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Summary. In this article, we consider variable selection for correlated high

dimensional DNA methylation markers as multivariate outcomes. A novel

weighted square-root LASSO procedure is proposed to estimate the regres-

sion coefficient matrix. A key feature of this method is tuning-insensitivity,

which greatly simplifies the computation by obviating cross validation for

penalty parameter selection. A precision matrix obtained via the con-

strained ℓ1 minimization method (Cai et al. 2011) is used to account for

the within-subject correlation among multivariate outcomes. Oracle in-

equalities of the regularized estimators are derived. The performance of our

proposed method is illustrated via extensive simulation studies. We apply

our method to study the relation between smoking and high dimensional

DNA methylation markers in the Normative Aging Study (NAS).

Keywords. High-dimensional responses; Multivariate regression; Oracle

inequality; Tuning-insensitive; Weighted square-root LASSO.

1 Introduction

With the development of modern technology for data collection, high-dimensional data have

become increasingly common in many scientific research fields, e.g., genome-wide studies (Lin

et al. 2015), biomedical sciences (Mukherjee et al. 2015), economics and finance (Basu and

Michailidis 2015). Under these situations, the number of parameters is larger than the sample

size, rendering traditional statistical procedures inappropriate. More recently, correlated

data with high dimensional multivariate responses are often encountered in omics studies.

Our motivating example is the Normative Aging Study, where methylation markers are taken

as the multivariate outcomes. The methylation of DNA, where methyl groups are added to

DNA at binding sites typically referred to as cytosine-phosphate-guanine (CpG) islands,
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could affect the DNA expression. DNA methylation levels measured from probes close to

one another are correlated (Moen et al. 2013), resulting in high dimensional multivariate

outcomes. Correlation may also exist for DNA methylation markers having the similar

function, e.g., related to exposure such as smoking. It is thus necessary to account for the

within-subject correlation in the estimation procedure.

Our objective is to conduct selection of regression coefficients in high dimensional mul-

tivariate DNA methylation markers. There are two challenging issues for such a study: (1)

how to conduct variable selection in the high dimensional setting; and (2) how to tackle the

correlation among multivariate outcomes. For the first challenge, many studies have focused

on penalized methods, such as the least absolute shrinkage and selection operator (LAS-

SO, Tibshirani 1996), the smoothly clipped absolute deviation (SCAD, Fan and Li 2001),

the elastic net (Zou and Hastie 2005), the adaptive LASSO (Zou 2006), and the minimax

concave penalty (MCP, Zhang 2010). The penalized approach has been applied to many

research topics, e.g., linear models (Wang and Leng 2007; Huang et al. 2011; Fan and Lv

2014), generalized linear models (van de Geer 2008; Jiang et al. 2016), survival models

(Fan and Li 2002; Bradic et al. 2011; Lin and Lv 2013). Recently, Belloni et al. (2011)

proposed a pivotal square-root LASSO method, which does not rely on the knowledge of the

standard deviation for the error term. Later, Belloni et al. (2014) developed a self-tuning

square-root LASSO method in high-dimensional nonparametric regression analysis. Liu and

Wang (2017) proposed a new procedure for optimally estimating high dimensional Gaussian

graphical models using the square-root LASSO. For more topics on variable selection, please

refer to Bühlmann and van de Geer (2011).

There is limited research to tackle the second challenge, especially when the responses

are high-dimensional. Rothman et al. (2010) proposed an iterative algorithm for variable se-

lection and estimation in high-dimensional multivariate regression using the LASSO penalty.
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Sofer et al. (2014) considered variable selection for high-dimensional multivariate regression

using the penalized likelihood method, but the dimensionality of the multiple responses is

still much smaller than the sample size. Liu et al. (2015) proposed a calibrated multivari-

ate regression method for high-dimensional multivariate regression models, but they only

considered the uncorrelated error structure. Li, Nan and Zhu (2015) and Wilms and Croux

(2017) studied the group LASSO for high-dimensional multivariate linear regression mod-

el. Most of these existing methods use cross-validation to choose tuning parameters over

a full regularization path, which are computationally expensive and may potentially waste

valuable training data. To deal with this problem, we will extend Belloni et al. (2011)’s (un-

weighted) square-root LASSO on a single outcome to multivariate outcomes with weighted

square-root LASSO. The main advantage of our procedure over existing methods comes from

the tuning-insensitive property, which is significantly faster than cross-validation. Another

advantage is that we can use the entire dataset for variable selection, which may potentially

learn a better model (Bishop et al., 2003).

The rest of the paper is organized as follows. In Section 2, we introduce the model

and the weighted square-root LASSO procedure for multivariate linear regression with high-

dimensional responses. In Section 3, we establish an error bound for the proposed estimator.

