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1 Introduction

In 1990 Ohnita (cf. [13]) gave a series of homogeneous minimal 2-spheres {φn,α} of constant
curvature in quaternionic projective spaces HPn, and conjectured that {φn,α} exhaust all
proper minimal isometric immersions of S2 in HPn. Recently, we get a classification
theorem of linearly full unramified conformal minimal immersions of constant curvature
from S2 to HP 2 (cf. [8]), which verifies that in the case n = 2, {φn,α} exhaust all
linearly full unramified minimal isometric immersions of constant curvature from S2 to
HP 2. In [10], we determine all conformal minimal immersions of 2-spheres in HPn with
parallel second fundamental form (implies that it is of constant curvature). In this paper,
we determine all homogeneous (stronger than the condition of unramified with constant
curvature) minimal 2-spheres in HPn (see Theorem 5.5) and solve completely Ohnita’s
conjecture for n odd. Indeed, in this case, we find homogeneous minimal 2-spheres not
in the series {φn,α}. When n is even, the series {φn,α} gives all homogeneous minimal
2-spheres but it is unknown if there are any proper non-homogeneous minimal isometric
immersions.

In this paper we mainly combine the methods of harmonic sequences and moving
frames to study homogeneous harmonic maps from S2 to HPn.

Our arrangement is as follows.
In the second section of this paper, firstly we give the definition of quaternionic pro-

jective space HPn as the totally geodesic submanifold in G(2, 2n+ 2), then we give some
fundamental results concerning G(k,N) from the viewpoint of harmonic sequences by mov-
ing frames, at last we give some brief description of Veronese sequence and the rigidity
theorem in CPN . In the third section, we simply introduce homogeneous harmonic maps
from S2 to G(k,N) and give an important property. In the fourth section, we determine
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all reducible harmonic maps of constant curvature from S2 to HPn, which represent the
homogeneous ones completely. In the last section, we determine all irreducible homoge-
neous harmonic maps from S2 to HPn by mathematical induction. Finally we obtain the
classification Theorem 5.5.

2 Preliminaries

For any N = 1, 2, . . . , let 〈, 〉 denote the standard Hermitian inner product on CN defined
by 〈z, w〉 = z1w1 + . . . + zNwN where z = (z1, . . . , zN )T , w = (w1, . . . , wN )T ∈ CN and
¯ denotes complex conjugation. Let H denote the division ring of quaternions. Let j be
a unit quaternion with j2 = −1. Then we have an identification of C2 with H given by
making (a, b) ∈ C2 correspond to a+ bj ∈ H; let n ∈ {1, 2, · · · }, we have a corresponding
identification of C2n+2 with Hn+1. For any a+ bj ∈ H, the left multiplication by j is given
by j(a+ bj) = −b+ aj; the conjugation is given by a+ bj = a− bj; the positive definite
inner product is given by 〈x, y〉H = Re(xy) for any x, y ∈ H.

Let J : C2n+2 → C2n+2 be the conjugate linear map given by left multiplication by j,
i.e.

J(z1, z2, . . . , z2n+1, z2n+2)
T = (−z̄2, z̄1, . . . ,−z̄2n+2, z̄2n+1)

T .

Then J2 = −id where id denotes the identity map on C2n+2. In fact, for any v ∈ C2n+2,

Jv = Jn+1v̄,

where Jn+1 = diag

{(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)}
︸ ︷︷ ︸

n+1

.

Let G(2, 2n+2) denote the Grassmann manifold of all complex 2-dimensional subspaces
of C2n+2 with its standard Kähler structure. The quaternionic projective spaces HPn is
the set of all one-dimensional quaternionic subspaces of Hn+1. Throughout the above we
shall regard HPn as the totally geodesic submanifold of G(2, 2n+ 2) given by

HPn = {V ∈ G(2, 2n+ 2) : JV = V } .

Let Sp(n + 1) = {g ∈ GL(n+ 1;H), g∗g = In+1} be the symplectic isometry group of
HPn. The explicit description is that the following diagram commutes:

Sp(n+ 1)
i1−−−−→ U(2n+ 2)

π1

y π2

y
HPn i2−−−−→ G(2, 2n+ 2)

where i1, i2 are inclusions and π1, π2 are projections, and i1(g) = E, for 1 ≤ a, b ≤ n+ 1{
E2a−1

2b−1 = Aab , E2a−1
2b = −Ba

b ,

E2a
2b−1 = Ba

b , E2a
2b = A

a
b ,

where A = (Aab ), B = (Ba
b ) ∈Mn+1(C), g = A+Bj ∈ Sp(n+ 1);

π1(g) = g ·
[
(1, 0, · · · , 0)T

]
∈ HPn;

2



π2(E) = E ·

[(
1, 0, 0, · · · , 0
0, 1, 0, · · · , 0

)T]
∈ G(2, 2n+ 2);

i2
([

(z1 + z2j, · · · , z2n+1 + z2n+2j)
T
])

=

[(
z1, z2, · · · , z2n+1, z2n+2

−z2, z1, · · · , − z2n+2, z2n+1

)T]
.

Here we consider G(2, 2n+ 2) as the set of all Hermitian orthogonal projections from
C2n+2 onto 2-dimensional complex subspaces, i.e.,

G(2, 2n+ 2) =
{
ϕ ∈M2n+2(C)|ϕ2 = ϕ,ϕ∗ = ϕ, trϕ = 2

}
.

Let τ : G(2, 2n + 2) → U(2n + 2) be the Cartan imbedding, which is defined by τ(ϕ) =
2ϕ − I ∈ U(2n + 2). We take the bi-invariant metric ds2U(2n+2) = 1

8trωω∗ on U(2n + 2),

then the metric on G(2, 2n+ 2) induced by τ is given by

ds2G(2,2n+2) =
1

2
trdϕdϕ,

where ω is the Maurer-Cartan form of U(2n+ 2).
Then the metric induced by i2 is twice as much as the standard metric of constant Q-
sectional curvature 4 on HPn.

Thus we regard the harmonic map from S2 to HPn as the one from S2 to G(2, 2n+2).
For any g ∈ Sp(n + 1), the action of g on HPn induces an action of E on CP 2n+1,

where E ∈ U(2n+ 2) which commutes with J. Then

Sp(n+ 1) = {E ∈ U(2n+ 2), E ◦ J = J ◦ E} =
{
E ∈ U(2n+ 2), EJn+1E

T = Jn+1

}
.

In the following, we deal with the symplectic isometry of HPn through the corresponding
symplectic isometry of CP 2n+1.

Next, we simply introduce harmonic maps and harmonic sequences in G(k,N) (cf. [4],
[5]) and calculate some corresponding geometric quantities.

Let M be a simply connected domain in the unit sphere S2 and let (z, z) be complex
coordinates on M . We take the metric ds2M = dzdz on M . Denote

∂ =
∂

∂z
, ∂ =

∂

∂z
.

We consider the complex Grassmann manifold G(k,N) as the set of Hermitian orthog-
onal projections from CN onto a k-dimensional subspace in CN . Then φ : S2 → G(k,N) is
a Hermitian orthogonal projection onto a k-dimensional subbundle φ of the trivial bundle

CN = M × CN given by setting the fibre of φ at x, φ
x
, equal to φ(x) for all x ∈ M .

For any two orthogonal subbundles φ, ψ of CN , define vector bundle morphisms over any
coordinate chart, A′φ,ψ, A

′′
φ,ψ : φ → ψ called the ∂′- and ∂′′-second fundamental forms of

φ in φ ⊕ ψ by A′φ,ψ(v) = πψ(∂v), A′′φ,ψ(v) = πψ(∂v) for v ∈ C∞(φ) . Here πψ denotes
orthogonal projection onto ψ and C∞(φ) denotes the vector space of smooth sections of
φ. Although these morphisms are only defined on coordinate charts, all the constructions
we will do involve their images which are globally defined independent of choice of local
coordinate. In particular A′φ = A′

φ,φ⊥
, A′′φ = A′′

φ,φ⊥
are called the second fundamental

forms of φ in CN .
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Let φ : S2 → G(k,N) be a smooth harmonic map. Then from φ two harmonic
sequences (cf. [4]) are derived as follows:

φ = φ
0

A′φ0−→ φ
1

A′φ1−→ · · ·
A′φα−1−→ φ

α

A′φα−→ · · · , (2.1)

φ = φ
0

A′′φ0−→ φ−1

A′′φ−1−→ · · ·
A′′φ−α+1−→ φ−α

A′′φ−α−→ · · · , (2.2)

where φ
α

= ImA′φα−1
and φ−α = ImA′′φ−α+1

are harmonic subbundles of CN (i.e., represent

harmonic maps) respectively, α = 1, 2, · · · .
We assume that φ is a linearly full harmonic map from S2 to G(k,N), here linearly full
means that φ can not be contained in any proper trivial subbundle Cm of CN (m < N).
We know that several consecutive harmonic maps in (2.1) are not mutually orthogonal
generally. So it is meaningful to define the isotropy order of φ (cf. [4], §3A) to be the
greatest integer r such that φ

i
⊥ φ

j
∀i, j ∈ Z with 0 < |i− j| ≤ r; if r =∞, then φ is said

to be strongly isotropic. Now we consider a special harmonic sequence.
Suppose that φ : S2 → G(k,N) is a linearly full harmonic map having isotropy order

at least 2. Then φ belongs to the following harmonic sequence:

0
A′′φ−α0←− φ−α0

A′′φ−α0−1←− · · ·
A′′φ−1←− φ−1

A′′φ←− φ
0

= φ
A′φ−→ φ

1

A′φ1−→ · · ·
A′φβ0−1−→ φ

β0

A′φβ0−→ 0, (2.3)

where for α = −α0 + 1, · · · , β0 − 1, φ
α−1, φα, φα+1

are mutually orthogonal.

