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Abstract

The asymptotical stability in probability is studied for diffusion processes and

regime-switching diffusion processes in this work. For diffusion processes, some

criteria based on the integrability of the functionals of the coefficients are given,

which yields a useful comparison theorem on stability with respect to some nonlinear

systems. For regime-switching diffusion processes, some criteria based on the idea

of a variational formula are given. Both state-independent and state-dependent

regime-switching diffusion processes are investigated in this work. These conditions

are easily verified and are shown to be sharp by examples.
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1 Introduction

This work is devoted to the study of stability of diffusion processes and regime-switching

diffusion processes. Both state-independent and state-dependent regime-switching diffu-

sion processes are studied in this work. Stability of stochastic processes is an important
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subjects and has attracted considerable attention. On the other hand, in the past two

decades, a great deal of mathematical effort has been devoted to the study of regime-

switching diffusion processes. The regime-switching diffusion processes can provide much

realistic models for many applications such as mathematical finance, wireless communi-

cation, biology and etc. (cf. [26] and references therein). For example, these models can

describe the random change of environment (such as dry and rainy weather) on the birth

rates and death rates of the species. The coexistence of diffusion processes and Markov

chains cause a lot of difficulties in the study of regime-switching diffusion processes. And

a lot of issues are still unclear. For instance, we have a dynamical system, which is stable

in warm environment, but is unstable in cold environment. Now, put this system into an

environment changing randomly between warm weather and cold weather. It is known

that this system could be stable or unstable, which depends on many factors. But, to

determine whether it is stable or not is of great importance in application. Analogous

problems exist in the study of population dynamics (cf. [2, 12] and references therein).

We shall not mention all contributions to this intensively studied topic, but refer

to the books [11, 13, 14, 26] for more details on the stability of diffusion processes or

diffusion processes with regime-switching. Moreover, we mention some works which are

closely related to our present work, i.e. [8, 20, 23, 25, 22, 27]. Especially, [22] provides

a good survey on the recent advancements of hybrid/switched systems, which focuses

on the state-dependent switching systems and shows their important application in the

control engineering. Recently, there are also some development on the study of recurrent

property and long time behavior of regime-switching diffusion processes. See, for instance,

[1, 6, 7, 15, 16, 17, 19]. As an application, a sharp criterion on the persistence and

extinction of preys and predators is presented in [2] for the predator-prey model with

Beddington-DeAngelsis functional response.

Usually, the stability in probability is justified by the existence of certain Lyapunov

functions. But, the construction of Lyapunov function is known to be difficult. So, it

is better to obtain some explicit conditions in terms of the coefficients of the processes

and to be easily checked. Moreover, the stability probability of regime-switching diffusion

processes is much more complicated than that of diffusion processes. It is more difficult

to construct Lyapunov functions for these processes due to the coexistence of infinitesi-

mal generators of diffusion processes and jump processes. Due to the remarkable works

[4, 9], the recurrent properties of diffusion processes can be justified explicitly by their

coefficients, and these criteria could be very sharp (cf. A. Friedman [10, Chapter 9]).

Corresponding results also hold for the stability of diffusion processes. We aim to provide
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explicit criteria for stability in probability of regime-switching diffusion processes in this

work.

Consider the stochastic differential equation (SDE):

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0 ∈ Rn, (1.1)

where (Bt) is a Brownian motion in Rn, and b : Rn → Rn, σ : Rn → Rn×n. We use (Xx0
t )

to denote the solution of (1.1) with the initial condition X0 = x0. Throughout this work,

we assume the following conditions hold for the coefficients b and σ:

(H) b(0) = 0, σ(0) = 0, and there exists a constant K such that

|b(x)− b(y)|+ ‖σ(x)− σ(y)‖ ≤ K|x− y|, ∀ x, y ∈ Rn,

where |b| denotes the absolute value of b and ‖σ‖ denotes the operator norm of

matrix σ. Moreover, there exists a function m(x) with m(x) > 0 for x 6= 0 such that∑
ij

aij(x)ξiξj > m(x)
∑
i

ξ2
i , ∀ (ξ1, . . . , ξn) ∈ Rn, x ∈ Rn,

where (aij(x)) = 1
2
σ(x)σ∗(x) and σ∗(x) stands for the transpose of σ(x).

The infinitesimal generator of (Xx0
t ) is hence given by

L =
n∑
i=1

bi(x)
∂

∂xi
+

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
.

We focus on the stability of the trivial solution Xt ≡ 0, and adopt the notations of

Khasminskii [11]. Namely, the solution Xt ≡ 0 of (1.1) is said to be stable in probability

if for any ε > 0,

lim
x→0

P
(

sup
t≥0
|Xx

t | > ε
)

= 0,

and Xt ≡ 0 is said to be unstable in probability if it is not stable in probability. The

solution Xt ≡ 0 of (1.1) is said to asymptotically stable in probability if it is stable in

probability and moreover

lim
x→0

P
(

lim
t→∞

Xx
t = 0

)
= 1.
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In this work, as a preparation we first provide some easily verifiable conditions for

the asymptotical stability in probability of SDE (1.1). To get some impression on these

results, let us consider the one dimensional diffusion process (Xx0
t ) with x0 > 0. Under

the condition (H), the point 0 is inaccessible (cf. [11, Lemma 5.3]), which implies that

Xt > 0 for all t > 0 a.e. Given some constant r0 > 0, define

C(x) =

∫ r0

x

b(u)

a(u)
du, 0 < x ≤ r0. (1.2)

We shall use C(x) to study the stability of diffusion processes. It is well known that

C(x) is also used to study the recurrence of diffusion processes (cf. for instance, [11,

Example 3.10]). We show that if
∫ r0

0
eC(x)dx < +∞, then Xt ≡ 0 is asymptotically stable

in probability. Moreover, if
∫ r0

0
eC(x)dx = +∞, and there exists p > 0 such that∫ r0

0

1

upa(u)
e−C(u)du < +∞,

∫ r0

0

(
eC(y)

∫ y

0

1

upa(u)
e−C(u)du

)
dy = +∞,

then Xt ≡ 0 is unstable in probability (see Theorem 2.1 below). Obviously, these condi-

tions are easily to be checked. Moreover, these conditions can provide a sharp criterion on

the stability of diffusion processes, which can be shown by the following classical example.

Consider

dXt = bXtdt+ σXtdBt, X0 = x > 0,

and b, σ are constants. Then when b < σ2/2, Xt ≡ 0 is stable in probability; when

b > σ2/2, Xt ≡ 0 is unstable in probability (see, for example, [11, pp.154, pp.162]).