In Section 4, we develop an efficient algorithm and conduct Monte Carlo simulations to

assess the performance of our method. An empirical analysis of DNA methylation in the

Normative Aging Study is presented in Section 5. Some concluding remarks are given in

Section 6. All technical proofs are relegated to the Appendix.
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2 Model and Estimation

Consider the sparse, high-dimensional multivariate linear regression model

Yi = BXi + ϵi, i = 1, · · · , n, (2.1)

where Yi = (Yi1, · · · , Yip)
′ is the p-dimensional response, e.g., DNA methylation markers;

Xi = (Xi1, · · · , Xiq)
′ is the q-dimensional covariates vector; B = (B1, · · · , Bp)

′ ∈ Rp×q

is the sparse regression coefficient matrix with Bk = (βk1, · · · , βkq)
′ ∈ Rq, k = 1, · · · , p;

ϵi = (ϵi1, · · · , ϵip)′ ∈ Rp is the random error term with mean 0 and covariance matrix

Σp. Throughout this article, we assume that the predictor’s dimension q is fixed but the

dimension of response p could be larger than n. The sparse regression coefficient matrix B

suggests that only a small number of coefficients are non-zero. Our interest is to estimate

the coefficient matrix B and establish oracle inequalities for corresponding estimators, while

account for the correlated outcomes.

Assume that (Yi, Xi) are independently and identically distributed (i.i.d.) observations,

i = 1, · · · , n. If ϵi ∼ N(0,Σp), the negative log-likelihood function is given by

L(B,Ωp) =
1

2n

{
n log(2π) + n log |Ω−1

p |+
n∑

i=1

(Yi −BXi)
′Ωp(Yi −BXi)

}
, (2.2)

where Ωp = Σ−1
p is the precision matrix (Cai et al. 2011). Denote (B′

1, · · · , B′
p)

′ as β =

(β1, · · · , βd)
′, where d = pq. Let S = {j; βj ̸= 0} be the true model with size s = |S|. We

use Ωp to account for the within-subject correlation (Sofer et al. 2014), and propose the

following criterion function:

Q(β; Ωp) =
1

n

n∑
i=1

(Yi −BXi)
′Ωp(Yi −BXi). (2.3)

In practice, the precision matrix Ωp can be estimated using the constrained ℓ1 minimiza-

tion method (Cai et al. 2011), which has been implemented in the R package flare (Li,
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Zhao, Yuan and Liu, 2015). Basically, the estimation of the sparse inverse covariance matrix

(precision matrix) Ωp can be obtained by the following optimization problem:

min ∥Ωp∥,

subject to:

|ΣnΩp − I|∞ ≤ γ,

where γ > 0 is tuning parameter and Σn = 1
n

∑n
i=1(Yi − B̃Xi)

′(Yi − B̃Xi) with B̃ being a

consistent estimator (e.g. ridge estimator).

Belloni et al. (2011) proposed an unweighted square-root LASSO for β with a scalar

outcome. They showed that the penalty (tuning parameter) is pivotal, i.e., it does not rely

on the knowledge of the error variance, nor do we need to pre-estimate it. Consequently, the

estimation of β is insensitive to the tuning parameter, greatly simplifying the computation

which often resorts to cross validation for tuning parameter selection. Furthermore, the

square-root LASSO method achieves near-oracle performance for the estimation of β. In

comparison, the ordinary LASSO needs to estimate the error variance (Belloni et al. 2011)

to achieve near-oracle performance, which is a very challenging issue in high dimensional

data.

Motivated by Belloni et al. (2011), the corresponding weighted square-root LASSO

version for correlated outcomes in Model (2.1) is defined as

β̂ = arg min
β∈Rd

{√
Q(β; Ωp) + λ

d∑
j=1

wj|βj|

}
, (2.4)

where λ > 0 is the tuning parameter, wj is a known weight, j = 1, · · · , d. We can set

wj = 1/|β̃j| along the lines of Zou (2006) with β̃j be the ridge estimator, j = 1, · · · , d. Of

note, we choose the ridge estimator rather than the ordinary least square estimator in the

adaptive LASSO since p could be larger than n in Model (2.1). To obtain β̂ in (2.4), we
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consider the optimization problem,

β̂ = arg min
β∈Rd,ρ≥0

{
Q(β; Ωp)

2ρ
+

ρ

2
+ λ

d∑
j=1

wj|βj|

}
. (2.5)

For ρ ≥ 0, we have Q(β;Ωp)

2ρ
+ ρ

2
≥
√

Q(β; Ωp), so the objective function in (2.5) is an

upper bound of that in (2.4). The equality is attained if and only if ρ =
√
Q(β; Ωp). Similar

to Proposition 3.1 of Liu and Wang (2017), the optimizations in (2.4) and (2.5) yield the

same solution β̂. This relationship between (2.4) and (2.5) provides an efficient algorithm

as described below.