Denote kα = rank φ
α

(α = −α0, · · · , β0).
For the harmonic sequence (2.3) we choose the unit vectors {· · · , e−1, e1, · · · } of CN
such that e1, · · · , ek0 locally span subbundle φ

0
, ek0+···+kα−1+1, · · · , ek0+···+kα−1+kα lo-

cally span subbundle φ
α

(α = 1, · · · , β0); e−1, · · · , e−k−1 locally span subbundle φ−1,

e−k−1−···−kα+1−1, · · · , e−k−1−···−kα+1−kα locally span subbundle φ
α

(α = −2, · · · ,−α0). Let
W0 = (e1, · · · , ek0) be an (N × k0)-matrix, Wα = (ek0+···+kα−1+1, · · · , ek0+···+kα−1+kα) be
an (N × kα)-matrix for α = 1, · · · , α0 and let W−1 = (e−1, · · · , e−k−1) be an (N × k−1)-
matrix, Wα = (e−k−1−···−kα+1−1, · · · , e−k−1−···−kα+1−kα) be an (N × kα)-matrix for α =
−2, · · · ,−α0. Since φ

α−1, φα, φα+1
are mutually orthogonal, we can extend

{Wα−1,Wα,Wα+1} into the local unitary frame with respect to φα. Then we have

φα = WαW
∗
α, (2.4)

W ∗αWα = Ikα×kα , W ∗αWα+1 = 0, W ∗αWα−1 = 0. (2.5)

By (2.5), a straightforward computation shows{
∂Wα = Wα+1Ωα +WαΨα,

∂Wα = −Wα−1Ω
∗
α−1 −WαΨ∗α,

(2.6)

where Ωα is a (kα+1 × kα)-matrix and Ψα is a (kα × kα)-matrix for α = −α0+1, · · · , β0−1.
It is very evident that integrability conditions for (2.6) are

∂Ωα = Ψ∗α+1Ωα − ΩαΨ∗α,

∂Ψα + ∂Ψ∗α = Ω∗αΩα + Ψ∗αΨα − Ωα−1Ω
∗
α−1 −ΨαΨ∗α.
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From (2.6) we have A′φα(Wα) = Wα+1Ωα and A′′φα+1
(Wα+1) = −WαΩ∗α, which implies

∣∣A′φα∣∣2 = sup


∣∣∣A′φα(Wα)

∣∣∣2
|Wα|2

: Wα ∈ φαwithWα 6= 0


= sup

{
tr(A′φα(Wα))(A′φα(Wα))∗

trWαW ∗α
: Wα ∈ φαwithWα 6= 0

}
= tr(ΩαΩ∗α)

=
∣∣∣A′′φα+1

∣∣∣2
Set Lα = tr(ΩαΩ∗α) =

∣∣∣A′φα∣∣∣2 =
∣∣∣A′′φα+1

∣∣∣2 . Then the metric induced by φα is given by

ds2α = (Lα−1 + Lα)dzdz. (2.7)

The Laplacian 4α and the curvature Kα of ds2α are given by

4α =
4

Lα−1 + Lα
∂∂, Kα = − 2

Lα−1 + Lα
∂∂ log(Lα−1 + Lα). (2.8)

Especially, let ψ : S2 → CPN be a linearly full harmonic map. Eells and Wood’s result
(cf. [6]) shows that the following sequence in CPN is uniquely determined by ψ

0
A′′0←− ψ(N)

0

A′0−→ · · ·
A′i−1−→ ψ = ψ(N)

i

A′i−→ · · ·
A′N−1−→ ψ(N)

N

A′N−→ 0, (2.9)

for some i = 0, 1, · · · , N , and here A′′0, A′j denote A′′
ψ
(N)
0

, A′
ψ
(N)
j

respectively (j = 0, · · · , N).

Let f
(N)
0 be a holomorphic section of ψ(N)

0
, i.e. ∂f

(N)
0 = 0, and let f

(N)
i be a local section

of ψ(N)
i

such that

f
(N)
i = ψ

(N)⊥
i−1 (∂f

(N)
i−1 )

for i = 1, · · · , N . Then we have some formulas as follows (cf. [3]):

∂f
(N)
i = f

(N)
i+1 + ∂ log |f (N)

i |2f (N)
i , i = 0, · · · , N − 1, (2.10)

∂f
(N)
i = −l(N)

i−1f
(N)
i−1 , i = 1, · · · , N, (2.11)

∂∂ log |f (N)
i |2 = l

(N)
i − l(N)

i−1 , (2.12)

∂∂ log l
(N)
i = l

(N)
i+1 − 2l

(N)
i + l

(N)
i−1 , i = 0, · · · , N − 1, (2.13)

where l
(N)
i = |f (N)

i+1 |2/|f
(N)
i |2 for i = 0, · · · , N , and l

(N)
−1 = l

(N)
N = 0.

For convenience, we denote f (N)
i

= ψ(N)
i

for i = 0, 1, · · · , N .
In the following, we give a definition of the unramified harmonic map as follows:

Definition 2.1 If det(ΩαΩ∗α)dzkα+1dzkα+1 6= 0 everywhere on S2 in (2.3) for some α =
−α0 + 1, · · · , β0 − 1 , we say that φα : S2 → G(kα, N) is unramified. If
det(ΩαΩ∗α)dzkα+1dzkα+1 6= 0 everywhere on S2 in (2.3) for each α = −α0 + 1, · · · , β0 − 1,
we say that the harmonic sequence (2.3) is totally unramified. In this case we also say
that each map φα in (2.3) is totally unramified.
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Here dzkα+1dzkα+1 = 1
2

(
dzkα+1 ⊗ dzkα+1 + dzkα+1 ⊗ dzkα+1

)
and the quantity

det(ΩαΩ∗α)dzkα+1dzkα+1 is independent of choice of local coordinate. In the case k = 1,
the above definition is in accordance with that in §3 of [3].

Now recall ([4], §3A) that a harmonic map φ : S2 → G(k,N) in (2.1) (resp. (2.2))
is said to be ∂′-irreducible (resp. ∂′′-irreducible) if rank φ=rank φ

1
(resp. rank φ=rank

φ−1) and ∂′-reducible (resp. ∂′′-reducible) otherwise. We assume that φα in (2.3) is ∂′-

irreducible, then |det Ωα|2dzkαdzkα is a well-defined invariant and has only isolated zeros
on S2. Under this condition, it can be checked that (cf. [11])

∂∂ log | det Ωα|2 = Lα−1 − 2Lα + Lα+1, (2.14)

which is in accordance with (2.13) in the case k = 1. Furthermore if φα is ∂′-irreducible
and unramified, then | det Ωα|2dzkαdzkα is a well-defined invariant and has no zeros on S2.
It follows from (2.14) that (cf. [11])

δα−1 − 2δα + δα+1 = −2kα, (2.15)

where δα = 1
2π
√
−1

∫
S2 Lαdz ∧ dz.

At last, we review the rigidity theorem of conformal minimal immersions with constant
curvature from S2 to CPN .
The Veronese sequence. Let f

(N)
i = (fi,0, · · · , fi,N )T for each i = 0, · · · , N . Let fi,p be

given for i, p = 0, 1, · · · , N as follows

fi,p =
i!

(1 + zz)i

√(
N

p

)
zp−i

∑
k

(−1)k
(

p

i− k

)(
N − p
k

)
(zz)k. (2.16)

Such a map φ
(N)
i = [f

(N)
i ] : S2 → CPN is a conformal minimal immersion with constant

curvature 4
N+2i(N−i) and constant Kähler angle θ

(N)
i given by(

tan
θ
(N)
i

2

)2

=
i(N − i+ 1)

(i+ 1)(N − i)
.

Such a harmonic sequence φ
(N)
0 , · · · , φ(N)

N : S2 → CPN is called the Veronese sequence.

We always denote it by V
(N)
0 , · · · , V (N)

N : S2 → CPN .
Bolton et al proved that (cf. [3]) if ψ is a linearly full conformal minimal 2-sphere of

constant curvature immersed in CPN , then, up to a holomorphic isometry of CPN , ψ is
an element of the Veronese sequence (i.e. a Veronese surface).

