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Abstract. We study the maximal Salem degree of automorphisms of K3 surfaces via
elliptic fibrations. In particular, we establish a characterization of such maximum in
terms of elliptic fibrations with infinite automorphism groups. As an application, we show
that any supersingular K3 surface in odd characteristic has an automorphism the entropy
of which is the natural logarithm of a Salem number of degree 22.

1. Introduction

Let X be a K3 surface defined over an algebraically closed field k of characteristic p ≥ 0,
that is, X is a smooth projective surface defined over k such that H1(X,OX) = 0 and the
dualizing sheaf is trivial : ωX ' OX . We denote by NS(X) the Néron-Severi group of X.

The entropy of an automorphism f : X −→ X is the logarithm of the maximal abso-
lute value of the eigenvalues of the action f∗ on NS(X) induced by f . This definition is
consistent with the topological entropy of automorphisms of smooth complex projective
surfaces ([ES13]). One knows that the entropy of any automorphism of X is either 0 or the
logarithm of a Salem number, and we define Salem degree of f to be 0 or the degree of the
Salem number respectively (see Section 3). The maximal Salem degree of automorphisms of
X is closely related to both complexity and richness of such automorphisms. Thus, a good
understanding of such maximum is of interest. The main results of this note are Theorems
1.1, 1.2, and 1.3.

As in [Ni14], we say an elliptic fibration on X is an elliptic fibration with infinite auto-
morphism group if the set of all automorphisms of X which preserve this fibration is infinite
(see Section 2.2). By generalizing [EOY16], we establish a characterization of the maximal
Salem degree of automorphisms of K3 surfaces in terms of elliptic fibrations with infinite
automorphism groups:

Theorem 1.1. Let X be a K3 surface defined over an algebraically closed field of character-
istic p 6= 2, 3. Suppose rk(L∞(X)) ≥ 2, where the sublattice L∞(X) ⊂ NS(X) is defined to
be generated by the classes of fibers of all the elliptic fibrations with infinite automorphism
groups. Let d = rk(L∞(X)). Then

1) If d is even, max{Salem degree of f | f ∈ Aut(X)} = d;
2) If d is odd, max{Salem degree of f | f ∈ Aut(X)} = d− 1.

Using Theorem 1.1, we show the following comparison type theorem:

Theorem 1.2. Let X and Y be two K3 surfaces of the same Picard number defined over two
algebraically closed fields k and k′ (char(k), char(k′) 6= 2, 3). Suppose NS(X) is isometric
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to a sublattice of NS(Y ), and suppose Y has at least one elliptic fibration with infinite
automorphism group. Then

max{Salem degree of f | f ∈ Aut(X)} ≥ max{Salem degree of f | f ∈ Aut(Y )}.

Recall that a supersingular K3 surface is a K3 surface with Picard number 22, the
maximal possible value. In many senses, supersingular K3 surfaces are the most special K3
surfaces. As an interesting application of Theorem 1.2, we shall also prove the following:

Theorem 1.3. Let p be an odd prime. Let X be a supersingular K3 surface defined over an
algebraically closed field of characteristic p. Then there is an automorphism f ∈ Aut(X)
the entropy of which is the logarithm of a Salem number of degree 22.

In particular, those automorphisms are not geometrically liftable to characteristic 0 (see
[EO15], [EOY16]). Many people have studied supersingular K3 surface automorphisms of
Salem degree 22 in recent years ([BC16], [EO15], [EOY16], [Sh16], [Sch15], [Br15]). More
precisely, we summarize previously known results on such automorphisms as follows:

Theorem 1.4. Let p be a prime number. Let X be a supersingular K3 surface defined
over an algebraically closed field of characteristic p. Let σ(X) be the Artin invariant of X.
Then, in the following cases, X has an automorphism the entropy of which is the logarithm
of a Salem number of degree 22:

(1) σ(X) = 1 and p = 2 ([BC16]);
(2) σ(X) = 1 and p = 3 ([EO15]);
(3) σ(X) = 1 and p = 11 or > 13 ([EOY16]);
(4) σ(X) = 1 and p ∈ {5, 7, 13}, or 2 ≤ σ(X) ≤ 9 and 3 ≤ p ≤ 7919, or σ(X) = 10

and 3 ≤ p ≤ 17389 ([Sh16]).