For given λ, we have the following procedure:

Step 0. Compute the precision matrix Ω̂p (using R package flare; Li, Zhao, Yuan and

Liu, 2015) and β̂ridge (using R package glmnet; Friedman et al., 2008 ). Set β(0) = β̂ridge and

ρ(0) =
√

Q(β(0); Ω̂p).

Step 1. Solve the optimization problem via coordinate descent algorithm (Friedman, et

al., 2008)

β(k+1) = arg min
β∈Rd

{
Q(β; Ω̂p)

2ρ(k)
+

ρ(k)

2
+ λ

d∑
j=1

wj|βj|

}
.

Step 2. Update

ρ(k+1) =

√
Q(β(k+1); Ω̂p).

Step 3. Repeat Steps 1 and 2 until convergence.

Of note, Ω̂p is consistent (Cai et al. 2011) and kept unchanged in the iteratively updated

procedure, so the objective function in Step 1 is convex for β, which ensures fast convergence

of the algorithm. The following Lemma 1 will present an explicit expression for λ, while the

optimal value for the tuning parameter in (2.4) will be evaluated in Section 4 via empirical

studies. The estimation procedure has been implemented in R (available upon request).
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3 Theoretical results

In this section, we will establish the oracle inequality for β̂ defined in (2.4). The following

lemma lays the foundation for the tuning-insensitive property of the weighted square-root

LASSO procedure, which is motivated by Bickel et al. (2009)’s choice on the penalty level

for LASSO. Denote Wmin = min{w1, · · · , wd}, Wmax = max{w1, · · · , wd} and N = np. We

first have the following lemma.

Lemma 1. Let λ = c
Wmin

√
2a log d

N
with c > 1 and a > 2. Define

Ω = {λ ≥ c

Wmin

∥ ∇Q1/2(β; Ωp) ∥∞}, (3.6)

then we have

P (Ω) ≥ 1−
√

2

πa log d
· d

1−a

(
1−2

√
(a−1) log d

N

)
− d1−a,

where ∇ is the gradient.

Similar to Belloni et al. (2011), the prediction norm is given as ||e||22,N = 1
N
e′X′Xe, where

X is defined in the Appendix and e ∈ Rd. To derive the oracle inequalities, we define the

compatibility factor (Huang et al. 2013) and restricted eigenvalue (RE, Bickel et al. 2009)

as

κ(ξ,S) = inf
0 ̸=e∈C (ξ,S)

s1/2||e||2,N
||eS ||1

and RE(ξ,S) = inf
0 ̸=e∈C (ξ,S)

||e||2,N
||e||2

,

respectively, where C (ξ,S) = {e ∈ Rd : ||eSc ||1 ≤ ξ||eS ||1} with ξ = cWmax+Wmin

Wmin(c−1)
. Hereafter,

Ac denotes the complement of set A; vA = (vj : j ∈ A) for a vector v. Then, we have the

following conclusion.

Lemma 2. Denote ê = β̂ − β, then on the event Ω, we have ê ∈ C (ξ,S). That is, the

L1 norm of the variables not relevant should be less than a multiple of those relevant.

The following theorem gives the upper bound for the estimation error.
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Theorem 1. Let c > 1, ξ = cWmax+Wmin

Wmin(c−1)
, suppose that Wmaxλs1/2

κ(ξ,S) ≤ ζ < 1 and Q(β; Ωp) ≤

K2 with K > 0. Then on the event Ω,

RE(ξ,S)||β̂ − β||2 ≤ ||β̂ − β||2,N ≤ 2

(
Wmax +

Wmin

c

)
λs1/2K

(1− ζ2)κ(ξ,S)
.

Remark 1. The condition Q(β; Ωp) ≤ K2 with K > 0 is mild, since Q(β; Ωp) converges to

1 in probability as n → ∞.

Remark 2. This result and Lemma 1 show that by choosing λ = η
Wmin

√
log d
N

with some

η = c
√
2a > 2, the obtained β̂ achieves the near-oracle rate of convergence (Belloni et al.

2011). Since the choice of η does not rely on any unknown parameters or quantities, we call

the property tuning-insensitive. Empirically, it is found that setting η = 8 works well in

most cases we encountered, which will be verified via simulation.

4 Simulation studies

In this section, we will conduct simulation studies to validate the proposed methodology.

We assume that X is from Nq(0,ΣX), where q = 2 and ΣX = (σij) is given by σij = 0.7|i−j|.

The random error term is generated from Np(0,ΣE), we consider the following two settings

for the error covariance:

Case (a). AR(1) error covariance: ΣE,st = 0.8|s−t|.

