 is obtained from T by deleting the boxes T (2, n + 2), T (3, n + 1)
and T (3, n+2). If T ∈ Q′′

n, then let χ(T ) = T2, where T2 is obtained from T by deleting
the boxes T (1, n+2), T (2, n+2) and T (3, n+2). It is easily verified that χ is a bijection
between Qn and SHSY T (n+1, n, n−1)∪SHSY T (n+2, n, n−2), since we can recover
the shifted standard Young tableau T from T1 or T2 depending on the shape of T1 or T2.
Thus χ is the required bijection.

4 A generating tree for A2n(4312)

In this section, we construct a generating tree Q4312 for A2n(4312). While this generating
tree is not isomorphic to the generating tree for A2n(1234) given by Lewis, it leads to an
alternative proof of relation (1.11), namely, |A2n+1(1243)| = |A2n+1(2143)| for n ≥ 0. To
be more specific, by deleting the leaves of the generating tree Q4312 and changing every
label (a, b) to (a−1, b), we are led to the generating tree for A2n(3412) as given by Lewis
[7]. By restricting this correspondence to certain labels, we obtain relation (1.11).

Theorem 4.1 The generating tree Q4312 for {A2n(4312)}n≥1 is given by
root : (2, 3),

rule : (a, b) 7→ {(x, y) | 2 ≤ x ≤ a+ 1 and a+ 2 ≤ y ≤ b+ 2}

∪
{(

b−a+1
2

)
occurrences of (0, 0)

}
.

The construction of the generating tree Q4312 is analogous to the construction of the
generating tree P1243 given in Section 2. First, we introduce two statistics on sequences
of positive integers. For n ≥ 0, let s = s1s2 · · · sn be a sequence of positive integers.
Define

g(s) = min{n+ 1, si | there exist j and k such that i < j < k and sj < sk < si},

h(s) = min{n+ 1, sj | there exists i such that i < j and si < sj}.

For example, given a permutation s = 65128743 ∈ S8, we have g(s) = 5 and h(s) = 2.
In fact, for any permutation u ∈ Sn, g(u) = n+ 1 if u is 312-avoiding; otherwise g(u) is
the smallest among the largest elements of 312-patterns of u. Similarly, h(u) = n+ 1 if
u is 12-avoiding; otherwise h(u) is the smallest among the larger elements of 12-patterns
of u. Since each 312-pattern contains a 12-pattern, we have h(u) ≤ g(u). Moreover,
h(u) = g(u) if and only if u = n · · · 21.

Let u be an alternating permutation in A2n(4312). An alternating permutation w in
A2n+2(4312) is said to be a child of u, or generated by u if w is of the form w = v1 7→
(v2 7→ u).
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Theorem 4.2 For n ≥ 1, given a permutation u = u1u2 · · ·u2n ∈ A2n(4312), the set of
children of u consists of sequences of the form w = v1 7→ (v2 7→ u), where

1 ≤v1 ≤ v2, (4.1)

u1 + 1 ≤v2 ≤ g(u). (4.2)

Proof. Suppose that w = w1w2 · · ·w2n+2 is a child of u, that is, w is an alternating
permutation in A2n+2(4312) and it is of the form v1 7→ (v2 7→ u). We proceed to prove
(4.1) and (4.2). Since w is alternating on [2n + 2], we have 1 ≤ v1 ≤ v2 ≤ 2n + 1 and
v2 ≥ u1 + 1. Moreover, we claim that v2 ≤ g(u). Otherwise, there exist i < j < k such
that uj < uk < ui and v2 > ui. This implies that w2wi+2wj+2wk+2 forms a 4312-pattern
of w, contradicting the fact that w is 4312-avoiding. So the claim is verified and we are
led to the relations (4.1) and (4.2).

Conversely, we assume that w = v1 7→ (v2 7→ u), where v1 and v2 are integers satis-
fying (4.1) and (4.2). We need to show that w ∈ A2n+2(4312). Clearly, w is alternating
since v2 ≥ u1 + 1 and 1 ≤ v1 ≤ v2.

It remains to check that w is 4312-avoiding. Assume to the contrary that wtwiwjwk

is a 4312-pattern of w, where t < i < j < k. We claim that we can always choose t = 2.
It is easily seen that wtwiwjwk contains either w1 or w2. Moreover, if w1wiwjwk is a
4312-pattern, then so is w2wiwjwk since w1 < w2. So the claim holds. Now we may
assume that w2wiwjwk is a 4312-pattern. Clearly, v2 > ui−2. Since ui−2 ≥ g(u), we
get v2 > g(u), contradicting condition (4.2). Hence w2wiwjwk does not form a 4312-
pattern. This implies that w is 4312-avoiding. So we conclude that w ∈ A2n+2(4312).
This completes the proof.