To apply our criterion, we take r0 = 1 and get C(x) =
∫ 1

x
2b
σ2u

du = − 2b
σ2 lnx. So when

b < σ2/2,
∫ 1

0
eC(x)dx < +∞, and hence Xt ≡ 0 is asymptotically stable in probability.

When b > σ2/2, it is easy to see that there exists p > 0 such that∫ 1

0

1

upa(u)
e−C(u)du =

2

σ2

∫ 1

0

u
2b
σ2
−2−pdu < +∞,∫ 1

0

(
eC(y)

∫ y

0

1

upa(u)
e−C(u)du

)
dy =

2

2b− (1 + p)σ2

∫ 1

0

y−1−pdy = +∞.

Therefore, when b > σ2/2, Xt ≡ 0 is unstable in probability. This example is a special

case of our Example 2.1:

dXt = b(Xp
t ∧Xt)dt+ σ(Xq

t ∧Xt)dBt, (1.3)

where a complete characterization is given for such class of diffusion processes.
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The main aim of this work is to study the stability in probability of regime-switching

diffusion processes. This problem has been studied in many works. For instance, [14] and

[26] provided some Foster-Lyapunov conditions to study the stability of regime-switching

diffusion processes with Markovian switching and state-dependent switching respectively.

Moreover, they gave out some explicit criteria for linearized systems. An interesting

phenomenon explained in these works is that this process can be stable in some states

and unstable in other states, but the random switching can make the process stable or

not by changing the switching rate between different states. To solve this problem, in our

previous work [20], we choose a priori Lyapunov function ρ(x) independent of jumping

states to characterize the stability behavior of this process in each fixed state i in terms of

a constant βi. Then combining these constants (βi) with the jumping rate matrix (qij), we

provided several criteria to justify the stability in probability of regime-switching diffusion

processes. The intuitive reason to use the common function ρ(x) is that only evaluating

the stability of the process (Xt) at different states i ∈ S using the same ruler ρ(x),

we can compare them invoking the switching (qij). In view of this reason, the previous

criteria based on the integrability of coefficients are not applicable for the regime-switching

diffusion processes. In this work, based on an idea of variational formula, we develop the

results in [20] to provide more explicit formula of the constants βi, i ∈ S. Our method

is inspired by the idea of Chen and Wang [5], where they provided some sharp estimates

for the lower bound of the spectral gap of elliptic operators.

This work is organized as follows. In Section 2, we state our results on stability

in probability of diffusion processes. In Section 3, we deal with the regime-switching

diffusion processes. Both the state-dependent and state-independent regime-switching

diffusion processes are considered in this part.

2 Stability in probability of diffusion processes

In this section we first consider the SDE (1.1) in R. Due to the assumption (H), 0 is

inaccessible, so Xt := Xx0
t has the same sign with its initial point X0 = x0. To simplify

the notation, we consider only the case X0 = x0 > 0.

Theorem 2.1 Assume (H) holds and X0 = x0 > 0.
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(i) If there exists some r0 > 0 such that∫ r0

0

eC(x)dx < +∞, (2.1)

where C(x) is defined in (1.2) Then Xt ≡ 0 of (1.1) is asymptotically stable in

probability.

(ii) If there exists some r0 > 0 and C(x) defined in (1.2) such that∫ r0

0

eC(y)dy = +∞, (2.2)

and there exists a nonnegative function f ∈ C((0, r0)) such that∫ r0

0

f(u)

a(u)
e−C(u)du < +∞, and

∫ r0

0

(
eC(y)

∫ y

0

f(u)

a(u)
e−C(u)du

)
dy = +∞. (2.3)

Then Xt ≡ 0 of (1.1) is unstable in probability.

Proof. (i) Let

g(x) =

∫ x

0

(r0 − y)eC(y)dy, 0 < x ≤ r0. (2.4)

By (2.1), it is easy to see g is well-defined on [0, r0] with g(0) = 0. Direct calculation

yields that

Lg(x) = a(x)g′′(x) + b(x)g′(x) = −a(x)eC(x) < 0, for x ∈ (0, r0).

Hence, according to the Foster-Lyapunov condition (cf. [11, Theorem 5.5] or [13, Theorem

2.3]), Xt ≡ 0 of (1.1) is asymptotically stable in probability.

(ii) According to the assumption,

g(x) =

∫ r0

x

(
eC(y)

∫ y

0

f(u)

a(u)
e−C(u)du

)
dy

is well-defined for x ∈ (0, r0], and

lim
x→0+

g(x) =

∫ r0

0

(
eC(y)

∫ y

0

f(u)

a(u)
e−C(u)du

)
dy = +∞.

For x ∈ (0, r0),

Lg(x) = a(x)g′′(x) + b(x)g′(x) = −f(x) ≤ 0.
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Therefore, by the Foster-Lyapunov condition (cf. [11, Theorem 5.6]), Xt ≡ 0 of (1.1) is

unstable in probability.

Note that in Theorem 2.1, condition (2.3) can imply condition (2.2). But compared

with condition (2.1), one should check (2.2) first.

Corollary 2.2 Assume (H) holds and X0 = x0 > 0. Let C(x) =
∫ r0
x

b(u)
a(u)

du for some

r0 > 0. Assume ∫ r0

0

eC(y)dy = +∞,

and there exists p > 0 such that∫ r0

0

1

upa(u)
e−C(u)du < +∞, and

∫ r0

0

(
eC(y)

∫ y

0

1

upa(u)
e−C(u)du

)
dy = +∞.

Then Xt ≡ 0 of (1.1) is unstable in probability.

Although the proof of Theorem 2.1 is quite easy, this result is very useful. As an applica-

tion, we give a complete characterization of the stability in probability for the following

diffusion process.