Case (b). Fractional Gaussian Noise (FGN) error covariance:

ΣE,st = 0.5
(
(|s− t|+ 1)2H − 2|s− t|2H + |(|s− t| − 1)|2H

)
with Hurst parameter H = 0.9, so the correlation is (0.74, 0.63, 0.58, 0.55, 0.52, 0.50, 0.49,

0.48, 0.46, 0.45) for distance |s− t| = 1 : 10. It is noted that the inverse error covariance for

Case (a) is a tri-diagonal sparse matrix, while Case (b) has a dense inverse error covariance.

Set β = (1, 0.6, 0.3, 1.2, 0.8, 0.5, 0, · · · , 0)′, i.e., the first six elements are non-zero, while the
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rest are all 0. We take p = 200 and 300, respectively. All simulation results are based on

100 replications with n = 100 and 200.

According to Theorem 1, the tuning parameter λ = η
Wmin

√
log d
N

with some η > 2. To

choose the suitable λ, we consider various values of η, and the corresponding performance

is plotted in Figures 1 - 4. We can see that tuning parameter’s effect is limited and the

procedure has better properties when η ∈ [6, 10]. Thus, we suggest η = 8 for the weighted

square-root LASSO (WSR-LASSO) method in both simulation and real application. For

comparison, we also consider the LASSO and square-root LASSO (SR-LASSO) with weight

wj = 1 in (2.4).

Tables 1 and 2 report the results, which include the rate that the correct model (CMR)

is selected I{Ŝ = S}, the false positive rate (FPR) |Ŝ\S|/|Ŝ|, the false negative rate (FNR)

|S\Ŝ|/(d − |Ŝ|), and the model error (ME) tr[(B̂ − B)ΣX(B̂ − B)′] (Yuan and Lin 2007).

It can be seen that LASSO and SR-LASSO have similar performance, which is in line with

the conclusion of Belloni et al. (2011). Moreover, the WSR-LASSO method has a higher

rate of selecting the correct model and a smaller model error than LASSO and SR-LASSO.

The results on the false positive and negative rates also suggest that the proposed method

is preferred over LASSO and SR-LASSO in practice.

5 Application

We apply our proposed methodology to the DNA methylation (DNAm) data from the US

Department of Veterans Affairs’ Normative Aging Study (NAS). We exclude participants who

(i) were non-white or had missing information on race to minimize potential confounding

effects of genetic ancestry, or (ii) had any cancer diagnosed and history of stroke or coronary

artery disease as their blood methylation profiles could have been affected. A total of 169

individuals with samples collected at their first blood draw remain for analysis.
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We are interested in the effect of smoking on DNA methylation. Gao et al. (2015)

conducted a literature review on the DNA methylation change in response to active smoking

exposure in adults. From it, we consider methylation markers at a total of 151 cytosine-

phosphate-guanine (CpG) dinucleotides which had been reported multiple (≥ 2) times in

the literature. In our studies, the correlations among the 151 CpG sites have a range of

[−0.6440,0.9369], manifesting high correlations among these CpGs.

We are interesting in the smoking pack year (packyr)’s effect on these DNAm markers.

We also include age and BMI in the model. In total, we need to estimate 453 (151 × 3)

regression coefficients. We use the proposed method in Section 2 with tuning parameter

λ = 0.0026.

In Table 3, we compare our results to the original 151 CpGs listed by Gao et al. (2015).

In Table 4 we report the selected CpGs and coefficient estimates. Thirty three CpGs among

a total of 151 are selected by our method in the NAS data. We can see that CpGs reported

more frequently in the literature are also more likely to be chosen by our method in the

NAS data. For example, among 8 CpGs reported at least 7 times, 5 (62.5%) are selected

by our method from the NAS data, while only 15 out of 89 (16.9%) CpGs reported two

times in literature are selected by our method. The decreasing trend in Table 3 shows the

consistency of our method with the literature. Of note, our method correctly identifies the

top two CpGs - cg03636183 and cg05575921 (located in F2RL3 and AHRR genes), which

have been reported 12 and 11 times in literature, respectively.

6 Concluding remarks

We proposed a weighted square-root LASSO method for high-dimensional multivariate re-

gression models. We estimated the precision matrix by the CLIME method to account for

the correlations between responses and obtained oracle inequalities for the estimator. Sim-
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ulation studies were provided to illustrate the proposed procedure. We applied the method

to study the relation between smoking and high dimensional DNA methylation markers.