It is known that for any supersingular K3 surface X in odd characteristic, the Néron-
Severi group NS(X) is isometric to a sublattice of the Néron-Severi group of a supersingular
K3 surface of Artin invariant one in the same characteristic ([RS78], cf. [Li15]). Thus, by
combining Theorem 1.2 and Theorem 1.4, we can prove Theorem 1.3. The author was
recently informed that Simon Brandhorst found an alternative proof of Theorems 1.2 and
1.3 ([Br16]), inspired by the first version of this paper (see also [BG16] for a relevant work).

In Section 6, following [Ni14], we introduce the notion of the exceptional sublattice
E(NS(X)) ⊂ NS(X). For an elliptic K3 surface X, the exceptional sublattice, the set of all
the elliptic fibrations with infinitie automorphism groups and the maximal Salem degree of
automorphisms of X are closely related to each other (Theorems 1.1, 6.1, 6.2). It is hoped
that the exploration of such relationships in this note will find interesting applications in
future study of K3 surfaces and other related topics.

Acknowledgement. The author would like to thank Professor Keiji Oguiso for valuable
discussions and comments.

2. K3 surfaces and elliptic fibrations

In this paper, for the reader’s convenience, we give definitions/explanations of the nota-
tions needed. In this section, we fix notations on K3 surfaces and elliptic fibrations.
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2.1. K3 surfaces. Let X be a K3 surface defined over an algebraically closed field k of
characteristic p ≥ 0. The Néron-Severi group NS(X) of X is a free abelian group of finite
rank which is denoted by ρ(X) and is called the Picard number of X. In characteristic 0,
ρ(X) is at most 20, but, in positive characteristic, the maximal possible value of ρ(X) is 22.
We denote the intersection form on NS(X) by (∗, ∗∗). Note that (NS(X), (∗, ∗∗)) is an even
hyperbolic lattice (by definition, a lattice is a free abelian group of finite rank with a Z-
valued symmetric bilinear form). Since the intersection form (∗, ∗∗) is non-degenerate, the
dual NS(X)∗ := HomZ(NS(X),Z) regarded as a subgroup of NS(X) ⊗ Q contains NS(X)
through this intersection form. The discriminant group of X is defined to be the quotient
NS(X)∗/NS(X).

According to [Ar74], the discriminant group NS(X)∗/NS(X) of a supersingular K3 sur-

face X is, as an abelian group, isomorphic to (Z/p)2σ(X), where σ(X) is an integer such
that 1 ≤ σ(X) ≤ 10. The integer σ(X) is called the Artin invariant of X. In each positive
characteristic p > 0, there is, up to isomorphism, a unique Artin invariant 1 supersingular
K3 surface X(p) ([Ogu79], [Shi75]).

2.2. Elliptic fibrations on K3 surfaces. Let X be a K3 surface defined over an al-
gebraically closed field k of characteristic p 6= 2, 3. According to Piatetsky-Shapiro and
Shafarevich [PS71], elliptic fibrations on X are in one-to-one correspondence with primitive
isotropic nef elements e ∈ NS(X). That is, e 6= 0, e2 = 0, e/n ∈ NS(X) only for integers
n = ±1, e · D ≥ 0 for any effective divisor D on X. For such e ∈ NS(X), the complete
linear system |e| is one dimensional without base points, and it gives an elliptic fbration
|e| : X −→ P1, that is, the general fiber is a curve of genus 1.

For any c ∈ NS(X), we set

Aut(X)c := {f ∈ Aut(X)|f∗(c) = c}.
We introduce some notations related to elliptic fibrations on X:

E(X) := {e ∈ NS(X)|e is primitive, isotropic, and nef };
E∞(X) := {e ∈ E(X)|Aut(X)e is an infinite group}, and we say an elliptic fibration on

X is an elliptic fibration with infinite automorphism group if the corresponding class of this
fibration is in E∞(X);

The sublattice L∞(X) ⊂ NS(X) is generated by all the elements in E∞(X).