Example 2.1 Let

dXt = b(Xp
t ∧Xt)dt+ σ(Xq

t ∧Xt)dBt, X0 = x0 > 0, (2.5)

where b, σ, p, q are constants, b, σ 6= 0, and p, q ≥ 1. Here, c∧d := min{c, d}. According

to Theorem 2.1 and Corollary 2.2, we obtain the follows:

(i) If p− 2q = −1, then when b < σ2/2, Xt ≡ 0 is asymptotically stable in probability;

when b > σ2/2, Xt ≡ 0 is unstable in probability. These results have been proved

in Section 1. When b = σ2

2
, Xt ≡ 0 is unstable in probability. Indeed, set r0 = 1/2,

f(u) = u2q−2(lnu)−2, then C(x) = − ln 2− lnx for x ∈ (0, 1
2
),
∫ 1/2

0
eC(x)dx = +∞,∫ 1

2

0

f(u)

a(u)
e−C(u)du =

4

σ2

∫ 1
2

0

1

u(lnu)2
du =

4

σ2 ln 2
< +∞,

∫ 1
2

0

(
eC(y)

∫ y

0

f(u)

a(u)
e−C(u)du

)
dy =

2

σ2

∫ 1
2

0

−1

y ln y
dy = +∞.
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(ii) If p− 2q > −1, then Xt ≡ 0 is asymptotically stable in probability.

(iii) If p − 2q < −1, then when b < 0, Xt ≡ 0 is asymptotically stable in probability;

when b > 0, Xt ≡ 0 is unstable in probability. Indeed, when p − 2q < −1 and

b > 0, setting r0 = 1, we get C(x) = 2b(1 − xm)/(mσ2) for x ∈ (0, 1), where

m = p− 2q + 1 < 0. It is clear that∫ 1

0

eC(x)dx =

∫ 1

0

e
2b
mσ2

(1−xm)dx = +∞.

Take f(x) = x−γ with γ > max{1− p, 0}. Then∫ 1

0

2

σ2u2q+γ
e−

2b
mσ2

(1−um)du < +∞.

As

lim
y→0+

ye
2b
mσ2

(1−ym)

∫ y

0

2

σ2u2q+γ
e−

2b
mσ2

(1−um)du

= lim
y→0+

∫ y
0

2
σ2u2q+γ

e−
2b
mσ2

(1−um)du+ 2
σ2y2q+γ−1 e

− 2b
mσ2

(1−ym)

2b
σ2ym−1e−

2b
mσ2

(1−ym)

≥ lim
y→0+

1

by2q+γ+m−2
= lim

y→0+

1

byγ+p−1

= +∞,

we get ∫ 1

0

(
e

2b
mσ2

(1−ym)

∫ y

0

2

σ2u2q+γ
e−

2b
mσ2

(1−um)du
)

dy = +∞.

Then the desired result follows from Corollary 2.2.

Using the results of Example 2.1, we get a criterion on the stability of general diffusion

processes by comparing them with the processes in the form (2.5).

Corollary 2.3 Let (Yt) be a one-dimensional diffusion process satisfying the SDE

dYt = b(Yt)dt+ σ(Yt)dBt, Y0 = y0 > 0,

where b(·) and σ(·) satisfying (H). Moreover, there exist p, q > 0 and constants b̂, σ̂ 6= 0,

r0 > 0 such that
b(x)

σ(x)2
6

b̂

σ̂2
xp−2q, x ∈ (0, r0).
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When one of the following three conditions holds, Yt ≡ 0 is asymptotically stable in prob-

ability.
(1) p− 2q = −1 and b̂ < σ̂2/2;

(2) p− 2q > −1;

(3) p− 2q < −1 and b̂ < 0.

Proof. Since a(x) = σ(x)2/2, by simple calculation, for x ∈ (0, r0), r0 > 0, we have

C(x) =

∫ r0

x

b(u)

a(u)
du 6

2b̂

σ̂2
ln
r0

x
,

if p− 2q = −1 and C(x) 6 C1 + C2x
p−2q+1 if p− 2q 6= −1, where

C1 =
2b̂

σ̂2

rp−2q+1
0

p− 2q + 1
, C2 = − 2b̂

σ̂2(p− 2q + 1)

If p− 2q = −1 and b̂ < σ̂2/2, then∫ r0

0

eC(x)dx 6
∫ r0

0

r
2b̂
σ̂2

0 x−
2b̂
σ̂2 dx <∞.

By Theorem 2.1, Yt ≡ 0 is asymptotically stable in probability.

If p− 2q > −1, then

sup
x∈(0,r0)

C(x) 6 C1 + |C2|rp−2q+1
0 <∞.

Moreover, ∫ r0

0

eC(x)dx 6
∫ r0

0

eC1+|C2|rp−2q+1
0 dx <∞.

By Theorem 2.1, Yt ≡ 0 is asymptotically stable in probability.

If p− 2q < −1 and b̂ < 0, then C2 < 0 and

C(x) 6 C1 + C2x
p−2q+1 6 C1

for x ∈ (0, r0), we have ∫ r0

0

eC(x)dx 6
∫ r0

0

eC1dx <∞.
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By Theorem 2.1, Yt ≡ 0 is asymptotically stable in probability.

Now, we proceed to consider the multidimensional diffusion processes. Firstly, we

introduce some notations used below. Let

a(x) =
1

2
σ(x)σ(x)∗, b̃(r) = sup

|x|=
√
r

[
〈x, b(x)〉+ trace a(x)

]
,

ã(r) = 2 sup
|x|=
√
r

[ n∑
i,j=1

aij(x)xixj
]
,

ā(r) = 2 inf
|x|=
√
r

[ n∑
i,j=1

aij(x)xixj
]
,

(2.6)

where xi is the ith component of x = (x1, x2, · · · , xn) ∈ Rn and 〈x,y〉 denotes the inner

product of x and y with respect to the counting measure.

Theorem 2.4 Let (Xt) satisfy the SDE (1.1). If there exists some r0 > 0 such that

lim sup
r→0+

b̃(r)

ã(r)
r0 < −1, (2.7)

and ∫ r0

0

eC̃(x)dx <∞, where C̃(x) =

∫ r0

x

b̃(u)

ã(u)
du, x ∈ (0, r0). (2.8)

Then Xt ≡ 0 of (1.1) is asymptotically stable in probability.

Proof. Let g(x) =
∫ x

0
(r0 − y)eC̃(y)dy for x ∈ [0, r0). By (2.7), there exists r1 ∈ (0, r0)

such that for all x ∈ (0, r1), g′(x) = (r0 − x)eC̃(x) > 0 and

g′′(x) = −
[
1 + (r0 − x)

b̃(x)

ã(x)

]
eC̃(x) ≥ 0.