Notice that some alternating permutations in A2n(4312) do not have any children.
Such permutations are leaves of the generating tree. Permutations having at least one
child are internal vertices of the generating tree. For example, the alternating permuta-
tion 3412 ∈ A4(4312) is a leaf and the alternating permutation 132645 ∈ A6(4312) is an
internal vertex, since 23154867 ∈ A8(4312) is a child.

Theorem 4.3 For n ≥ 1 and u = u1u2 · · ·u2n ∈ A2n(4312), u is an internal vertex in
the generating tree Q4312 if and only if h(u) = u1 + 1.

Proof. Assume that u is an internal vertex. We proceed to show that h(u) = u1 + 1.
First, we claim that u1 ≤ h(u). Otherwise, we may assume that u1 > h(u). By the
definition of h(u), we see that there exist i < j such that ui < uj and u1 > uj. Hence
u1uiuj forms a 312-pattern. By the definition of g(u), we get g(u) ≤ u1. In view of
Theorem 4.2, we see that if u has a child, then it is of the form v1 7→ (v2 7→ u) satisfying
conditions (4.1) and (4.2), namely, 1 ≤ v1 ≤ v2 and u1+1 ≤ v2 ≤ g(u). Since g(u) ≤ u1,
u has no child, which contradicts the assumption that u is an internal vertex. So the
claim is verified. Again, by the definition of h(u), it can be checked that u1 ̸= h(u).
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It follows that u1 < h(u). On the other hand, since u1(u1 + 1) is a 12-pattern, it can
be checked that h(u) ≤ u1 + 1. Thus we deduce that u1 < h(u) ≤ u1 + 1, namely,
h(u) = u1 + 1.

Conversely, we assume that h(u) = u1 + 1. We wish to show that u is an internal
vertex. Since h(u) ≤ g(u), we obtain u1 + 1 ≤ g(u). By Theorem 4.2, we see that if u
has a child, then it is of the form v1 7→ (v2 7→ u) subject to conditions (4.1) and (4.2),
namely, 1 ≤ v1 ≤ v2 and u1 + 1 ≤ v2 ≤ g(u). Since u1 + 1 ≤ g(u), we see that the set of
children of u is nonempty. So u is an internal vertex. Thus we reach the conclusion that
u is an internal vertex if and only if h(u) = u1 + 1.

To construct the generating tree Q4312 for A2n(4312), we give a labeling scheme for
alternating permutations in A2n(4312). For n ≥ 1, let u = u1u2 · · ·u2n be an alternating
permutation in A2n(4312). The label (a, b) of u is defined as follows

(a, b) =

{
(0, 0), if u is a leaf.

(h(u), g(u)), if u is an interal vertex.
(4.3)

For example, let u = 46253817 ∈ A8(4312). Since h(u) ̸= u1 + 1, by Theorem 4.3, we
see that u is a leaf. So the label of u is (0, 0). It is easily seen that 12 ∈ A2(4312) is an
internal vertex with label (2, 3).

The above labeling scheme enables us to give a characterization of the labels of
children generated by u.

Theorem 4.4 Assume that u = u1u2 · · · u2n is an alternating permutation in A2n(4312)
with label (a, b). If u is an interval vertex, then it generates

(
b−a+1

2

)
leaves and the set of

labels of the internal vertices generated by u is given by

{(x, y) | 2 ≤ x ≤ a+ 1, a+ 2 ≤ y ≤ b+ 2}.

Proof. Assume that w = v1 7→ (v2 7→ u) is a child of u and let w = w1w2 · · ·w2n+2.
According to Theorem 4.2, we have 1 ≤ v1 ≤ v2 and u1 + 1 ≤ v2 ≤ g(u). Since u
is an internal vertex, it follows from Theorem 4.3 that u1 + 1 = h(u). Hence we get
h(u) ≤ v2 ≤ g(u).

Let (x, y) be the label of w. To determine the range of (x, y), we consider when w is
a leaf. Recall that if w is a leaf, then (x, y) = (0, 0), and if w is an internal vertex, then
(x, y) = (h(w), g(w)). We shall compute h(w) and g(w) based on v1, v2 and the label
(a, b).

Let s = w3w4 · · ·w2n+2. To determine h(w), it suffices to compare h(s) with the
larger element of each new 12-pattern caused by the insertions of v1 and v2 into u. The
computation of g(w) can be carried out in the same manner. Here are three cases.