3 Homogeneous harmonic maps from S2 to G(k,N)

An immersion φ : S2 → G(k,N) is said to be homogeneous, if for any two points p, q ∈ S2

there exists an isometry σ of S2 and a holomorphic isometry u of G(k,N) such that
σ(p) = q and the following diagram communicates

S2 φ−−−−→ G(k,N)

σ

y u

y
S2 φ−−−−→ G(k,N),
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i.e.,
φ ◦ σ = u ◦ φ. (3.1)

Here we can identify σ (resp. u) with an element of SU(2) (resp. U(N))(cf. [7]). All such
u form a subgroup G of U(N) and G acts transitively on φ(S2). It’s known that such
2-spheres in G(k,N) have constant curvature, but they are non-minimal in general. Let
the complex coordinate z on S2 ' CP 1 be given by two complex variables z0 and z1, i.e.
z = [(z0, z1)

T ] = [(1, z1z0 )T ] (for computation convenience z = z1
z0

) and let

SU(2) =

{
g =

(
a −b
b a

)
; a, b ∈ C, |a|2 + |b|2 = 1

}
. (3.2)

Then σ is given by
σ(z) = g∗z = [(az0 + bz1, − bz0 + az1)

T ]. (3.3)

Especially, if φ is harmonic and satisfies (3.1) then it is called a homogeneous harmonic
map from S2 to G(k,N). In the following we give a property of homogeneous harmonic
map.

Lemma 3.1 Let φ : S2 → G(k,N) be a homogeneous harmonic map that belongs to
the harmonic sequence (2.3), then for each α = −α0, · · · , β0 the harmonic map φα :
S2 → G(kα, N) is homogeneous. This time the harmonic sequence (2.3) is said to be a
homogeneous harmonic sequence.

Proof: Since φ0 in (2.3) is homogeneous, it follows from (3.1) that

φ0 ◦ σ = u ◦ φ0. (3.4)

Set φ
0

= span{e1, · · · , ek0}, where e1, · · · , ek0 are unit orthogonal vectors of CN . Then
from φ

1
= A′φ0(φ

0
) we get φ

1
= span{vk0+1, · · · , vk0+k1}, for each i = 1, · · · , k0, vk0+i is

given by

vk0+i = ∂ei −
k0∑
s=1

〈∂ei, es〉 es, (3.5)

since there may exist some i such that vk0+i = 0, we exclude all zero vectors, so here
k1 ≤ k0.

Set u ∈ U(N). By (3.5) a straightforward computation shows

∂(uei)−
k0∑
s=1

〈∂(uei), es〉 es = (∂uei + u∂ei)−
k0∑
s=1

〈∂uei + u∂ei, es〉 es

= u

(
∂ei −

k0∑
s=1

〈∂ei, es〉 es

)
= uvk0+i,

(3.6)

which implies
A′φ0(u ◦ φ

0
) = u ◦A′φ0(φ

0
) = u ◦ φ

1
. (3.7)
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On the other hand, from (3.3) φ0 ◦ σ = φ0(w), where w = −b+az
a+bz

. Since ∂φ0
∂z = ∂φ0

∂w
∂w
∂z ,

then
A′φ0(φ

0
◦ σ) = A′φ0(φ

0
) ◦ σ = φ

1
◦ σ. (3.8)

It follows from (3.4),(3.7) and (3.8) that

φ
1
◦ σ = u ◦ φ

1
(3.9)

which verifies that φ1 is homogeneous.
The other cases of φα are similar to the above. Thus we get the conclusion.

2

In the case k = 1, Veronese sequence is the standard homogeneous harmonic sequence
in CPN−1 (cf. [2]). In the case k = 2, if φ is a homogeneous harmonic map from S2 to
HPn, then u is an element of Sp(n+ 1) ⊂ U(2n+ 2) in (3.1).

4 Reducible homogeneous harmonic maps from S2 to HP n

Let φ : S2 → HPn be a linearly full harmonic map of isotropy order r. If φ has finite
isotropy order, then r = 2s for 1 ≤ s ≤ n by ([1], Proposition 3.2 and Lemma 3.10); if φ
is strongly isotropic, then r = ∞. If φ0 : S2 → HPn is a reducible linearly full harmonic
map, then by ([1], Proposition 3.7) we know that φ0 is a quaternionic mixed pair or a
quaternionic Frenet pair.

Definition 4.1 ([1]) (1) A map φ : M → HPn is called a quaternionic mixed pair if
φ = f ⊕Jf where f : M → CP 2n+1 is holomorphic and G′(f) ⊥ Jf . Here G′(f) = ImA′f .

(2) A map φ : M → HPn is called a quaternionic Frenet pair if φ = G(r−1)(h)⊕G(r)(h)
for some integer r, with 1 ≤ r ≤ n + 1 and holomorphic map h : M → CP 2n+1 with
G(2r−1)(h) = Jh. Here G(0)(h) = h, G(i)(h) = G′(G(i−1)(h)).

In the following we discuss the these two types in the case of constant curvature.
If φ0 is a linearly full quaternionic Frenet pair, then

φ
0

= f (2n+1)
n

⊕ f (2n+1)
n+1

, (4.1)

where f (2n+1)
0

, · · · , f (2n+1)
2n+1

: S2 → CP 2n+1 is a harmonic sequence with the linearly full

totally J-isotropic map f (2n+1)
0

.

Firstly we recall ([1], §3) that a full holomorphic map f (2n+1)
0

: S2 → CP 2n+1 satisfying

f (2n+1)
2n+1

= Jf (2n+1)
0

is said to be totally J-isotropic; this generates a harmonic sequence

0
A′′0←− f (2n+1)

0

A′0−→ · · ·
A′n−1−→ f (2n+1)

n

A′n−→ f (2n+1)
n+1

A′n+1−→ · · ·
A′2n−→ f (2n+1)

2n+1

A′2n+1−→ 0.

From the harmonic sequence, f
(2n+1)
2n+1−i = Jf

(2n+1)
i for all i so that:

l
(2n+1)
j = l

(2n+1)
2n+1−j , (4.2)
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and set Jf
(2n+1)
0 = τ2n+1f

(2n+1)
2n+1 , then

|τ2n+1|2 =
|f (2n+1)

0 |2

|f (2n+1)
2n+1 |2

, Jf
(2n+1)
j = τ2n+1−jf

(2n+1)
2n+1−j , (4.3)

where τ2n+1−j = (−1)jτ2n+1
|f (2n+1)

2n+1 |2

|f (2n+1)
2n+1−j |2

for each j = 0, · · · , 2n+ 1.

Obviously φ0 belongs to the following harmonic sequence (cf. [4])

0
A′′0←− f (2n+1)

0

A′′1←− · · ·
A′′n−1←− f (2n+1)

n−1

A′′φ0←− φ
0

A′φ0−→ f (2n+1)
n+2

A′n+2−→ · · ·
A′2n−→ f (2n+1)

2n+1

A′2n+1−→ 0. (4.4)

Then we give the following proposition without proof:

Proposition 4.2 ([9], Proposition 3.1) Let φ0 : S2 → HPn be a linearly full quater-
nionic Frenet pair of constant curvature K0. Denote the isotropy order of φ0 by r. Then
K0 = 2

n(n+2) , r =∞, and up to a symplectic isometry of HPn,

φ
0

= UV (2n+1)
n ⊕ UV (2n+1)

n+1

for some U ∈ G2n+2 ,

{
U ∈ U(2n+ 2), UWn+1U

T = Jn+1

}
,

where Wn+1 = antidiag

{(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)}
︸ ︷︷ ︸

n+1

.

Remark 4.3 Since both V
(2n+1)
n and V

(2n+1)
n+1 are Veronese surfaces in CP 2n+1. It is easy

to check that such φ0 is SU(2)-equivalent, so φ0 is homogeneous. Thus all linearly full
homogeneous quaternionic Frenet pairs are given by Proposition 4.2.

If φ0 is a linearly full quaternionic mixed pair, then

φ
0

= f (m)
0
⊕ Jf (m)

0
, (4.5)

where f (m)
0

: S2 → CPm ⊆ CP 2n+1 (n ≤ m ≤ 2n+ 1) is holomorphic and f (m)
1
⊥ Jf (m)

0
.

Obviously φ0 belongs to the following harmonic sequence

0
A′′Jm←− Jf (m)

m

A′′
J(m−1)←− · · ·

A′′J1←− Jf (m)
1

A′′
φ0←− φ

0

A′
φ0−→ f (m)

1

A′1−→ · · ·
A′m−1−→ f (m)

m

A′m−→ 0, (4.6)

where A′′Ji represents A′′
Jf

(m)
i

for each i = 1, · · · ,m.

So the induced metric by φ0 is given by

ds20 = 2l
(m)
0 dzdz, (4.7)

where l
(m)
0 dzdz is the induced metric by the map f (m)

0
.

Then we prove
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Proposition 4.4 Let φ0 : S2 → HPn be a linearly full homogeneous quaternionic mixed
pair. Denote the isotropy order and Gaussian curvature of φ0 by r and K0 respectively.
Then up to a symplectic isometry of HPn, φ0 belongs to one of the following minimal
immersions.
(1) φ0 = UV

(2n+1)
0 ⊕ UV (2n+1)

2n+1 for some U ∈ G2n+2, where K0 = 2
2n+1 , r = 2n;

(2) φ0 = V
(n)
0 with K0 = 2

n , r =∞;

(3) n = 2t + 1 (t > 0) and φ0 =
[
(φ0,0, · · · , φ0,n)T

]
, for q1 = 0, · · · , t, q2 = t + 1, · · · , n,

φ0,q1, φ0,q2 are given by

φ0,q1 =

√(
n

q1

)
zq1 + (−1)q1λ

√(
n

n− q1

)
zn−q1j, φ0,q2 =

√
1− |λ|2

√(
n

q2

)
zq2 ,

where λ is a complex parameter satisfying 0 < |λ|2 < 1 and K0 = 2
n , r = n− 1.