Using the Itô formula, we obtain

dg(|Xt|2) = 2g′(|Xt|2)
[
〈Xt, b(Xt)〉+ trace a(Xt)

]
dt+ 4g′′(|Xt|2)

( n∑
i,j=1

aij(Xt)X
i
tX

j
t

)
dt

+ 2g′(|Xt|2)〈Xt, σ(Xt)dBt〉
≤ 2g′(|Xt|2)b̃(|Xt|2)dt+ 2g′′(|Xt|2)ã(|Xt|2)dt+ 2g′(|Xt|2)〈Xt, σ(Xt)dBt〉.
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Then it follows that

Eg(|Xt∧τ |2) ≤ g(|x|2) + 2E
∫ t∧τ

0

[
g′(|Xs|2)b̃(|Xs|2) + g′′(|Xs|2)ã(|Xs|2)

]
ds

= g(|x|2)− 2E
∫ t∧τ

0

ã(|Xs|2)eC̃(|Xs|2)ds,

where τ = inf{t > 0; |Xt|2 > r} and r is arbitrarily fixed constant in the interval (0, r1).

Hence,

g(r)P(τ ≤ t) ≤ Eg(|Xt∧τ |2) ≤ g(|x|2),

and

P( sup
0≤s≤t

|Xs|2 ≥ r) = P(τ ≤ t) ≤ g(|x|2)

g(r)
.

Letting t → +∞, we obtain that Xt ≡ 0 is stable in probability by the arbitrariness of

r ∈ (0, r1). Moreover, we can follow the approach of [26, Lemma 7.6] to prove that Xt ≡ 0

is asymptotically stable in probability. We omit the details.

Theorem 2.5 Let (Xt) satisfy the SDE (1.1). If there exists some r0 > 0 such that

lim sup
r→0+

b̃(r)

ā(r)
r0 > −1, (2.9)

and ∫ r0

0

eC̄(x)dx <∞, where C̄(x) =

∫ r0

x

b̃(u)

ā(u)
du, x ∈ (0, r0). (2.10)

Then Xt ≡ 0 of (1.1) is asymptotically stable in probability.

Proof. Let g(x) =
∫ √x

0
(r0 − y)eC̄(y)dy for x ∈ [0, r0). Then the proof is similar to that

of Theorem 2.4 by noting that it holds g′′(x) < 0 for x sufficiently near to 0 in present

situation.

Remark 2.6 In the previous Theorems 2.4 and 2.5, we reduce the stability problem of

a multidimensional diffusion to a one-dimension diffusion process by using the transform

x 7→ |x|2. If one puts some additional conditions on the coefficients b(·) and σ(·), the

transform x 7→ |x|p with p ≥ 1 can yield different conditions to guarantee Xt ≡ 0 to be

stable in probability.
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3 Stability of regime-switching diffusion processes

In this section we go to study the stability in probability of regime-switching diffusion

processes. Let (Xt,Λt) satisfy the following SDE:

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt, X0 = x0 ∈ Rn, Λ0 = i ∈ S, (3.1)

where S = {1, 2, . . . , N} is the state space of the switching process (Λt), and (Bt) is a

Brownian motion in Rn. Moreover,

P(Λt+δ = l|Λt = k,Xt = x) =

{
qkl(x)δ + o(δ), if k 6= l,

1 + qkk(x)δ + o(δ), if k = l,
(3.2)

for δ > 0. The Q-matrix (qkl(x)) is assumed to be irreducible and conservative for each

x ∈ Rn, which means that qk(x) = −qkk(x) =
∑

l 6=k qkl(x), ∀ k ∈ S. If (qkl(x)) does not

depend on x, then (Xt,Λt) is called a state-independent regime-switching diffusion process;

otherwise, it is called a state-dependent one. In this work, we focus on the situation that

(Λt) is in a finite state space S, i.e. N < ∞. Using the similar idea of this work, our

results can be extended to deal with the case N =∞ by using the finite partition method

or the principal eigenvalue method introduced firstly in [20].

If we use S to denote the state space of the environment, for example, S = {1, 2},
where “1” denotes the hot environment, and “2” denotes the cold environment. Then

the process (Λt) describes the random changing of the environment between states “1”

and “2”. (Xt) can be looked on as a diffusion process in a random environment. An

interesting phenomenon of (Xt,Λt) is that Xt ≡ 0 could be stable in probability when the

environment is at state “1”, but is unstable in probability when the environment is at

state “2”. When the environment changes randomly between states “1” and “2”, Xt ≡ 0

could be stable in probability or not depending on the changing rate of the environment.

But it is difficult to get an explicit criterion to justify whether Xt ≡ 0 is stable or not. In

[14] and [26], some explicit criteria are provided for regime-switching diffusion processes

with linear coefficients. In [20], we provided some criteria based on the existence of some

Lyapunov function ρ(x) independent of environment i. In this work, we shall give out

more explicit criteria depending explicitly on the coefficients of (Xt,Λt). Now, we collect

some basic assumptions on the process (Xt,Λt) used below.

(H.1) (qij(x)) is conservative and irreducible for each x ∈ Rn, and qij(·) is a bounded

continuous function for each pair of i, j ∈ S.
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(H.2) b(0, i) = 0 and σ(0, i) = 0 for every i ∈ S. Moreover, for any sufficiently small

0 < ε < r0, there exist l ∈ {1, . . . , n} and κ(ε) > 0 such that all(x, i) > κ(ε) for all

(x, i) ∈ {x; ε < |x| < r0} × S, where a(x, i) = 1
2
σ(x, i)σ(x, i)∗.

(H.3) There exists a constant K̄ > 0 so that

|b(x, i)− b(y, i)|+ ‖σ(x, i)− σ(y, i)‖ ≤ K̄|x− y|, ∀x, y ∈ Rn, i ∈ S.

Conditions (H.1)–(H.3) can guarantee the existence of the weak solution of SDE (3.1),

(3.2). We refer the reader to [18] for more discussion on the existence and uniqueness

of strong solutions for state-dependent regime-switching diffusion processes under non-

Lipschitz conditions.

We first introduce a class of functions on [0,+∞). For r > 0, let

D(r) =
{
f ∈ C2((0, r)); f(x) > 0,

∫ x

0

f(u)du < +∞,∀x ∈ (0, r),

lim
x→0+

a(x, i)f ′(x) + b(x, i)f(x) = 0,∀ i ∈ S
}
.

(3.3)

According to [21], the generator A of the regime-switching diffusion process (Xt,Λt)

can be written as

A V (x, i) = L(i)V (·, i)(x) +QV (x, ·)(i)

=
n∑
k=1

bk(x, i)
∂V

∂xk
(x, i) +

n∑
k,l=1

akl(x, i)
∂2V

∂xk∂xl
(x, i)

+
∑
j 6=i

qij(x)(V (x, j)− V (x, i)), V ∈ C2(Rn × S),

where L(i) is the infinitesimal generator of Xt in fixed environment Λt ≡ i.