There exist several topics to research in the future. First, the estimation of high-

dimensional Gaussian graphical models is an active area of research (Cai et al. 2011; Cai

and Yuan 2012; Fan et al. 2013). It is of great interest to consider the joint estimation

of regression coefficients and the precision matrix in (2.1). A possible solution is to add

a penalty term in (2.4) for the elements of the precision matrix. Second, although it is

assumed that the dimension of the covariates q is fixed, it is straightforward to extend the

proposed procedure to the high-dimensional covariates setting, the main difficulty lies in

the computational burden due to the ultra-high dimensional parameters. Third, statistical

inference on the weighted square-root LASSO is an important and interesting topic. Fourth,

since our method obviates the burden of cross-validation, our method is computational effi-

cient: for the DNA methylation data in Section 5, it took R software about 10.3 seconds to

converge in a personal computer. As a reviewer suggested, it would be of interest to make

the proposed algorithm scalable to genome-wide response and predictor markers, which can

be implemented in high performance computing facilities. Fifth, we are interested in high-

dimensional mediation analysis (Zhang et al. 2016) to determine whether high-dimensional

DNA methylation markers mediate the path from intervention (e.g. diet, physical exercise)

to health outcomes.
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Appendix

For notational simplicity, let Y = (Y ′
1 , · · · , Y ′

n)
′ ∈ RN and E = (ϵ′1, · · · , ϵ′n)′ ∈ RN with

N = np. For A = (aij) ∈ Rm×n and B = (bij) ∈ Rp×q, the A⊗ B ∈ Rmp×nq is defined as

A⊗ B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

...

am1B am2B · · · amnB

 .

Let X = (X ′
1, · · · ,X ′

n)
′ with Xk = Ip ⊗ X ′

k, k = 1, · · · , n . Denote Λ as the N × N block

diagonal matrix with the i-th diagonal component Ωp, i = 1, · · · , n. Then (2.3) can be

rewritten as

Q(β; Λ) =
1

N
(Y− Xβ)′Λ(Y− Xβ). (6.1)

In the following, we denote Q(β; Λ) as Q(β). We first need the following lemma.

Lemma 3. (Laurent and Massart, 2000). Let X ∼ χ2
d, then for 0 ≤ t < 1/2, we have

that

P (X ≤ {1− t}d) ≤ exp

(
−1

4
dt2
)
.
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Proof of Lemma 1 . Denote Λ1/2Y = Λ1/2X′β+Λ1/2E as Ỹ = X̃′β+ Ẽ , where Ẽ follows

the N -dimensional multivariate normal distribution with mean 0 and covariance matrix

IN×N . Then, by the definition of Q(β) in (6.1), we have

√
N ||∇Q1/2(β)||∞ =

||
∑N

i=1 X̃′
i(Ỹi − X̃′

iβ)||∞√∑N
i=1(Ỹi − X̃′

iβ)
2

=
||
∑N

i=1 X̃′
iẼi||∞√∑N

i=1 Ẽ2
i

. (6.2)

Note that
∑N

i=1 X̃ij Ẽi ∼ N(0, N) and
∑N

i=1 Ẽ2
i ∼ χ2

N , where j = 1, · · · , d. Then it follows

from Lemma 3 that

P

(
N∑
i=1

Ẽ2
i ≤ N(1− rN)

)
≤ exp

(
−Nr2N

4

)
,

where 0 ≤ rN ≤ 1/2. Moreover, we can derive the following inequality

P

 ||
∑N

i=1 X̃′
iẼi||∞√∑N

i=1 Ẽ2
i

>
√

2a log d


≤ P

(
||

N∑
i=1

X̃′
iẼi||∞ >

√
1− rN ·

√
2Na log d

)
+ P

(
N∑
i=1

Ẽ2
i ≤ N(1− rN)

)

≤
d∑

j=1

P

(
|

N∑
i=1

X̃ij Ẽi| >
√
1− rN ·

√
2Na log d

)
+ exp

(
−Nr2N

4

)
≤ 2d{1− Φ(

√
1− rN ·

√
2a log d)}+ exp

(
−Nr2N

4

)
≤ 2d · d−a(1−rN )

√
2π ·

√
1− rN ·

√
2a log d

+ exp

(
−Nr2N

4

)
=

d−a(1−rN )√
π(1− rN)a log d

+ exp

(
−Nr2N

4

)
,

where the last inequality follows from 1− Φ(t) ≤ 1√
2πt

exp(− t2

2
).
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Let rN = 2
√

(a−1) log d
N

, when n is large enough, we have

P
(√

N ||∇Q1/2(β)||∞ ≤
√
2a log d

)
≥ 1−

√
2

πa log d
· d

1−a

(
1−2

√
(a−1) log d

N

)
− d1−a.