Proof: Let φ0 : S2 → HPn be a linearly full quaternionic mixed pair. Since φ0 is homoge-
neous, we know that there exists a matrix u ∈ Sp(n+ 1) ⊂ SU(2n+ 2) such that

u ◦ f (m)
0 = f

(m)
0 ◦ σ. (4.8)

By (4.7) we get that K0 = 2
m and up to a holomorphic isometry of CP 2n+1, f (m)

0

is a Veronese surface. We can choose a complex coordinate z on C = S2 \ {pt} so that

f
(m)
0 = UV

(m)
0 , where U ∈ U(2n+2) and V

(m)
0 has the standard expression given in (2.16)

(adding zeros to V
(m)
0 such that V

(m)
0 ∈ C2n+2). A straightforward computation shows

V
(m)
0 ◦ σ(z0, z1) =

(
Dm+1 ∗
O ∗

)
V

(m)
0 (z0, z1), (4.9)

where

Dm+1 = (dij)0≤i,j≤m , dij =

√(
m
i

)√(
m
j

)(m− ik

)(
i

j − k

)
am−i−kb

k
(−b)i−j+kaj−k. (4.10)

Then we have

U
T
uUV

(m)
0 (z0, z1) =

(
Dm+1 D2

O D4

)
V

(m)
0 (z0, z1). (4.11)

By differentiating with respect to z0 in the above formula, the matrices U
T
uU and(

Dm+1 D2

O D4

)
have the same effect on all derivatives of V

(m)
0 (z0, z1). Generally, V

(m)
0 (z0, z1)

is not full in C2n+2, so the two above matrixes are not identical. But the matrix U
T
uU is

still the type of the following matrix, i.e.

U
T
uU =

(
Dm+1 ∗
O ∗

)
. (4.12)

Since U ∈ U(2n+ 2) and u ∈ Sp(n+ 1) ⊂ SU(2n+ 2), we get

U
T
uU =

(
Dm+1 O
O C2n+1−m

)
, (4.13)
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where Dm+1 ∈ U(m+ 1) and C2n+1−m ∈ U(2n+ 1−m).

Set UTJn+1U = W . Then

W T = −W, W ∗W = I, (4.14)

where I is the identity matrix.
Since u ∈ Sp(n+ 1), from (4.13) we have(

Dm+1 O

O C2n+1−m

)
W = W

(
Dm+1 O
O C2n+1−m

)
. (4.15)

Set W =

(
W11 W12

W21 W22

)
with W11 = (wkl)0≤k,l≤m. Then (4.10) and (4.15) yield

{
wm−j,j = (−1)m−jw0m, j = 0, · · · ,m
wkl = 0, k + l 6= m

(4.16)

Case I. r is finite. It follows from the harmonic sequence (4.6) that m ≥ r+ 1. Thus
for each 1 ≤ α ≤ r, we have f (m)

α
⊥ Jf (m)

0
, which are equivalent to the following equations

tr

(
V (m)
α V

(m)
0

T
UTJn+1U

)
= 0⇔ tr

(
V (m)
α V

(m)
0

T
W

)
= 0, α = 1, · · · , r (4.17)

hold.

Set V
(m)
α V

(m)
0

T
=

(
V11 O
O O

)
with V11 = (vij)0≤i,j≤m, then

vij =
α!

(1 + zz)α

√(
m

i

)(
m

j

)∑
k

(−1)k
(

i

α− k

)(
m− i
k

)
zi+j+k−αzk. (4.18)

Since r is finite, we know w0m 6= 0. From (4.16) and (4.18), we get

tr

(
V

(m)
m−1V

(m)
0

T
W

)
= 0, tr

(
V (m)
m V

(m)
0

T
W

)
6= 0, (4.19)

which implies that f (m)
m−1 is perpendicular to Jf (m)

0
, but f (m)

m
is not perpendicular to Jf (m)

0

by (4.17).
Hence we have

m = r + 1. (4.20)

Let r = 2s. It follows from (4.16) that

W11 = wm0Ws+1. (4.21)

Then the corresponding W is given by

W =

(
wm0Ws+1 W12

W21 W22

)
, (4.22)
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where W21 is a (2n+ 1−m)× (m+ 1)-matrix.
Define a set

GW ,
{
U ∈ U(2n+ 2), UWUT = Jn+1

}
.

For a given W , the following can be easily checked
(i) ∀ A ∈ Sp(n+ 1), U ∈ GW , we have that AU ∈ GW ;
(ii) ∀ U, V ∈ GW , ∃ A = UV ∗ ∈ Sp(n+ 1) s.t. U = AV .

In the following, in order to get the explicit expression of φ0, we discuss W respectively
by the two cases that n is an even or odd.

Case I.1. n is an even, i.e. n = 2t (t > 0).
In this case, since m > n, i.e. m + 1 > 2n + 1 −m, then from (4.14) and (4.22) we

know W21 = O, i.e.

W =

(
Ws+1 O
O W22

)
, (4.23)

where W22 ∈ U(2n+ 1−m).
Now we claim that m = 2n + 1 (s = n). Otherwise if m < 2n + 1, then s < n and for

any given W , we can choose proper U ∈ GW such that JUV
(m)
0 = −UV (m)

m , then up to
Sp(n+ 1),

φ
0

= UV
(m)
0 ⊕ UV (m)

m .

Obviously φ0 has image in HP s , so it is not linearly full. It contradicts our assumption
that φ0 is linearly full.
Furthermore we get K0 = 2

2n+1 , W = Wn+1 and GW = G2n+2. Then the proof of
Proposition 4.2(see ([9], Proposition 3.1)) gives that up to Sp(n+ 1),

φ
0

= UV
(2n+1)
0 ⊕ UV (2n+1)

2n+1 ,

where U ∈ G2n+2.
Obviously it belongs to the case (1) with K0 = 2

2n+1 , r = 2n.
Case I.2. n is an odd, i.e. n = 2t+ 1 (t > 0).
In this case, if m > n, then by the same discussion as Case I.1. we conclude that

m = 2n + 1 and up to Sp(n + 1), the corresponding φ0 belongs to the case (1) with
K0 = 2

2n+1 , r = 2n.

If m = n, then the corresponding W21 in (4.22) is a (n+1)× (n+1)-matrix. If |wn0|2 = 0,

then W11 = O, which implies f
(m)
m ⊥ Jf

(m)
0 , so φ0 is strongly isotropic. It contradicts our

assumption that the isotropy order r is finite. If |wn0|2 = 1, then the corresponding φ0 is
not linearly full.
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Now We assume 0 < |wn0|2 < 1. Denote wn0 by λ. Then we get the type of W =
UTJn+1U ∈ U(2n+ 2) as follows:

W =



0 0 0 0 (−1)nλ w1,n+2 · · · w1,2n+2

0 0 0 (−1)n−1λ 0 w2,n+2 · · · w2,2n+2

0 0 . .
.

0 0
...

. . .
...

0 (−1)1λ 0 0 0 wn,n+2 · · · wn,2n+2

λ 0 0 0 0 wn+1,n+2 · · · wn+1,2n+2

−w1,n+2 −w2,n+2 · · · −wn,n+2 −wn+1,n+2 0 · · · wn+2,2n+2

...
...

. . .
...

...
...

. . .
...

−w1,2n+2 −w2,2n+2 · · · −wn,2n+2 −wn+1,2n+2 −wn+2,2n+2 · · · 0


,

(4.24)
where 0 < |λ|2 < 1.

From WU
T

= UTJn+1, the corresponding U = [e1, e2, · · · , e2n+1, e2n+2]
T satisfy

e2α = We2α−1, α = 1, · · · , n+ 1, (4.25)

where ei are unit column vectors in C2n+2.
Generally, suppose {e1, e2, · · · , e2α−3, e2α−2 = We2α−3} (α ≥ 2) are mutually orthogo-

nal, we choose a unit column vector e2α−1 ∈ C2n+2 such that {e1, e2, · · · , e2α−3, e2α−2, e2α−1}
are mutually orthogonal. Set e2α = We2α−1, then

〈e2α, e2α−1〉 = eT2α−1W
T e2α−1 = −tr(e2α−1eT2α−1W ) = 0,

and for any 2 ≤ β ≤ α,

〈e2α, e2β−3〉 = eT2α−1W
T e2β−3 = −eT2α−1We2β−3 = −eT2α−1e2β−2 = −〈e2α−1, e2β−2〉 = 0,

〈e2α, e2β−2〉 = eT2α−1W
TWe2β−3 = eT2α−1e2β−3 = 〈e2α−1, e2β−3〉 = 0.