Theorem 3.1 Let (Xt,Λt) be a one-dimensional state-independent regime-switching pro-

cess satisfying (3.1), (3.2) with X0 = x0 > 0. Assume (H.2), (H.3) hold. Let (πi) denote

the invariant probability measure of (Λt). Assume that there exist some r0 > 0, f ∈ D(r0)

such that b(·, i) and a(·, i) are differentiable on (0, r0) for each i ∈ S, and

N∑
i=1

πiβf (i) < 0, (3.4)
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where

βf (i) = lim sup
x→0+

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)
.

Then Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability.

Proof. Since
∑N

i=1 πiβf (i) < 0, there exist 0 < r1 < r0, ε > 0 such that

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)
< βf (i) + ε (3.5)

for all x ∈ (0, r1), and
∑N

i=1 πi(βf (i) + ε) < 0.

Set β̃(i) = βf (i)+ε, andQp = Q+p diag(β̃(1), . . . , β̃(N)), p > 0, where diag(β̃(1), . . . , β̃(N))

denotes the diagonal matrix generated by vector (β̃(1), . . . , β̃(N)) as usual. Let

ηp = −max{Re(γ); γ ∈ the spectrum of Qp}.

Set Qp,t = etQp . Since all coefficients of Qp,t are positive (see [1, Proposition 4.1]), the

Perron-Frobenius theorem [3, Chapter 2] yields that −ηp is a single eigenvalue of Qp.

Moreover, the eigenvector of Qp,t corresponding to e−ηpt is also an eigenvector of Qp

corresponding to −ηp. Then the Perron-Fronenius theorem ensures that there exists an

eigenvector ξ of Qp associated with −ηp so that ξ � 0, which means that all elements

of ξ are positive. By [1, Proposition 4.2], there exists some p0 > 0 so that ηp > 0 for all

0 < p < p0 since
∑N

i=1 πiβ̃(i) < 0. Fix a p with 0 < p < min{1, p0} and an eigenvector ξ

with ξ � 0. Then one gets

Qpξ(i) =
(
Q+ pdiag(β̃)

)
ξ(i) = −ηpξi < 0, ∀ i = 1, . . . , N.

Set V (x, i) = g(x)pξi with g(x) =
∫ x

0
f(u)du for x ≥ 0, i ∈ S. Then

A V (x, i) = Qξ(i)g(x)p + ξiL
(i)g(x)p

≤ Qξ(i)g(x)p + pξig(x)p−1L(i)g(x), 0 < x < r1.
(3.6)

Note that for each i ∈ S,

L(i)g(x) = a(x, i)g′′(x) + b(x, i)g′(x)

= g(x)
(a(x, i)f ′(x) + b(x, i)f(x)

g(x)

)
.
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Let h(x, i) = a(x, i)f ′(x)+b(x, i)f(x). As f ∈ D(r0), we get h(0, i) := limx→0+ a(x, i)f ′(x)+

b(x, i)f(x) = 0. So h(·, i) ∈ C([0, r1]) ∩ C1((0, r)). By the mean value theorem,

L(i)g(x) = g(x)
h(x, i)− h(0, i)

g(x)− g(0)

≤ g(x) sup
x∈(0,r1)

(
a(x, i)f ′(x) + b(x, i)f(x)

)′
f(x)

≤ β̃(i)g(x), ∀x ∈ (0, r1).

Inserting previous inequality into (3.6), we get

A V (x, i) ≤ Qξ(i)g(x)p + pβ̃(i)ξig(x)p = −ηpξig(x)p = −ηpV (x, i).

Therefore, according to the Foster-Lyapunov criteria ([26, Lemma 7.6]), we obtain that

Xt ≡ 0 is asymptotically stable in probability.

Example 3.1 Consider the following regime-switching diffusion process

dXt = bΛtXtdt+ σΛt(X
q
t ∧Xt)dBt,

where Λt is a Markov chain on S = {1, 2, · · · , N} with invariant probability measure (πi).

Xt is asymptotically stable in probability provided one of the following conditions holds:

(1) q > 1 and
∑n

i=1 πibi < 0; (2) q = 1 and
∑n

i=1 πi(2bi + σ2
i γ) < 0.

Proof. Let f(x) = xγ, γ > 0. Then f ∈ C2(0, 1), f > 0 on (0, 1),
∫ 1

0
f(u)du <∞. Since

b(x, i) = bix, a(x, i) =
1

2
σ2
i x

2q, x ∈ (0, 1),

we have

lim
x→0+

(
af ′(x) + bf(x)

)
= lim

x→0+

(
1

2
γσ2

i x
2q+γ−1 + bix

1+γ

)
= 0

since q > 1. That is f ∈ D(1). By simple calculation, we get

a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

=
1

2
σ2
i γ(γ − 1)x2q+γ−2 + qγσ2

i x
2q+γ−2 + biγx

γ,

Therefore,

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)

= bi +
1

2
σ2
i γ(γ − 1)x2q−2 + qγσ2

i x
2q−2 + biγ.
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If q > 1,

βf (i) = lim
x→0+

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)
= (1 + γ)bi.

If q = 1,

βf (i) = (1 + γ)
(
bi +

1

2
γσ2

i

)
.

The required assertions follows by Theorem 3.1.

Next, we shall use the M-matrix theory, which was applied to diffusion processes for

the first time in [24], to study the stability in probability of regime-switching diffusion

processes. From the perspective of M-matrix, we present a new comparable theorem

between the regime-switching diffusion processes with N switching states and that with

two switching states (see Corollary 3.6 and the remark following it). We recall that a

square matrix A = (aij)m×m is called an M -matrix if A can be expressed in the form

A = sI − B with some B ≥ 0 and s ≥ Ria(B), where I is the m ×m identity matrix,

and Ria(B) denotes the spectral radius of B. Here B ≥ 0 denotes all elements of B are

non-negative. If further s > Ria(B) then A is called a nonsingular M-matrix. There are

many equivalent conditions to justify whether a matrix is a nonsingular M-matrix. We

introduce several conditions here and refer to [3] for more details.

Proposition 3.2 ([3]) The following statements are equivalent.

1. A is a nonsingular n× n M-matrix.

2. All of the principal minors of A are positive, that is,∣∣∣∣∣∣∣
a11 . . . a1k

...
...

a1k . . . akk

∣∣∣∣∣∣∣ > 0 for every k = 1, 2, . . . , n.