Q.E.D. �

Proof of Lemma 2 . First, from the definition of β̂ in (2.4), we notice that

Q1/2(β̂)−Q1/2(β) ≤ λ

d∑
j=1

wj|βj| − λ

d∑
j=1

wj|β̂j|

≤ λWmax||(β̂ − β)S ||1 − λWmin||(β̂ − β)Sc ||1. (6.3)

Second, on the event Ω, there is c ∥ ∇Q1/2(β) ∥∞≤ λWmin. Thus, using the fact that Q(β)

is a convex function, we have

Q1/2(β̂)−Q1/2(β) ≥ −∇Q1/2(β)(β − β̂)

≥ − ∥ ∇Q1/2(β) ∥∞ ·||β̂ − β||1

≥ −λ

c
Wmin||β̂ − β||1

= −λ

c
Wmin

(
||(β̂ − β)S ||1 + ||(β̂ − β)Sc ||1

)
. (6.4)

Combining (6.3) and (6.4), we can obtain

||(β̂ − β)Sc ||1 ≤
cWmax +Wmin

Wmin(c− 1)
||(β̂ − β)S ||1.

Q.E.D. �

Proof of Theorem 1 . We notice the following relation:

Q(β̂)−Q(β) = ||ê||22,N − 2

N

N∑
i=1

(Ỹi − X̃′
iβ)X̃′

iê

≥ ||ê||22,N − 2Q1/2(β)||∇Q1/2(β)||∞||ê||1, (6.5)
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where (6.5) holds by the Hölder inequality. Then it follows from the definition of κ(ξ,S)

that

||ê||22,N ≤ 2Q1/2(β)||∇Q1/2(β)||∞||ê||1 (6.6)

+[Q1/2(β̂) +Q1/2(β)] · λ
[
Wmax

s1/2||ê||2,N
κ(ξ,S)

−Wmin||êSc ||1
]
.

Moreover, we note

Q1/2(β̂) ≤ Q1/2(β) + λWmax

(
s1/2||ê||2,N
κ(ξ,S)

)
. (6.7)

From (6.6) and (6.7), we have

||ê||22,N ≤ 2Q1/2(β)||∇Q1/2(β)||∞||ê||1 + 2Q1/2(β)λWmax

(
s1/2||ê||2,N
κ(ξ,S)

)
+

{
λWmax

(
s1/2||ê||2,N
κ(ξ,S)

)}2

− 2Q1/2(β)λWmin||êSc ||1.

Since c ∥ ∇Q1/2(β) ∥∞≤ λWmin, we have

||ê||22,N ≤ 2Q1/2(β)||∇Q1/2(β)||∞||êS ||1 + 2Q1/2(β)λWmax

(
s1/2||ê||2,N
κ(ξ,S)

)
+

{
λWmax

(
s1/2||ê||2,N
κ(ξ,S)

)}2

.

Then, {
1−

(
Wmaxλs

1/2

κ(ξ,S)

)2
}
||ê||22,N ≤ 2

(
Wmax +

Wmin

c

)
Q1/2(β)

λs1/2

κ(ξ,S)
||ê||2,N . (6.8)

Since Wmaxλs1/2

κ(ξ,S) ≤ ζ < 1 and Q(β; Ωp) ≤ K2 hold, by solving the above inequality (6.8), we

can obtain the error bound stated in the theorem. Q.E.D. �
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Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods,

Theory and Applications. Springer.

Cai, T., Liu, W. and Luo, X. (2011). A constrained ℓ1 minimization approach to sparse

precision matrix estimation. Journal of the American Statistical Association, 106, 594-607.

Cai, T. and Yuan, M. (2012). Adaptive covariance matrix estimation through block thresh-

olding. The Annals of Statistics, 40, 2014-2042.

Fan, J., and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96, 1348-1360.

Fan, J., and Li, R. (2002). Variable selection for Cox’s proportional hazards model and

frailty model. The Annals of Statistics, 30, 74-99.

17



Fan, J., Liao, Y. and Mincheva, M. (2013). Large covariance estimation by thresholding

principal orthogonal complements (with discussion). Journal of the Royal Statistical Society,

Series B, 75, 603-680.

Fan, Y. and Lv, J. (2014). Asymptotic properties for combined L1 and concave regulariza-

tion. Biometrika, 101, 57-70.

Friedman, J., Hastie, T. and Tibshirani, R. (2008). Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software, 33, No.1.

Gao, X., Jia, M., Zhang, Y., Breitling, L. and Brenner, H. (2015). DNA methylation changes

of whole blood cells in response to active smoking exposure in adults: a systematic review

of DNA methylation studies. Clinical Epigenetics, 7:113.

Huang, J., Ma, S., Li, H. and Zhang, C.-H. (2011). The sparse Laplacian shrinkage estimator

for high-dimensional regression. The Annals of Statistics, 39, 2021-2046.