Thus {e1, e2, · · · , e2α−3, e2α−2, e2α−1, e2α} are mutually orthogonal.
Without loss of generality, in this case for p = 0, · · · , t we choose

e2p+1 =

0, · · · , 0︸ ︷︷ ︸
p

, 1, 0, · · · , 0

T

, (4.26)

then the corresponding e2p+2 is given by

e2p+2 = We2p+1 =

0, · · · , 0︸ ︷︷ ︸
n−p

, (−1)pλ, 0, · · · , 0,−wp+1,n+2, · · · ,−wp+1,2n+2

T

. (4.27)

Observing (4.26) and (4.27) we find {e1, e2, · · · , e2t+1, e2t+2} are mutually orthogonal.
Next for q = t+ 1, · · · , n we successively choose

e2q+1 =

0, · · · , 0︸ ︷︷ ︸
q

,
√

1− |λ|2, 0, · · · , 0, (−1)n−q
λwn+1−q,n+2√

1− |λ|2
, · · · , (−1)n−q

λwn+1−q,2n+2√
1− |λ|2

T

(4.28)
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then the corresponding e2q+2 is given by

e2q+2 =

0, · · · , 0︸ ︷︷ ︸
n+1

, ∗

T

. (4.29)

From (4.26)-(4.29) we obtain the type of the corresponding U , furthermore we have

UV
(n)
0 =

(
· · · ,

√(
n

p

)
zp, (−1)pλ

√(
n

n− p

)
zn−p, · · · ,

√
1− |λ|2

√(
n

q

)
zq, 0, · · ·

)T
,

(4.30)
where p = 0, · · · , t and q = t+ 1, · · · , n.
So the corresponding φ0 belongs to the case (3) with K0 = 2

n , r = n− 1.
Case II. r = ∞. In this case, it follows from ([9], Proposition 3.2) that up to

Sp(n+ 1),

φ0 = UV
(n)
0 ⊕ JUV

(n)
0

with K0 = 2
n for some U ∈ G2n+2.

For convenience, we choose

U =



1 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 (−1)0

0 1 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · (−1)1 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 (−1)n−1 · · · 0 0
0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 (−1)n 0 · · · 0 0


∈ G2n+2.

A straightforward calculation shows

UV n
0 =

[
(1, 0,

√
2z, 0, · · · , zn, 0)T

]
,

JUV n
0 =

[
(0, 1, 0,

√
2z, · · · , 0, zn)T

]
,

which implies

φ0 =
[
(1,
√

2z, · · · , zn)T
]

: S2 → CPn ↪→ HPn.

Hence, in this case, up to Sp(n+1), φ0 is the composition of V
(n)
0 with the totally geodesic

inclusion of CPn in HPn and belongs to the case (2) with K0 = 2
n , r =∞.

In summary we get the conclusion. 2

Remark 4.5 We conjecture that all linearly full quaternionic mixed pairs of constant
curvature are given by Proposition 4.4.
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5 Irreducible homogeneous harmonic maps from S2 to HP n

Now, we consider the irreducible harmonic maps φ : S2 → HPn of isotropy order r. In
the following we consider the two cases of finite isotropy order or strongly isotropic.

At first we consider the case of finite isotropy order, i.e. r = 2s (s = 1, · · · , n − 1).
Here we exclude the case of s = n, as if r = 2n then the corresponding φ is reducible by
([1], Lemma 3.10). We state the following lemma by ([1], Theorem 4.7):

Lemma 5.1 ([1]) Let φ : S2 → HPn be an irreducible harmonic map of finite isotropy
order r, where r = 2s (s = 1, · · · , n − 1). Then there is a unique sequence of harmonic
maps φi : S2 → G(2, 2n+ 2) (i = 0, 1, · · · , 2l) where l = 1, · · · , n− s such that
(i) φ0 = f (m)

0
⊕ Jf (m)

0
for some holomorphic map f (m)

0
: S2 → CPm ⊆ CP 2n+1 (n ≤ m ≤

2n+1) satisfying f (m)
p
⊥ Jf (m)

0
for 1 ≤ p ≤ 2l+2s but f (m)

p
6⊥ Jf (m)

0
for p = 2l+2s+1,

that is, φ0 is a quaternionic mixed pair of isotropy order 2l + 2s;
(ii) φ2l = φ;
(iii) for k = 0, 1, · · · , l − 1, φ2k+1 is obtained from φ2k by forward replacement of some

holomorphic subbundle of φ2k not equal to the image of the first ∂′-return map of φ2k.
Then the inverse of this transformation is given by ([1],Proposition 4.6(a)) and is given
by backward replacement of the image of the first ∂′′-return map;

(iv) for k = 0, 1, · · · , l − 1, φ2k+2 is obtained from φ2k+1 by backward replacement of
β⊥
k
∩ φ2k+1 where β

k
is the unique holomorphic subbundle of φ2k+1 not equal to the

image of the first ∂′-return map of φ2k+1 such that Im(A′
φ2k+1 |β

k
) ⊥ Jβ

k
. In fact, it is

the operation in ([1],Proposition 4.5(b)) with β⊥
k
∩ φ2k+1 equal to the antiholomorphic

subbundle β in ([1],Proposition 4.5(b)). Then the inverse of this transformation is
given by ([1],Proposition 4.5(a)) and is given by forward replacement of the image of
the first ∂′-return map.

Furthermore,
(v) for k = 0, 1, · · · , l − 1, φ2k : S2 → HPn is a quaternionic harmonic map;
(vi) for k = 0, 1, · · · , l − 1, φ2k+1 : S2 → G(2, 2n+ 2) satisfies G

′′
(φ2k+1) = Jφ2k+1;

(vii) for i = 0, 1, · · · , 2l, the isotropy order of φi is 2l + 2s− i.

Let φ : S2 → HPn be a linearly full irreducible homogeneous harmonic map of finite
isotropy order. By Lemma 5.1 we know the construction of harmonic maps is reversible.
Then for i = 0, 1, · · · , 2l− 1 the corresponding harmonic map φi is obtained by the direct
sum of two line bundles of the harmonic maps in the harmonic sequence of φi+1. They are
all homogeneous. Moreover each harmonic map in the harmonic sequence generated by φi

is also homogeneous by Lemma 3.1. In the following we use Lemma 5.1 to determine all
irreducible homogeneous harmonic maps φ of finite isotropy order.

In (i) of Lemma 5.1 φ0 belongs to the harmonic sequence as follows:

0
A′′Jm←− Jf (m)

m

A′′
J(m−1)←− · · ·

A′′J1←− Jf (m)
1

A′′
φ0←− φ0

A′
φ0−→ f (m)

1

A′1−→ · · ·
A′m−1−→ f (m)

m

A′m−→ 0, (5.1)

where φ0 = f (m)
0
⊕ Jf (m)

0
. In fact we find m = 2n + 1 (2l + 2s = 2n) or m = n =

2t+ 1 (2l+ 2s = n− 1) by Proposition 4.4. At this time the isotropy order of φ0 is m− 1.

By (iii) of Lemma 5.1 and (5.1), there exists a local section V0 = x0f
(m)
0 + Jf

(m)
0 such

that V 0 is an antiholomorphic subbundle of φ0, and φ1 is obtained from φ0 by forward
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replacement of V ⊥0 , i.e.
φ1 = V 0 ⊕ f (m)

1
, (5.2)

where x0 is a smooth function on S2 expect at some isolated points, and here V 0 denotes
the line bundle generated by V0.
Since V 0 is an antiholomorphic subbundle of φ0, then we get πφ0(∂V0) ∈ V 0, which implies
the equation

∂x0 + x0∂ log |f (2n+1)
0 |2 = 0 (5.3)

holds.
Then φ1 with isotropy order m− 2 belongs to the harmonic sequence as follows:

0
A′′Jm←− Jf (m)

m

A′′
J(m−1)←− · · ·

A′′J2←− Jf (m)
2

A′′
φ10←− φ1

0

A′
φ10−→ φ1

1

A′
φ11−→ f (m)

2

A′2−→ · · ·
A′m−1−→ f (m)

m

A′m−→ 0,
(5.4)

where φ1
0

= Jφ1 and φ1
1

= φ1.

Since φ10 is homogeneous, it has constant curvature. Next we compute the geometric
quantities of φ10 to determine its explicit expression. We choose the following orthogonal
unit vectors in C2n+2

e1 =
JV0
|V0|

, e2 =
Jf

(m)
1

|f (m)
1 |

, e3 =
V0
|V0|

, e4 =
f
(m)
1

|f (m)
1 |

, e5 =
f
(m)
2

|f (m)
2 |

, e−1 =
Jf

(m)
2

|f (m)
2 |

, (5.5)

and extend them into the local unitary frame with respect to φ10.
Set W0 = (e1, e2), W1 = (e3, e4), W2 = (e5), W−1 = (e−1), then by (2.6) we get

Ω0 =

(
λ0 t0
µ0 0

)
, Ω1 =

(
0
|f (m)

2 |
|f (m)

1 |

)
, Ω−1 =

 0

− |f
(m)
2 |
|f (m)

1 |

 , (5.6)

where λ0 =
∂x0−x0∂ log |f (m)

0 |2
|x0|2+1

, µ0 = t0 = − |f
(m)
1 |
|V0| with |V0|2 = (|x0|2 + 1)|f (m)

0 |2.
A straightforward computation shows

|detΩ0|2dz2dz2 =
1

(|x0|2 + 1)2
l
(m)
0 l

(m)
0 dz2dz2, (5.7)

L0 = λ0λ0 + µ0µ0 + t0t0, (5.8)

L1 = L−1 = l
(m)
1 . (5.9)

We claim that 1
(|x0|2+1)2

has no zeros on S2. Otherwise if z = z0 is a zero point of
1

(|x0|2+1)2
, then rank Ω0|z=z0 = 1 by (5.6), which implies that φ10 is not homogeneous. It’s

a contradiction.
So |detΩ0|2dz2dz2 6= 0 everywhere on S2. It follows from (2.15) that

δ1 − 2δ0 + δ−1 = −4, (5.10)

where δα = 1
2π
√
−1

∫
S2 Lαdz ∧ dz (α = −1, 0, 1).