3. Every real eigenvalue of A is positive.

4. A is semipositive, that is, there exists x� 0 in Rn such that Ax� 0.

We first use the M-matrix theory to yield a criterion on the stability in probability

for state-independent regime-switching diffusion processes, then go to deal with state-

dependent processes. For a vector β = (β1, . . . , βN)∗ ∈ RN , diag(β1, . . . , βN) denotes the

diagonal matrix generated by the vector β as usual.
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Theorem 3.3 Let (Xt,Λt) be a state-independent regime-switching diffusion process sat-

isfying (3.1) and (3.2). Assume (H.2), (H.3) hold. Suppose that there exist r0 > 0,

f ∈ D(r0) so that b(·, i) and a(·, i) are differentiable on (0, r0) for each i ∈ S and

−
(
diag(βf (1), . . . , βf (N)) +Q

)
(3.7)

is a nonsingular M-matrix, where

βf (i) = lim sup
x→0+

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)
.

Then Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability.

Proof. Because −(diag(βf (1), . . . , βf (N))+Q) is a nonsingular M-matrix, by Proposition

3.2, there exists a vector ξ = (ξ1, . . . , ξN)∗ � 0 such that

λ = −(diag(βf (1), . . . , βf (N)) +Q)ξ � 0.

Set g(x) =
∫ x

0
f(u)du for x ∈ (0, r0). By the definition of βf (i), i ∈ S, for any ε > 0,

there exists r1 ∈ (0, r0) such that

L(i)g(x) = g(x)
a(x, i)g′′(x) + b(x, i)g′(x)

g(x)− g(0)

≤ g(x) sup
x∈(0,r1)

(
a(x, i)f ′(x) + b(x, i)f(x)

)′
f(x)

≤ (βf (i) + ε)g(x), ∀x ∈ (0, r1), i ∈ S,

where in the second step the mean value theorem has been used. Setting V (x, i) = g(x)ξi,

we get

A V (x, i) = L(i)g(x)ξi + g(x)Qξ(i)

≤ g(x)Qξ(i) + (βf (i) + ε)ξig(x)

= (−λi + εξi)g(x), ∀x ∈ (0, r1), i ∈ S.

As ε > 0 is arbitrary and (ξi; 1 ≤ i ≤ N) is bounded, we can take ε > 0 sufficiently small

so that −λi + εξi < 0 for every i ∈ S. Then we can choose constant r1 ∈ (0, r0) such that

A V (x, i) ≤ 0 holds for all x ∈ (0, r1), i ∈ S. By the Foster-Lyapunov condition (cf. [26,

Lemma 7.6]), we conclude that Xt ≡ 0 is asymptotically stable in probability.
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For a state-dependent regime-switching diffusion process (Xt,Λt), we should use some

suitable transform to change it into a new state-independent one. Then we apply the

criterion obtained above based on the M-matrix theory to get a criterion for the original

process. Note that

βf (i) = lim sup
x→0+

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)
,

Assume that M1 = infi∈S βf (i) > −∞, M2 = supi∈S βf (i) < ∞. We first divide the

space S into m(1 < m 6 N) subsets according to the stability of (Xt) in each fixed

environment as follows. Let ki ∈ [M1,M2], i = 0, 1, · · · ,m, satisfy

M1 = k0 < k1 < · · · < km−1 < km = M2,

and

Fi =
{
j ∈ S : βf (j) ∈ (ki−1, ki]

}
, i = 1, · · · ,m,

is nonempty. Let

qFik =

{
supx∈R supr∈Fi

∑
j∈Fk qrj(x), k < i,

infx∈R infr∈Fi
∑

j∈Fk qrj(x), k > i,
(3.8)

for i, k ∈ {1, · · · ,m} and i 6= k. Set qFi = −qFii =
∑

k 6=i q
F
ik <∞. Put QF = (qFij). Define

βFf (i) = sup
j∈Fi

βf (j), i ∈ {1, 2, · · ·m}.

Then

βFf (i) 6 βFf (i+ 1).

Theorem 3.4 Let (Xt,Λt) be a state-dependent regime-switching diffusion process sat-

isfying (3.1), (3.2). Assume (H.1), (H.2), (H.3) hold. Suppose that there exist r0 > 0,

f ∈ D(r0) such that b(·, i), a(·, i) are differentiable on (0, r0) for each i ∈ S and

−
(
diag(βFf (1), . . . , βFf (m)) +QF

)
Hm

is a nonsingular M-matrix, where

Hm =


1 1 1 · · · 1

0 1 1 · · · 1
...

...
... · · · ...

0 0 0 · · · 1


m×m

. (3.9)

Then Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability if f ∈ D(r0).
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Proof. As−
(
QF+diag(βFf (1), . . . , βFf (m))

)
Hm is a nonsingular M-matrix, by Proposition

3.2, there exists a vector η = (η1, . . . , ηm)∗ � 0 such that

λ = (λ1, . . . , λm)∗ := −
(
QF + diag(βFf (1), . . . , βFf (m))Hmη � 0.

Set ξF = Hmη. Then

ξFi = ηi + ηi+1 + . . .+ ηm, i = 1, . . . ,m,

which yields that ξFi+1 < ξFi for i = 1, . . . ,m− 1 and ξF � 0. Extend ξ to a vector ξ on

S by setting ξj = ξFi if j ∈ Fi. By the definition of QF , βFf and the decreasing property

of ξFi , for i ∈ Fr, we have

Qxξ(i) :=
∑
k 6=i

qik(x)(ξk − ξi) =
∑
k/∈Fr

qik(x)(ξk − ξi)

=
∑
j<r

(∑
k∈Fj

qik(x)

)
(ξFj − ξFr ) +

∑
j>r

(∑
k∈Fj

qik(x)

)
(ξFj − ξFr ) (since ξi = ξFr , i ∈ Fr)

≤
∑
j<r

qFrj(ξ
F
j − ξFr ) +

∑
j>r

qFrj(ξ
F
j − ξFr ) (since i ∈ Fr)

= QFξF (φ(i)),

(3.10)

where φ: S → {1, · · · ,m} is a map defined by φ(i) = j if i ∈ Fj.

Let g(x) =
∫ x

0
f(u)du for x ≥ 0, where f is given in the assumption. By definition

of βf (i), for any ε > 0, there exists r1 ∈ (0, r0) such that

sup
x∈(0,r1)

(
a(x, i)f ′(x) + b(x, i)f(x)

)′
f(x)

6 βf (i) + ε.