Huang, J., Sun, T., Ying, Z., Yu, Y. and Zhang, C.-H. (2013). Oracle inequalities for the

LASSO in the Cox model. The Annals of Statistics, 41, 1142-1165.

Jiang, Y., He, Y. and Zhang, H. (2016). Variable selection with prior information for

generalized linear models via the prior lasso method. Journal of the American Statistical

Association, 111, 355-376.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model

selection. The Annals of Statistics, 28, 1302-1338.

Li, X., Zhao, T., Yuan, X. and Liu, H. (2015). The flare package for high dimensional linear

regression and precision matrix estimation in R. Journal of Machine Learning Research,

16, 553-557.

18



Li, Y., Nan, B. and Zhu, J. (2015). Multivariate sparse group lasso for the multivariate

multiple linear regression with an arbitrary group structure. Biometrics, 71, 354-363.

Lin, W. and Lv, J. (2013). High-dimensional sparse additive hazards regression. Journal of

the American Statistical Association, 108, 247-264.

Lin, W., Feng, R. and Li, H. (2015). Regularization methods for high-dimensional in-

strumental variables regression with an application to genetical genomics. Journal of the

American Statistical Association, 110, 270-288.

Liu, H., Wang, L. and Zhao, T. (2015). Calibrated multivariate regression with application

to neural semantic basis discovery. Journal of Machine Learning Research, 16, 1579 - 1606.

Liu, H. and Wang, L. (2017). TIGER: A tuning-insensitive approach for optimally estimat-

ing Gaussian graphical models. Electronic Journal of Statistics, 11, 241 - 294.

Moen, E., Zhang, X., Mu, W., Delaney, S., Wing, C., McQuade, J., Myers, J., Godley, L.,

Dolan, M. and Zhang, W. (2013). Genome-wide variation of cytosine modifications between

European and African populations and the implications for complex traits. Genetics, 194,

987-996.

Mukherjee, R., Pillai, N. and Lin, X. (2015). Hypothesis testing for high-dimensional sparse

binary regression. The Annals of Statistics, 43, 352-381.

Rothman, A., Levina, E., and Zhu, J. (2010). Sparse multivariate regression with covariance

estimation. Journal of Computational and Graphical Statistics, 19, 947-962.

Sofer, T., Dicker, L. and Lin, X. (2014). Variable selection for high dimensional multivariate

outcomes. Statistica Sinica, 24, 1633-1654.

19



Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the

Royal Statistical Society, Series B, 58, 267-288.

van de Geer, S. (2008). High-dimensional generalized linear models and the lasso. The

Annals of Statistics, 36, 614-645.

Wang, H. and Leng, C. (2007). Unified LASSO estimation by least squares approximation.

Journal of the American Statistical Association, 102, 1039-1048.

Wilms, I. and Croux, C. (2017). An algorithm for the multivariate group lasso with covari-

ance estimation. Journal of Applied Statistics, accepted.

Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical

model. Biometrika, 95, 19-35.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty.

The Annals of Statistics, 38, 894 - 942.

Zhang, H., Zheng, Y., Zhang, Z., Gao, T., Joyce, B., Yoon, G., Zhang, W., Schwartz,

J., Just, A., Colicino, E., Vokonas, P., Zhao, L., Lv, J., Baccarelli, A., Hou, L. and Liu,

L. (2016). Estimating and testing high-dimensional mediation effects in epigenetic studies.

Bioinformatics, 32, 3150 - 3154.

Zou, H. and Hastie, T. (2005). Regularization and vriable selection via the elastic net.

Journal of the Royal Statistical Society, Series B, 67, 301-320.

Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American

Statistical Association, 101, 1418-1429.

20



Table 1.

Simulation results on model selection with AR(1) error covariance.

n = 100 n = 200

p Methods CMR FPR FNR ME CMR FPR FNR ME

200 LASSO 0.02 0.6121 0.0006 0.4203 0.10 0.5806 < 10−4 0.2435

SR-LASSO 0.02 0.5924 0.0005 0.4282 0.07 0.5973 < 10−4 0.2405

WSR-LASSO 0.41 0.1437 0.0008 0.2213 0.69 0.0708 0.0004 0.1337

300 LASSO 0 0.6072 0.0004 0.4747 0.02 0.6205 0.0001 0.2534

SR-LASSO 0.01 0.5857 0.0005 0.4795 0.01 0.6468 0.0001 0.2476

WSR-LASSO 0.38 0.2956 0.0002 0.2389 0.68 0.0634 0.0003 0.1178

CMR: the correct model is selected I{Ŝ = S}; FPR: the false positive rate |Ŝ\S|/|Ŝ|; FNR: the false

negative rate |S\Ŝ|/(d− |Ŝ|); and ME: the model error tr[(B̂ −B)ΣX(B̂ −B)′].