Since all harmonic maps in the harmonic sequence (5.4) have constant curvature, then
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we can choose a complex coordinate z on C = S2 \ {pt} so that the induced metric
ds2
φ10

= (L0 + L−1)dzdz by φ10 is given by

ds2φ10
=

4m− 2

(1 + zz)2
dzdz, (5.11)

and from ([3], §3) we get

l
(m)
i =

(i+ 1)(m− i)
(1 + zz)2

, δ
(m)
i = (i+ 1)(m− i), i = 0, · · · ,m− 1. (5.12)

It follows from (5.9) and (5.12) that

L−1 =
δ−1

(1 + zz)2
. (5.13)

Analyzing (5.11) and (5.13) we find for i = −1, 0, 1,

Li =
δi

(1 + zz)2
. (5.14)

Using (5.7),(5.9),(5.10),(5.12),(5.14) and (2.14), we obtain

∂∂ log(|x0|2 + 1) = 0. (5.15)

It follows from (5.7) that |x0|2 + 1 is globally defined on C and has a positive constant
limit c1 as z →∞. Thus from (5.15)

|x0|2 = c1 − 1. (5.16)

In view of (5.3) we have ∂(x0|f (m)
0 |2) = 0, which implies

x0 =
h(z)

|f (m)
0 |2

=
h(z)

(1 + zz)m
, (5.17)

where h(z) is a holomorphic function on C.
It follows from (5.16) and (5.17) that

|h(z)|2 = (c1 − 1)(1 + zz)2m. (5.18)

Now we claim that c1 = 1. Otherwise if c1 6= 1, then the holomorphic function h(z)
includes the factor such as (1 + zz), which is impossible. So x0 = 0 and

φ1 = Jf (m)
0
⊕ f (m)

1
. (5.19)

By (iv) of Lemma 5.1, (5.4) and (5.19), there exists a local section V = y1f
(m)
1 +Jf

(m)
0

such that β⊥ ∩φ1 = V is an antiholomorphic subbundle of φ1, and φ2 is obtained from φ1

by backward replacement of V , i.e.

φ2 = X ⊕ JX, (5.20)

17



where X = 1

|f (m)
1 |2

f
(m)
1 − y1

|f (m)
0 |2

Jf
(m)
0 and y1 is a smooth function on S2 expect at some

isolated points.
By the properties of the harmonic sequence (5.4) we know π(φ1)⊥(∂V ) = JX, which implies
y1 = 0 by a straightforward computation. So

φ2 = f (m)
1
⊕ Jf (m)

1
. (5.21)

Then φ2 with isotropy order m− 3 belongs to the harmonic sequence as follows:

0
A′′Jm←− · · ·

A′′J3←− Jf (m)
3

A′′
φ2−1←− φ2−1

A′′
φ20←− φ2

0

A′
φ20−→ φ2

1

A′
φ21−→ f (m)

3

A′3−→ · · · A
′
m−→ 0, (5.22)

where φ2
0

= φ2, φ2
1

= Jf (m)
0
⊕ f (m)

2
and φ2−1 = Jφ2

1
.

Now we prove

Proposition 5.2 Let φ : S2 → HPn be a linearly full irreducible homogeneous harmonic
map of finite isotropy order r with constant curvature K. Then up to a symplectic isometry
of HPn, φ is one of the following:

(1) For some p = 1, · · · , n − 1, φ = UV
(2n+1)
p ⊕ UV (2n+1)

2n+1−p with some U ∈ G2n+2, where

K = 2
2p(2n+1−p)+2n+1 , r = 2n− 2p;

(2) n = 2t + 1 (t > 0) and for some p = 1, · · · , t − 1, φ =
[
(φp,0, · · · , φp,n)T

]
, for

q1 = 0, · · · , t, q2 = t+ 1, · · · , n, φp,q1, φp,q2 are given by

φp,q1 =

√(
n

q1

)∑
k

(−1)k
(

q1
p− k

)(
n− q1
k

)(
zq1+k−pzk + (−1)q1+pλzp−kzn−q1−kj

)
,

φp,q2 =
√

1− |λ|2
√(

n

q2

)
zq2−p

∑
k

(−1)k
(

q2
p− k

)(
n− q2
k

)
(zz)k,

where λ is a complex parameter satisfying 0 < |λ|2 < 1 and K = 2
2p(n−p)+n , r =

n− 1− 2p.

Proof: In Lemma 5.1 we add the condition of homogeneous. For any 0 ≤ k ≤ m−3
2 we

prove
φ2k+1 = Jf (m)

k
⊕ f (m)

k+1
, φ2k+2 = f (m)

k+1
⊕ Jf (m)

k+1
(5.23)

hold by induction on k. If k = 0 then

φ1 = Jf (m)
0
⊕ f (m)

1
, φ2 = f (m)

1
⊕ Jf (m)

1
(5.24)

hold by (5.19) and (5.21).
Assume now that the assertion is correct for 0, · · · , k− 1. Consider the case of k (k <

m−3
2 ). By induction hypotheses we have

φ2k = f (m)
k
⊕ Jf (m)

k
. (5.25)

Then φ2k with isotropy order m−1−2k (≥ 4) belongs to the harmonic sequence as follows:

0
A′′Jm←− · · ·

A′′
φ2k−1←− φ2k−1

A′′
φ2k0←− φ2k

0

A′
φ2k0−→ φ2k

1

A′
φ2k1−→ · · ·

A′
φ2k
k−1−→ φ2k

k

A′
φ2k
k−→ f (m)

2k+1

A′2k+1−→ · · · A
′
m−→ 0, (5.26)
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where φ2k
0

= φ2k, for α = 1, · · · , k, φ2k
α

= Jf
(m)
k−α ⊕ f

(m)
k+α and φ2k−α = Jφ2k

α
.

By (iii) of Lemma 5.1 and (5.26), there exists a local section V 2k
0 = xkf

(m)
k + Jf

(m)
k

such that V 2k
0 is an antiholomorphic subbundle of φ2k, and φ2k+1 is obtained from φ2k by

forward replacement of (V 2k
0 )⊥ ∩ φ2k = JV 2k

0 , i.e.

φ2k+1 = V 2k
0 ⊕ V 2k

1 , (5.27)

where V 2k
1 = π(φ2k)⊥(∂JV 2k

0 ), i.e. V 2k
1 = xkl

(m)
k−1Jf

(m)
k−1 + f

(m)
k+1, xk is a smooth function on

S2 expect at some isolated points, and here V 2k
0 denotes a line bundle consists of V 2k

0 .
Since V 2k

0 is an antiholomorphic subbundle of φ2k, then we get πφ2k(∂V 2k
0 ) ∈ V 2k

0 , which
implies the equation

∂xk + xk∂ log |f (m)
k |2 = 0 (5.28)

holds.
In fact φ2k+1 with isotropy order m − 2 − 2k (≥ 3) belongs to the harmonic sequence as
follows:

0
A′′Jm←− · · ·

A′′J2←− φ2k+1
−1

A′′
φ10←− φ2k+1

0

A′
φ10−→ φ2k+1

1

A′2−→ · · ·
A′
φ10−→ φ2k+1

k+1

A′
φ11−→ f (m)

2k+2

A′2−→ · · · A
′
m−→ 0,

(5.29)
where φ2k+1

0
= Jφ2k+1, φ2k+1

1
= φ2k+1, and for α = 1, · · · , k, φ2k+1

α+1
= W 2k

α ⊕ V 2k
α+1,

φ2k+1
−α = Jφ2k+1

α+1
with W 2k

α = (V 2k
α )⊥ ∩ φ2k

α
, V 2k

α+1 = π(φ2kα )⊥(∂V 2k
α ), but V 2k

k+1 = f
(m)
2k+1.

Since φ2k+1 is homogeneous, it has constant curvature, moreover all the harmonic maps
in the harmonic sequence (5.29) are homogeneous and have constant curvature. Next we
compute the geometric quantities of the corresponding harmonic maps to determine their
explicit expressions. We choose the following unit vectors in C2n+2

e1 =
JV 2k

1

|V 2k
1 |
, e2 =

JV 2k
0

|V 2k
0 |
, e3 =

V 2k
0

|V 2k
0 |
, e4 =

V 2k
1

|V 2k
1 |
,

e2α+3 = W 2k
α

|W 2k
α |
, e2α+4 =

V 2k
α+1

|V 2k
α+1|

, for α = 1, · · · , k,

e2k+5 =
f
(m)
2k+1

|f (m)
2k+1|

.