Case 1: h(u) + 1 ≤ v1 ≤ v2 and h(u) + 1 ≤ v2 ≤ g(u). By the construction of w, we see
that w1 = v1 and w2 = v2 + 1. Since h(u) + 1 ≤ v1 ≤ v2, we have h(s) = h(u). Now
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we consider the newly formed 12-patterns caused by the insertions of v1 and v2 into u.
Clearly, v1(v1+1) forms a 12-pattern of w and it can be verified that v1+1 is the smallest
among the larger elements of the newly formed 12-patterns. Since h(u) < v1 + 1, we
deduce that h(w) = min{v1 + 1, h(s)} = h(u). Notice that h(w) ̸= w1 + 1. By Theorem
4.3, we find that w is a leaf. Hence in this case u only generates leaves. Using the
labeling scheme for the generating tree Q4312, we obtain that a = h(u) and b = g(u). So
the number of leaves generated by u is given by

b∑
v2=a+1

(v2 − a) = 1 + 2 + · · ·+ (b− a) =
(
b− a+ 1

2

)
.

Case 2: 1 ≤ v1 ≤ h(u) and h(u) + 1 ≤ v2 ≤ g(u). Clearly, we have h(s) = h(u) + 1 and
g(s) = g(u) + 2. To compute h(w), we consider the newly formed 12-patterns caused
by the insertions of v1 and v2 into u. First, v1(v1 + 1) is a newly formed 12-pattern
in w. Moreover, it can be seen that v1 + 1 is the minimum among the larger elements
in the newly formed 12-patterns. Notice that v1 + 1 ≤ h(u) + 1 = h(s). So we have
h(w) = min(h(s), v1 + 1) = v1 + 1. In view of Theorem 4.3, we see w is an internal
vertex.

To determine the range of (x, y), it suffices to compute g(w). Let us consider the
newly formed 312-patterns in w. By the assumptions of this case, we see that w1 = v1 ≤
h(u). Thus w1 does not occur in any 312-pattern of w. Moreover, by the assumption
v2 ≥ h(u) + 1, we find that w2 = v2 + 1 is the largest entry of a 312-pattern in w. From
the fact that v2 +1 < g(u) + 2 = g(s), we obtain that g(w) = min(v2 +1, g(s)) = v2 +1.
Therefore, the label of w is given by (x, y) = (v1 + 1, v2 + 1). From the assumptions of
this case, we get 2 ≤ x ≤ a+1 and a+2 ≤ y ≤ b+1. Moreover, it can be easily checked
that for any pair (x, y) of integers satisfying 2 ≤ x ≤ a+ 1 and a+ 2 ≤ y ≤ b+ 1, there
exists a unique child w = v1 7→ (v2 7→ u) of u with label (x, y) such that 1 ≤ v1 ≤ h(u)
and h(u) + 1 ≤ v2 ≤ g(u). This implies that the set of labels of children of u considered
in this case is given by

{(x, y) | 2 ≤ x ≤ a+ 1, a+ 2 ≤ y ≤ b+ 1}.

Case 3: 1 ≤ v1 ≤ h(u) and v2 = h(u). Clearly, h(s) = h(u)+2. Notice that w1(w1+1) is
a 12-pattern of w and w1+1 is the minimum of the larger elements in the newly formed
12-patterns caused by the insertions of v1 and v2. Since w1 = v1 ≤ h(u), we find that
h(w) = min(w1 + 1, h(s)) = min(w1 + 1, h(u) + 2) = w1 + 1. According to Theorem 4.3,
w is an internal vertex.

It remains to determine g(w). Recall that h(u) ≤ g(u). Hence in this case we have
v1 ≤ v2 ≤ g(u). It follows that g(s) = g(u) + 2. Since v1 ≤ v2 = h(u), we see that
neither w1 nor w2 can be the largest entry of a 312-pattern of w. This yields that
g(w) = g(s) = g(u) + 2. Therefore, the label of w is given by (x, y) = (v1 + 1, g(u) + 2).
From the assumptions 1 ≤ v1 ≤ h(u) and v2 = h(u) we deduce that 2 ≤ x ≤ a + 1 and
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y = b+2. It is easily verified that for any pair (x, y) of integers satisfying 2 ≤ x ≤ a+1
and y = b+ 2, there exists a unique child w = v1 7→ (v2 7→ u) of u with label (x, y) such
that 1 ≤ v1 ≤ h(u) and v2 = h(u). Thus in this case the set of labels of children of u is
given by

{(x, y) | 2 ≤ x ≤ a+ 1, y = b+ 2}.

Combining the above three cases, we see that an internal vertex u with label (a, b)
generates

(
b−a+1

2

)
leaves and a(b − a + 1) internal vertices labeled by (x, y), where 2 ≤

x ≤ a+ 1 and a+ 2 ≤ y ≤ b+ 2.