For any nonzero isotropic element c ∈ NS(X), the sublattice (c⊥)(2) ⊂ c⊥ is defined to
be generated by c and by all elements with square (−2) in c⊥, where c⊥ is the orthogonal
complement to c in NS(X). The following lemma gives a test of an elliptic fibration with
infinite automorphism group:

Lemma 2.1. Let e ∈ E(X). Then e ∈ E∞(X) if and only if rk(e⊥)− rk((e⊥)(2)) > 0.

Proof. We use Amp(X) ⊂ NS(X)⊗ R to denote the ample cone of X. Let

A(NS(X)) := {f ∈ O(NS(X))|f(Amp(X)) = Amp(X)}.
Let A(NS(X))e ⊂ A(NS(X)) be the stabilizer subgroup of e. By [LM11, Theorem 6.1],
the natural map Aut(X) −→ A(NS(X)) has finite kernel and cokerel. Then Aut(X)e and
A(NS(X))e are isomorphic up to finite groups. By [Ni83, Corollary 1.5.4] (notice that the
proof of [Ni83, Corollary 1.5.4] works for even hyperbolic lattices, in particular, NS(X), and
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is valid in any characteristic), A(NS(X))e is infinite if and only if rk(e⊥)− rk((e⊥)(2)) > 0.

Thus, Aut(X)e is infinite if and only if rk(e⊥)− rk((e⊥)(2)) > 0.
�

Let φ : Aut(X) −→ O(NS(X)) be the natural map which sends any f ∈ Aut(X) to
the induced isometry f∗ of NS(X). By definition of L∞(X), it is clear that L∞(X) is an
Aut(X)-stable sublattice of NS(X) (i.e., for all f ∈ Aut(X), f∗(L∞(X)) = L∞(X)). Thus
φ naturally induces another map

ψ : Aut(X) −→ O(L∞(X))×O(L∞(X)⊥)

such that, for any f ∈ Aut(X), ψ(f) = (f∗|L∞(X), f
∗|L∞(X)⊥). Let

π : O(L∞(X))×O(L∞(X)⊥) −→ O(L∞(X))

be the natural projection map.

Lemma 2.2. Suppose X has at least two different elliptic fibrations with infinite automor-
phism groups, i.e., rk(L∞(X)) ≥ 2. Then both Ker(ψ) and Ker(π ◦ ψ) are finite groups.

Proof. Let d = rk(L∞(X)). Since d ≥ 2, it follows that L∞(X) is a hyperbolic lattice of
signature (1, d − 1). Then the orthogonal complement L∞(X)⊥ ⊂ NS(X) of L∞(X) is a
negative definite lattice of rank ρ(X)−d. By [LM11, Theorem 6.1], Ker(φ) is a finite group.
Note that L∞(X)⊕L∞(X)⊥ is a sublattice of NS(X) of finite index. Thus, Ker(ψ) is equal
to Ker(φ) and hence is also a finite group. The group O(L∞(X)⊥) is finite because L∞(X)⊥

is negative definite. Since the quotient Ker(π ◦ ψ)/Ker(ψ) is isomorphic to a subgroup of
O(L∞(X)⊥), it follows that Ker(π ◦ψ)/Ker(ψ) is finite. Then Ker(π ◦ψ) is also finite. �

3. Salem numbers and entropy

Let (L, (∗, ∗∗)) be a hyperbolic lattice, i.e., a pair consisting of a free abelian group of
rank 1 + t and a Z-valued symmetric bilinear form ( , ) on L of signature (1, t) with t > 0.
For any ring K, we use LK to denote the scalar extension of L to K. We fix some notations
(they are the same as in [EOY16], but, for the reader’s convenience, we repeat here):

O(L) := the orthogonal group of the lattice L;
SO(L) := {g ∈ O(L)|det(g) = 1};
P := {x ∈ LR| (x2) > 0}, notice that P consists of two connected components, say ±C;
O+(LR) := {g ∈ O(L)(R)| g(C) = C};
O+(L) := O(L)(Z) ∩O+(LR);
SO+(L) := O(L)(Z) ∩O+(LR) ∩ SO(L)(R).