(5.30)

Set Wα = (e2α+1, e2α+2), for α = 0, 1, · · · , k + 1, and Wk+2 = e2k+5, W−1 = JW2.
Since for each α = 0, 1, · · · , k the harmonic map φ2k+1

α is irreducible and the isotropy
order ≥ 3, then Wα−1,Wα,Wα+1 are orthogonal and it is suitable to extend them into the
local unitary frame with respect to φ2k+1

α . By (2.6) we get

Ω2k+1
0 =

(
λ0 t0
0 µ0

)
, (5.31)

where λ0 = µ0 = − |xk|
2l

(m)
k−1|f

(m)
k |2+|f (m)

k+1|
2

|V 2k
0 ||V 2k

1 |
, t0 =

∂xk−xk∂ log |f
(m)
k |2

|xk|2+1
with |V 2k

0 |2 = (|xk|2 +

1)|f (m)
k |2 and |V 2k

1 |2 = |xk|2l
(m)
k−1|f

(m)
k |2 + |f (m)

k+1|
2.

A straightforward computation shows

|detΩ2k+1
0 |2dz2dz2 =

(
|xk|2l

(m)
k−1 + l

(m)
k

|xk|2 + 1

)2

dz2dz2, (5.32)
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L2k+1
1 = L2k+1

−1 , (5.33)

L2k+1
k+1 = l

(m)
2k+1. (5.34)

For each α = 0, 1, · · · , k the harmonic map φ2k+1
α is irreducible and homogeneous, so

|detΩα|2dz2dz2 6= 0 everywhere on S2. It follows from (2.15) that

δ2k+1
α−1 − 2δ2k+1

α + δ2k+1
α+1 = −4, (5.35)

where δ2k+1
α = 1

2π
√
−1

∫
S2 L

2k+1
α dz ∧ dz (α = 0, 1, · · · , k).

Since all the harmonic maps in the harmonic sequence (5.29) have constant curvature, then
we can choose a complex coordinate z on C = S2 \ {pt} such that for α = 0, 1, · · · , k + 1
the induced metric ds2

φ2k+1
α

= (L2k+1
α−1 + L2k+1

α )dzdz by φ2k+1
α is given by

ds2
φ2k+1
α

=
δ2k+1
α−1 + δ2k+1

α

(1 + zz)2
dzdz, (5.36)

and from ([3], §3) we get

l
(m)
i =

(i+ 1)(m− i)
(1 + zz)2

, δ
(m)
i = (i+ 1)(m− i), i = 0, · · · ,m− 1. (5.37)

It follows from (5.34) and (5.37) that

L2k+1
k+1 =

δ2k+1
k+1

(1 + zz)2
. (5.38)

Analyzing (5.35), (5.36) and (5.38) we find for α = −1, 0, 1, · · · , k,

L2k+1
α =

δ2k+1
α

(1 + zz)2
. (5.39)

Using (5.32),(5.33),(5.35),(5.37), (5.39)and (2.14), we obtain

∂∂ log

[
k(m− k + 1)|xk|2 + (k + 1)(m− k)

|xk|2 + 1

]
= 0. (5.40)

Since k(m−k+1)|xk|2+(k+1)(m−k)
|xk|2+1

is globally defined on C and has a positive constant limit

c1 as z →∞. Thus from (5.40)

k(m− k + 1)|xk|2 + (k + 1)(m− k)

|xk|2 + 1
= c1. (5.41)

It follows from k(m− k + 1) 6= (k + 1)(m− k) that

|xk|2 = c, (5.42)

where c is a constant.
In view of (5.28) we have ∂(xk|f

(m)
k |2) = 0, which implies

xk =
hk(z)

|f (m)
k |2

=
hk(z)

(1 + zz)m−2k
, (5.43)
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where hk(z) is a holomorphic function on C.
It follows from (5.42) and (5.43) that

|hk(z)|2 = c(1 + zz)2m−4k. (5.44)

Now we claim that c = 0. Otherwise if c 6= 0, then the holomorphic function hk(z) includes
the factor such as (1 + zz), which is impossible. So xk = 0 and

φ2k+1 = Jf (m)
k
⊕ f (m)

k+1
. (5.45)

By (iv) of Lemma 5.1, (5.29) and (5.45), there exists a local section V 2k+1 = yk+1f
(m)
k+1+

Jf
(m)
k such that β⊥∩φ2k+1 = V 2k+1 is an antiholomorphic subbundle of φ2k+1, and φ2k+2

is obtained from φ2k+1 by backward replacement of V 2k+1, i.e.

φ2k+2 = X2k+1 ⊕ JX2k+1, (5.46)

where X2k+1 = 1

|f (m)
k+1|2

f
(m)
k+1 −

yk+1

|f (m)
k |2

Jf
(m)
k and yk+1 is a smooth function on S2 expect at

some isolated points.
By the properties of the harmonic sequence (5.29) we know π(φ2k+1)⊥(∂V 2k+1) = JX2k+1,
which implies yk+1 = 0 by a straightforward computation. So

φ2k+2 = f (m)
k+1
⊕ Jf (m)

k+1
, (5.47)

and the isotropy order of φ2k+2 is m− 3− 2k (≥ 2).
Hence it verifies (5.23) by (5.45) and (5.47).
In fact in the harmonic sequence (5.1), φ0 only belongs to the case (1) or (3) of

Proposition 4.4 by Proposition 4.4. Thus the conclusion follows from (5.23).
2

At last we consider the case of strongly isotropic. Let φ : S2 → HPn be a linearly full
irreducible strongly isotropic harmonic map, then φ must belong the following harmonic
sequence:

0←−· · ·
A′′
φ0−α←− φ0−α

A′′
φ0−(α−1)←− · · ·

A′′
φ00←− φ0

0
= φ

A′
φ00−→ · · ·

A′
φ0α−1−→ φ0

α

A′
φ0α−→ φ0

α+1

A′
φ0α+1−→ · · ·−→0,

(5.48)
where for β = 1, · · · , φ0−β = Jφ0

β
and for β = 1, · · · , α, rank φ0

β
= 2; for β = α + 1, · · · ,

rank φ0
β

= 0 or 1.

We give a corresponding Lemma as follows.

Lemma 5.3 Let φ : S2 → HPn be a linearly full irreducible strongly isotropic harmonic
map, then from φ by 2α− 1 steps of proper forward or backward replacements, we get the
harmonic map φ2α−1 : S2 → G(2, 2n + 2), which is strongly isotropic and belongs to the
following harmonic sequence:

0
A′′Jm←− · · ·

A′′Js←− Jf (m)
s

A′′
φ2α−1
−1←− φ2α−1−1

A′′
φ2α−1
0←− φ2α−1

0

A′
φ2α−1
0−→ f (m)

s

A′s−→ · · ·
A′m−1−→ f (m)

m

A′m−→ 0,

(5.49)
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where φ2α−1
0

= φ2α−1, φ2α−1−1 = Jφ2α−1 with f
(m)
i ,Jf

(m)
i : S2 → CPm ⊆ CP 2n+1 and A′′Ji

denotes A′′
Jf

(m)
i

(i = 0, · · · ,m).

Furthermore, let β be the holomorphic line subbundle of φ2α−1 defined by KerA′φ2α−1. Let

φ2α be obtained from φ2α−1 by backward replacement of α = β⊥ ∩ φ2α−1. Then φ2α is
quaternionic. Moreover, φ2α is a quaternionic mixed pair or a quaternionic Frenet pair.

Proof: In the harmonic sequence (5.48), if rank φ0
α+1

= 1, let γ be the holomorphic line

subbundle of φ0
α

defined by KerA′φ0α
, then φ1α−1 obtained from φ0α by backward replacement

of γ⊥ ∩ φ0
α

belongs to the following harmonic sequences

0←−· · ·
A′′
φ1−α←− φ1−α

A′′
φ1−(α−1)←− · · ·

A′′
φ10←− φ1

0

A′
φ10−→ · · ·

A′
φ1α−2−→ φ1

α−1

A′
φ1α−1−→ φ1

α

A′
φ1α−→ · · ·−→0, (5.50)

where for β = 1, · · · , φ1−β = Jφ1
β−1 and for β = 0, · · · , α− 1, rank φ1

β
= 2; for β = α, · · · ,

rank φ1
β

= 1.

Reusing the above methods we will get the wanted harmonic sequence (5.49) from (5.50)
by 2α− 2 steps of backward replacements.

If rank φ0
α+1

= 0, let γ be any holomorphic line subbundle of φ0
0
, then φ0

0
= γ ⊕ Jγ,

using ([1], Lemma 4.1) we get a new harmonic sequence which is just (5.50). Similarly we
can get (5.49).