Therefore,

L(i)g(x) = g(x)
(a(x, i)g′′(x) + b(x, i)g′(x)

g(x)

)
≤ g(x) sup

x∈(0,r1)

(
a(x, i)f ′(x) + b(x, i)f(x)

)′
f(x)

≤ (βf (i) + ε)g(x) ≤ (βFf (φ(i)) + ε)g(x), ∀x ∈ (0, r1), i ∈ S,

(3.11)

where in the second step we have used the mean value theorem and the fact f ∈ D(r0)

and g(0) = 0, in the last step, we have used the definition of βFf (φ(i)).
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Letting V (x, i) = g(x)ξi, it follows from (3.10) and (3.11) that

A V (x, i) = Qxξ(i)g(x) + ξiL
(i)g(x)

≤ QF ξF (φ(i))g(x) + (βFf (φ(i)) + ε)ξFφ(i)g(x) (since ξi = ξFφ(i))

= (−λφ(i) + εξFφ(i))g(x), ∀x ∈ (0, r1), i ∈ S.

As ε > 0 is arbitrary, we get that there exists r1 > 0 such that for every i ∈ S, −λφ(i) +

εξFφ(i) < 0. Hence, we get A V (x, i) ≤ 0. By the Foster-Lyapunov condition (cf. [26,

Lemma 7.6]), we get Xt ≡ 0 is asymptotically stable in probability.

Remark 3.5 In Theorem 3.4, m takes integer value in {1, . . . , N}. If we take m = 2

in (3.8), then we obtain Corollary 3.6 below, which is of important use in application in

spite of the loss of certain precision. Corollary 3.7 is obtained by taking m = N in (3.8),

which preserves the precision of this type of criterion.

Corollary 3.6 Let (Xt,Λt) be a state-dependent regime-switching diffusion process sat-

isfying (3.1), (3.2). Assume (H.1), (H.2), (H.3) hold. Suppose that there exist r0 > 0,

f ∈ D(r0) such that b(·, i), a(·, i) are differentiable on (0, r0) for each i ∈ S and

−
(
diag(βFf (1), βFf (2)) +QF

)
H2

is a nonsingular M-matrix, where

H2 =

(
1 1

0 1

)
2×2

.

Then Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability.

Let m = N in (3.8). Then q̃ik := qFik becomes

q̃ik =

{
supx∈R qik(x), k < i,

infx∈R qik(x), k > i,

for i, k ∈ S and i 6= k. Set q̃i = −q̃ii =
∑

k 6=i q̃ik. Put Q̃ = (q̃ij). The following result

holds immediately by Theorem 3.4.

Corollary 3.7 Let (Xt,Λt) be a state-dependent regime-switching diffusion process sat-

isfying (3.1), (3.2). Assume (H.1), (H.2), (H.3) hold. Suppose that there exist r0 > 0,

f ∈ D(r0) such that b(·, i), a(·, i) are differentiable on (0, r0) for each i ∈ S and

−
(
diag(βf (1), . . . , βf (N)) + Q̃

)
HN
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is a nonsingular M-matrix, where HN is a N × N matrix with m = N in (3.9). Then

Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability.

Remark 3.8 Replace qFik in (3.8) with

qFik =

{
supr∈Fi

∑
j∈Fk qrj, k < i,

infr∈Fi
∑

j∈Fk qrj, k > i,

Theorem 3.4, Corollaries 3.6 and 3.7 still hold for state independent regime-switching

diffusion processes.

Example 3.2 Put q > 1. Consider the following regime-switching diffusion process

dXt = bΛtXtdt+ σΛt(X
q
t ∧Xt)dBt,

where Λt is a birth-death process on S = {1, 2, · · · , N} with qii+1(x) = ci+(i−c) cosx for

i > 1, qii−1(x) = ai+(i−a) cosx for i > 2 and qij(x) = 0 for j /∈ {i−1, i, i+1}, where ai, ci,

a, c are all positive constants. Assume that supi>2 bi = κ > b1. If κ(1−c−c1 +b1 +γb1) >

b1(a2 + a− 2) for some γ > 0, then Xt ≡ 0 is asymptotically stable in probability.

Proof. Let f(x) = xγ, γ > 0. Then f ∈ D(1). Since a(x, i) = σ2
i x

2q/2, b(x, i) = bix, we

get

βf (i) = lim
x→0

b′(x, i) +
a(x, i)f ′′(x) + (a′(x, i) + b(x, i))f ′(x)

f(x)

= lim
x→0

(1 + γ)bi +

(
γ − 1

2
+ q

)
γσ2

i x
2q−2 = (1 + γ)bi.

Let k ∈ (b1, κ). Then F1 = {j : βf (j) 6 k} = {1}, F2 = {j : βf (j) > k} = {2, 3, · · · } and

qF21 = sup
x∈R

(a2 + (2− a) cosx) = a2 + (2− a),

qF12 = inf
x∈R

(c1 + (1− c) cosx) = c1 − (1− c).

qF1 = −qF11 =
∑

k 6=1 q
F
1k = (1− c)− c1 <∞, qF2 = −qF22 =

∑
k 6=2 q

F
2k = (a− 2)− a2 <∞.

βFf (1) = sup
j∈F1

βf (j) = (b1(1 + γ)),

βFf (2) = sup
j∈F2

βf (j) = κ(1 + γ).
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Put QF = (qFij), by calculation,

−(QF + diag(βFf (1), βFf (2)))H2 = −
(

1− c− c1 + (1 + γ)b1 b1(1 + γ)

a2 − a+ 2 κ(1 + γ)

)
.

Since∣∣− (QF + diag(βFf (1), βFf (2)))H2

∣∣ = (1 + γ)
[
κ(1− c− c1 + b1 + γb1)− b1(a2 + a− 2)

]
,

we have −(QF + diag(βFf (1), βFf (2)))H2 is a nonsingular M-matrix if and only if κ(1− c−
c1+b1+γb1) > b1(a2+a−2). By Corollary 3.6, when κ(1−c−c1+b1+γb1) > b1(a2+a−2),

Xt = 0 is asymptotically stable in probability.

Remark 3.9 For fixed environment i, let (X
(i)
t ) be the diffusion process associated with

(Xt) in environment i in Example 3.2, i.e.

dX
(i)
t = biX

(i)
t dt+ σi((X

(i)
t )q ∧X(i)

t )dBt.

By Example 2.1, it is easy to see that when bi < 0, Xt ≡ 0 is asymptotically stable in

probability; when bi > 0, Xt ≡ 0 is unstable in probability.