If we ignore the leaves in the generating tree Q4312, then we are led to the following
generating tree{

root : (2, 3),

rule : (a, b) 7→ {(x, y) | 2 ≤ x ≤ a+ 1 and a+ 2 ≤ y ≤ b+ 2}.
(4.4)

The above generating tree turns out to be isomorphic to the generating tree for A2n(3412)
as given by Lewis [7]{

root : (1, 3),

rule : (a, b) 7→ {(x, y) | 1 ≤ x ≤ a+ 1 and a+ 3 ≤ y ≤ b+ 2}.
(4.5)

Clearly, a label (a, b) in (4.4) corresponds to a label (a− 1, b) in (4.5). Let Un be the set
of alternating permutations in A2n(4312) with labels of the form (2, b) and Vn be the set
of alternating permutations in A2n(3412) with labels of the form (1, b). The isomorphism
between the above two generating trees implies |Un| = |Vn|.

The following characterizations of Un and Vn without using labels will be used to give
an alternative proof of relation (1.11).

Theorem 4.5 For n ≥ 1, we have

Un = {u |u = u1u2 · · ·u2n ∈ A2n(4312), u1 = 1}, (4.6)

Vn = {u |u = u1u2 · · ·u2n ∈ A2n(3412), u2n = 2n}. (4.7)

Proof. Recall that for a permutation w ∈ A2n(3412) with label (a, b) in the generating
tree defined by Lewis [7], we have a = d(w), where

d(w) = 2n−max{wi | there exists j such that j > i and wi < wj}. (4.8)

By Theorem 4.3, a permutation u = u1u2 · · ·u2n ∈ A2n(4312) is an internal vertex if and
only if h(u) = u1 + 1. Using the labeling schemes for A2n(4312) and A2n(3412) given

19



in (4.3) and (4.8) respectively, we find that Un and Vn can be described in terms of the
functions h(u) and d(u), namely,

Un = {u |u = u1u2 · · ·u2n ∈ A2n(4312), h(u) = u1 + 1 and h(u) = 2}, (4.9)

Vn = {u |u = u1u2 · · ·u2n ∈ A2n(3412), d(u) = 1}. (4.10)

We first prove (4.6). Given u = u1u2 · · ·u2n ∈ Un, we have u1 = 1. Conversely,
assume that u = u1u2 · · ·u2n is an alternating permutation in A2n(4312) with u1 = 1.
Since the subsequence 12 forms a 12-pattern of u, by the definition of h(u), we obtain
that h(u) = 2. So we have h(u) = u1 + 1. It follows that u ∈ Un. This yields (4.6).

We now consider (4.7). Assume that u = u1u2 · · ·u2n is an alternating permutation
in Vn. Since d(u) = 1, we see that 2n − 1 is the largest among the smaller elements
of 12-patterns of u. It follows that 2n − 1 precedes 2n in u. If u2n ̸= 2n, then (2n −
1)(2n)u2n−1u2n forms a 3412-pattern of u, which contradicts the fact that u is 3412-
avoiding. Thus we have u2n = 2n. Conversely, if u2n = 2n, then it is easy to check that
d(u) = 1. This completes the proof.

Recall that |Un| = |Vn|. To prove relation (1.11), it is easy to establish a bijection
between Un and A2n−1(1243) and a bijection between Vn and A2n−1(3412). Then relation
(1.11) follows from the fact |A2n−1(2143)| = |A2n−1(3412)|.

Define a map ρ : Un → A2n−1(1243) as follows. Given an alternating permutation
w = w1w2 · · ·w2n in Un, let ρ(w) = πc, where π = (w2 − 1)(w3 − 1) · · · (w2n − 1). It is
routine to check that ρ is a bijection.

To define a map µ : Vn → A2n−1(3412), we assume that u is an alternating permu-
tation in Vn. Let µ(u) be the alternating permutation obtained from u by deleting the
last element. It can be verified that µ is a bijection. This gives an alternative proof of
relation (1.11).

Note added in proof: After this work was announced (arXiv:1212.2697), Gowravaram
and Jagadeesan [4] proved the following Wilf-equivalence by the approach of shape-Wilf-
equivalence as used by Backelin, West and Xin [1]. They showed that for any permutation
τ of {3, 4, . . . , k}, the patterns 12τ and 21τ are Wilf-equivalent for alternating permuta-
tions. After the manuscript of Gowravaram and Jagadeesan appeared on the arXiv, Yan
[12] showed that for k ≥ 2, n ≥ k+1, and for any permutation α of {k+1, k+2, . . . , n},
the patterns 12 · · · kα and k · · · 21α are Wilf-equivalent for alternating permutations.
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