The rest follows from ([8], Lemma 3.3). 2

Let φ : S2 → HPn be an irreducible strongly isotropic homogeneous harmonic map,
then from Lemma 5.3 we know the corresponding harmonic map φ2α is also homogeneous
and strongly isotropic. Through Proposition 4.2 and 4.4 we get φ2α is given by

φ2α = f (2n+1)
n

⊕ f (2n+1)
n+1

, or φ2α = f (n)
0
⊕ Jf (n)

0
, (5.51)

where f
(2n+1)
n = UV

(2n+1)
n and f

(n)
0 = UV

(n)
0 with U ∈ G2n+2.

In the following we discuss the above two cases respectively to prove the following
Proposition.

Proposition 5.4 Let φ : S2 → HPn be a linearly full irreducible strongly isotropic homo-
geneous harmonic map with constant curvature K. Then up to a symplectic isometry of
HPn, for some p = 1, · · · ,

[
n
2

]
, φ is given by

φ = V (n)
p

with K = 2
2p(n−p)+n . Here

[
n
2

]
denotes the maximal integer which is not more than n

2 .

Proof: Case I. φ2α = f (2n+1)
n

⊕ f (2n+1)
n+1

. Obviously φ2α belongs to the harmonic sequence

(4.4). In (5.49) we choose a local section V = xnf
(2n+1)
n + f

(2n+1)
n+1 such that

φ2α−1 = V ⊕ f (2n+1)
n+2

, (5.52)
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where xn is a smooth function on S2 expect at some isolated points and xn 6= 0.
This time φ2α−1 belongs to the harmonic sequence as follows:

0
A′′m←− · · ·

A′′n−2←− f (2n+1)
n−2

A′′
φ2α−1
0←− φ2α−1

0

A′
φ2α−1
0−→ φ2α−1

1

A′
φ2α−1
1−→ f (2n+1)

n+3

A′n+3−→ · · ·
A′2n+1−→ 0, (5.53)

where φ2α−1
0

= Jφ2α−1 and φ2α−1
1

= φ2α−1.

Since A′φ2α−1(φ2α−1) = f (2n+1)
n+3

, then we get by (5.52)

π(φ2α−1)⊥(∂V ) = f (2n+1)
n+3

, (5.54)

which is equivalent to the equation

∂xn − x2n + xn∂ log l(2n+1)
n = 0, (5.55)

hold. From (5.53) we choose a local unitary frame with respect to φ2α−10 in C2n+2 as
follows: 

e1 = JV
|V | , e2 =

Jf
(2n+1)
n+2

|f (2n+1)
n+2 |

, e3 = V
|V | , e4 =

f
(2n+1)
n+2

|f (2n+1)
n+2 |

,

e2α−1 =
f
(2n+1)
n+α

|f (2n+1)
n+α |

, e2α =
f
(2n+1)
n+1−α

|f (2n+1)
n+1−α|

, for α = 3, · · · , n+ 1.
(5.56)

Set W0 = (e1, e2), W1 = (e3, e4), W2 = (e5), W−1 = (e6), then by (2.6) we get

Ω0 =

(
λ0 t0
µ0 0

)
, Ω1 =

(
0
|f (2n+1)
n+3 |
|f (2n+1)
n+2 |

)
, Ω−1 =

 0

(−1)n−1
|f (2n+1)
n−1 |
|f (2n+1)
n−2 |

 , (5.57)

where λ0 =
∂xn−l(2n+1)

n τn+1|f (2n+1)
n+1 |2

|V |2 , t0 = −xnl
(2n+1)
n+1 τn|f (2n+1)

n |2

|f (2n+1)
n+2 ||V |

, µ0 = −xnl
(2n+1)
n−1 τn+2|f (2n+1)

n+2 |
|V |

with |V |2 = (|xn|2 + l
(2n+1)
n )|f (2n+1)

n |2 and τi (i = n, n+ 1, n+ 2) is given by (4.3).
A straightforward computation shows

|detΩ0|2dz2dz2 =
|xn|4

(|xn|2 + l
(2n+1)
n )2

l
(2n+1)
n+1 l

(2n+1)
n−1 dz2dz2, (5.58)

L1 = L−1 = l
(2n+1)
n+2 . (5.59)

Since φ2α−10 is irreducible and homogeneous, so |detΩ0|2dz2dz2 6= 0 everywhere on S2. It
follows from (2.15) that

δ−1 − 2δ0 + δ1 = −4, (5.60)

where δi = 1
2π
√
−1

∫
S2 Lidz ∧ dz (i = −1, 0, 1).

Since all the harmonic maps in the harmonic sequence (5.53) have constant curvature,
then we can choose a complex coordinate z on C = S2 \ {pt} such that the induced metric
ds2
φ2α−1
0

= (L−1 + L0)dzdz by φ2α−10 is given by

ds2
φ2α−1
0

=
δ−1 + δ0
(1 + zz)2

dzdz, (5.61)
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and from ([3], §3) we get

l
(2n+1)
i =

(i+ 1)(2n+ 1− i)
(1 + zz)2

, δ
(2n+1)
i = (i+ 1)(2n+ 1− i), i = 0, · · · , 2n. (5.62)

It follows from (5.59) and (5.62) that

L−1 =
δ−1

(1 + zz)2
. (5.63)

Analyzing (5.61) and (5.63) we find for i = −1, 0, 1,

Li =
δi

(1 + zz)2
. (5.64)

Using (5.58),(5.59),(5.60),(5.62),(5.64) and (2.14), we obtain

∂∂ log

[
|xn|2

|xn|2 + l
(2n+1)
n

]
= 0. (5.65)

Since |xn|2

|xn|2+l(2n+1)
n

is globally defined on C and has a positive constant limit c1 as z →∞.

Thus from (5.65)
|xn|2

|xn|2 + l
(2n+1)
n

= c1. (5.66)

It follows from (5.62) and (5.66) that

xn =
c

1 + zz
, (5.67)

where c is a constant.
In view of (5.55) and (5.67) we have c = 0. Then xn = 0, which contradicts the fact that
xn 6= 0. So this case doesn’t occur.

Case II. φ2α = f (n)
0
⊕ Jf (n)

0
. It follows from the proof of Proposition 5.2 that for

k = 1, · · · , n− 1, φ2α−2k is given by

φ2α−2k = f (n)
k
⊕ Jf (n)

k
, (5.68)

where f
(n)
k = UV

(n)
k with U ∈ G2n+2 and the corresponding constant curvature K =

2
2k(n−k)+n .

Hence we get the conclusion.
2

By Proposition 4.2, 4.4, 5.2 and 5.4, we obtain a classification of homogeneous minimal
2-spheres in quaternionic projective space HPn as follows:

Theorem 5.5 Let φ : S2 → HPn be a linearly full homogeneous harmonic map of isotropy
order r with constant curvature K. Then up to a symplectic isometry of HPn, φ is one of
the following:
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(1) For some p = 0, 1, · · · , n, φ is given by

φ = UV (2n+1)
p ⊕ UV (2n+1)

2n+1−p, U ∈ G2n+2

with K = 2
2p(2n+1−p)+2n+1 and r = 2n− 2p

(
K = 2

n(n+2) , r = +∞ when p = n
)

;

(2) For some p = 0, 1, · · · ,
[
n
2

]
, φ is given by

φ = V (n)
p

with K = 2
2p(n−p)+n and r = +∞;

(3) n = 2t + 1 (t > 0) and for some p = 0, 1, · · · , t − 1, φ =
[
(φp,0, · · · , φp,n)T

]
, for

q1 = 0, · · · , t, q2 = t+ 1, · · · , n, φp,q1, φp,q2 are given by

φp,q1 =

√(
n

q1

)∑
k

(−1)k
(

q1
p− k

)(
n− q1
k

)(
zq1+k−pzk + (−1)q1+pλzp−kzn−q1−kj

)
,

φp,q2 =
√

1− |λ|2
√(

n

q2

)
zq2−p

∑
k

(−1)k
(

q2
p− k

)(
n− q2
k

)
(zz)k,

where λ is a complex parameter satisfying 0 < |λ|2 < 1 and K = 2
2p(n−p)+n , r =

n− 1− 2p.

Remark 5.6 (a) The case (1) is just the series of SU(2)-equivariant minimal 2-spheres
in HPn given by ([13], Proposition 7.1).

(b) The case (2) is contained in totally geodesic submanifold CPn ⊂ HPn. In this

case, since there exists a Sp(n) matrix which transforms V
(n)
p into V

(n)
n−p, then V

(n)
p and

V
(n)
n−p are congruent in HPn (but they are not congruent in CPn). So here we omit the

cases of p >
[
n
2

]
.

(c) The case (3) is not totally geodesic and exists only when n is odd. In this case, for
some p = t, · · · , 2t (= n− 1), φ is given by

φ = f (n)
p
⊕ Jf (n)

p
,

where f
(n)
p = UV

(n)
p and U is given by (4.26)-(4.29).

A straightforward computation shows that these φ are homogeneous but non-minimal in
HPn. So we obtain the conclusion that a homogeneous 2-sphere in HPn may be non-
minimal.

Theorem 5.5 gives all homogeneous minimal 2-spheres in HPn and shows that they
contain those given by ([13], Proposition 7.1.), even more than those in the case of n is
odd. Of course a natural problem that how to decide all homogeneous (non-minimal)
2-sphere in HPn deserves further consideration.
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