21



Table 2.

Simulation results on model selection with FGN error covariance.

n = 100 n = 200

p Methods CMR FPR FNR ME CMR FPR FNR ME

200 LASSO 0.02 0.5360 0.0003 0.6467 0.06 0.4504 0.0002 0.2891

SR-LASSO 0.03 0.5696 0.0004 0.6287 0.05 0.4508 0.0001 0.2869

WSR-LASSO 0.33 0.1055 0.0014 0.3242 0.60 0.0692 0.0007 0.1769

300 LASSO 0.03 0.5436 0.0004 0.6887 0.09 0.4922 < 10−4 0.3762

SR-LASSO 0.02 0.5239 0.0003 0.6741 0.07 0.4980 < 10−4 0.3640

WSR-LASSO 0.33 0.2634 0.0006 0.2828 0.55 0.0917 0.0006 0.2356

CMR: the correct model is selected I{Ŝ = S}; FPR: the false positive rate |Ŝ\S|/|Ŝ|; FNR: the false

negative rate |S\Ŝ|/(d− |Ŝ|); and ME: the model error tr[(B̂ −B)ΣX(B̂ −B)′].
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Table 3.

Model selection comparison with Gao et al. (2015)‡.

Frequency CpGs reported ≥ 7 5-6 3-4 2

Total No. CpGs 8 12 42 89

N(%) identified in NAS 5 (62.5%) 4 (33.3%) 10 (23.8%) 15 (16.9%)

‡ # CpG: The frequency of CpGs identified in literature, per the review by Gao et al. (2015); Total No. CpGs: Total number of CpGs reported

in literature; N (%): Number (percentage) of CpGs selected by our method in the NAS data.
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Table 4.

Variable selection and estimation results for CpGs‡.

CpG Gene name CHR β̂1 β̂2 β̂3

cg03636183 F2RL3 19 -0.0021 0.0029 0.0067

cg05575921 AHRR 5 -0.0056 0.0111 0.0083

cg06126421 * 6 -0.0014 0.0006 0.0094

cg21566642 * 2 -0.0019 0 -0.0058

cg06644428 * 2 -0.0037 -0.0085 -0.0306

cg03991871 AHRR 5 -0.0021 0.0146 0.0237

cg23576855 AHRR 5 -0.0013 0 0.0145

cg25189904 GNG12 1 -0.0027 0 -0.0092

cg08709672 AVPR1B 1 0.0011 0.0008 0

cg12803068 MYO1G 7 0.00164 0 0.0267

cg01692968 * 9 -3× 10−5 -0.0104 -0.0051

cg06060868 SDHA 5 4× 10−6 0.0116 0.0078

cg11207515 CNTNAP2 7 0.0004 -0.0049 0

cg11231349 NOS1AP 1 0.0005 0.0080 0.0149

cg22851561 C14orf43 14 0.0003 0 0

cg23771366 PRSS23 11 -0.0007 -0.0015 -0.0111

cg23916896 AHRR 5 -0.0010 -0.0092 -0.0135

cg26963277 KCNQ1 11 -0.0003 0.0133 0.0141

‡ β̂1: packyr; β̂2: age; β̂3: BMI.
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Table 4. Continued‡.

CpG Gene name CHR β̂1 β̂2 β̂3

cg01500140 LIM2 19 0.0008 0.0072 0.0113

cg03274391 * 3 0.0027 0 0.0001

cg03604011 AHRR 5 0.0035 -0.0202 -0.0143

cg04716530 ITGAL 16 3× 10−5 0.0111 0.0056

cg07465627 STXBP4 17 0.0002 -0.0052 -0.0092

cg11902777 AHRR 5 -0.0011 -0.0209 -0.0204

cg13039251 PDZD2 5 0.0031 0 0.0185

cg15187398 MOBKL2A 19 -0.0001 -0.0038 0

cg16201146 * 20 3× 10−5 0.0032 0.0129

cg17619755 VARS 6 0.0006 0 0.0082

cg17924476 AHRR 5 0.0011 0 -0.0102

cg23480021 * 3 0.0012 0 0.0157

cg23667432 ALPP 2 0.0002 0.0009 0.0092

cg23973524 CRTC1 19 0.0009 0 0.0057

cg26764244 GNG12 1 -0.0007 -0.0101 -0.0183

‡ β̂1: packyr; β̂2: age; β̂3: BMI; ∗ denotes CpGs in the intergenic region;
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Figure 1. Correct model rate for WSR-LASSO with AR(1) error covariance.
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Figure 2. Model error for WSR-LASSO with AR(1) error covariance.
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Figure 3. Correct model rate for WSR-LASSO with FGN error covariance.
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Figure 4. Model error for WSR-LASSO with FGN error covariance.

27