Let b1 = −1, κ = 1. Then X
(i)
t ≡ 0 is unstable in probability for some i > 2 and

X
(1)
t ≡ 0 is asymptotically stable in probability. However, Xt ≡ 0 is asymptotically stable

in probability once c+ c1 +γ < a2 +a−2 for some γ > 0. Therefore, the diffusion process

with switching may be stable even if for some fixed environment it is unstable.

Next, we go to study the stability of multidimensional regime-switching diffusion pro-

cesses by using an analogous method for multidimensional diffusion processes in Section

2. We first introduce some useful notations. Let

D+(r) = {f ∈ D(r); f ′(x) > 0,∀x ∈ (0, r)}, D−(r) = {f ∈ D(r); f ′(x) < 0,∀x ∈ (0, r)}.
(3.12)

Set

a(x, i) =
1

2
σ(x, i)σ(x, i)∗, b̃(r, i) = 2 sup

|x|=
√
r

[
〈x, b(x, i)〉+ trace a(x, i)

]
,

ã(r, i) = 4 sup
|x|=
√
r

[ n∑
k,l=1

akl(x, i)x
kxl
]
,

ā(r, i) = 4 inf
|x|=
√
r

[ n∑
k,l=1

akl(x, i)x
kxl
]

for x = (x1, . . . , xn) ∈ Rn, r ≥ 0, i ∈ S.
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Theorem 3.10 Let (Xt,Λt) be a state-independent regime-switching diffusion process sat-

isfying (3.1) and (3.2). Suppose (H.2), (H.3) hold. Assume there exist r0 > 0 and

f ∈ D+(r0) such that b̃(·, i), ã(·, i) are differentiable on (0, r0) for each i ∈ S and

−(diag(βf (1), . . . , βf (N)) +Q)

is a nonsingular M-matrix, where

βf (i) = lim sup
r→0+

b̃′(r, i) +
ã(r, i)f ′′(r) + (ã′(r, i) + b̃(r, i))f ′(r)

f(r)
. (3.13)

Then Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability.

Proof. As −(diag(βf (1), . . . , βf (N)) + Q) is a nonsingular M-matrix, it is easy to see

from Proposition 3.2 that there exists ε > 0 such that

−
(
diag(β̃f (1), . . . , β̃f (N)) +Q)

is a nonsingular M-matrix, where β̃f (i) = βf (i) + ε for i ∈ S. Consequently, using

Proposition 3.2 again, there exists a vector ξ = (ξ1, . . . , ξN)∗ � 0 so that

λ = −(diag(β̃f (1), . . . , β̃f (N)) +Q)ξ � 0.

Let g(x) =
∫ x

0
f(u)du, x ∈ (0, r0). Let τ = inf{t > 0; |Xt|2 ≥ r1} for r1 ∈ (0, r0) to

be determined later. By Itô’s formula (see [21]),

E[g(|Xt∧τ |2)ξΛt∧τ ]

= g(|x0|2)ξi + E
∫ t∧τ

0

ξΛs

{
2g′(|Xs|2)

[
〈Xs, b(Xs,Λs)〉+ trace a(Xs,Λs)

]
+ 4g′′(|Xs|2)

( n∑
k,l=1

akl(Xs,Λs)X
k
sX

l
s

)}
+ g(|Xs|2)Qξ(Λs)ds

≤ g(|x0|2)ξi + E
∫ t∧τ

0

ξΛs

[
g′(|Xs|2)b̃(|Xs|2,Λs) + g′′(|Xs|2)ã(|Xs|2,Λs)

]
+ g(|Xs|2)Qξ(Λs)ds.

By the definition of βf (i), there exists r1 ∈ (0, r0) such that

g′(r)b̃(r, i) + g′′(r)ã(r, i)
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= g(r)
f(r)b̃(r, i) + f ′(r)ã(r, i)

g(r)− g(0)

= g(r)

(
f(r)b̃(r, i) + f ′(r)ã(r, i)

)′
f(r)

≤ g(r)(βf (i) + ε) = g(r)β̃f (i), ∀ r ∈ (0, r1).

Combining with the fact ξ � 0, we get

E[g(|Xt∧τ |2)ξΛt∧τ ]

≤ g(|x0|2)ξi + E
∫ t∧τ

0

β̃f (Λs)ξΛsg(|Xs|2) +Qξ(Λs)g(|Xs|2)ds

= g(|x0|2)ξi − E
∫ t∧τ

0

λΛsg(|Xs|2)ds

≤ g(|x0|2)ξi.

This further yields that

g(r1) min
1≤j≤N

ξjP(τ ≤ t) ≤ E[g(|Xt∧τ |2)ξΛt∧τ ] ≤ g(|x0|2)ξi.

Therefore,

P( sup
0≤s≤t

|Xs|2 ≥ r1) = P(τ ≤ t) ≤ g(|x0|2)ξi
g(r1) min1≤j≤N ξj

.

Letting t→ +∞, it follows that

P(sup
s≥0
|Xs|2 ≥ r1) ≤ g(|x0|2)ξi

g(r1) min1≤j≤N ξj
,

which yields that Xt ≡ 0 is stable in probability. Similarly, the asymptotic stability in

probability follows from the proof of [26, Lemma 7.6, Remark 7.8].

Theorem 3.11 Let (Xt,Λt) be a state-independent regime-switching diffusion process sat-

isfying (3.1), (3.2). Suppose (H.2) (H.3) hold. Assume that there exist r0 > 0, f ∈ D−(r0)

such that b̃(·, i), ā(·, i) are differentiable on (0, r0) for each i ∈ S and

−
(
diag(βf (1), . . . , βf (N)) +Q

)
is a nonsingular M-matrix, where

βf (i) = lim sup
r→0+

b̃′(r, i) +
ā(r, i)f ′′(r) + (ā′(r, i) + b̃(r, i))f ′(r)

f(r)
. (3.14)

Then Xt ≡ 0 of (3.1), (3.2) is asymptotically stable in probability.
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Proof. This theorem can be proved in the same way as Theorem 3.10 by noting that

for f ∈ D−(r0) we should use ā(x, i) to replace ã(x, i) to get the desired inequality. The

details is omitted.

Remark 3.12 Applying the same method as Theorems 3.10 and 3.11 which extend The-

orem 3.3 to multidimensional case, Theorem 3.7 can be extended to deal with the state-

dependent multidimensional regime-switching diffusion processes, which is omitted to save

space.

References
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