Definition 3.1. A Salem number of degree 2d is a real algebraic integer a > 1 whose Galois
conjugates consist of 1/a and 2d− 2 complex numbers of modulus 1. A Salem polynomial
is the minimal polynomial of a Salem number.

Salem numbers and isometries of hyperbolic lattices are closely related:

Proposition 3.2 (See [Mc02], [Og10]). Let f ∈ O+(L). We denote the characteristic
polynomial of f by p(x). Then one of the following two statements is true:

(1) p(x) is the product of cyclotomic polynomials;
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(2) p(x) = c(x)s(x), where c(x) is the product of cyclotomic polynomials and s(x) is a
Salem polynomial.

Definition 3.3. Let f ∈ O+(L). The entropy h(f) of f is defined by

h(f) = log(r(f)) ≥ 0 ,

where r(f) is the spectral radius of f (i.e., the maximum of the absolute values of the
complex eigenvalues of f acting on L).

The next definition can be viewed as a generalization of the topological entropy of auto-
morphisms of smooth complex projective surfaces ([ES13]):

Definition 3.4. Let S be a smooth projective surface, and let f ∈ Aut(S). The entropy
h(f) of f is defined by

h(f) = log r(f∗|NS(X)) ,

where f∗ is the action on NS(X) induced by f .

Definition 3.5. Let X be a K3 surface, and let f ∈ Aut(X). The Salem degree of f is
defined by

Salem degree of f =

{
0 if the entropy h(f) is 0,

d if the entropy h(f) is log of a Salem number of degree d.

Remark 3.6. In order to study the maximal Salem degree of automorphisms of any K3
surface X, we will take L to be the sublattice L∞(X) of the Néron-Severi group NS(X)
and C to be the connected component of P the closure of which contains all elements in
E∞(X).

4. A few observations from group theory

Theorem 4.1 and Theorem 4.4 are generalizations of [EOY16, Theorem 4.1] and [EOY16,
Theorem 4.6]. Proofs are similar. Here, for the reader’s convenience, we give the proof of
Theorem 4.1 ii) and Theorem 4.4 below.

Theorem 4.1. Let L be a hyperbolic lattice of rank d ≥ 2 and G ⊂ SO+(L) be a subgroup.
Assume that G has no non-trivial G-stable R-linear subspace of LR. Then

i) If d is even, then there is an element g ∈ G such that the characteristic polynomial
of g is a Salem polynomial of degree d;

ii) If d is odd, then there is an element g ∈ G such that the characteristic polynomial
of g is (t− 1)s(t), where s(t) is a Salem polynomial of degree d− 1.

The case i) is just [EOY16, Theorem 4.1]. The proof of the case ii) is completely similar
to that of the case i), and we will sketch it below:

Proof. We assume d is odd. Let Pd ⊂ Z[t] be the set of monic polynomials of degree d.
Then Pd is identified with the affine variety Ad defined over Z. The map

char : SO(L)→ Pd , h 7→ Φh(t) := det(tId − h)

is a morphism of affine varieties. Let u1(t) := t − 1, u2(t) := t + 1, · · · , uN (t) be the
cyclotomic polynomials in Z[t] of degree ≤ d, where N is the cardinarity of the cyclotomic
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polynomials of degree ≤ d. The subsets P1 := {p(t) ∈ Pd(C) | u21(t)|p(t)} and Pi := {p(t) ∈
Pd(C) | ui(t)|p(t)} for i ≥ 2 define proper closed algebraic subvarieties of Pd ⊗Z Q, thus so
is their finite union Qd := ∪Ni=1Pi ⊂ Pd ⊗Z Q. (Notice that the sets Pi, i ≥ 2, defined here
is the same as those defined in [EOY16]. However, the set P1 here is slightly different from
that in [EOY16]. This is because, when d is odd, for any g ∈ SO(L)(Z), 1 is an eigenvalue
of g, and hence t− 1 divides the characteristic polynomial of g.)

Let g ∈ G. Its characteristic polynomial Φg(t) ∈ Z[t] is monic and of degree d. By
Proposition 3.2, Φg(t) is the product of cyclotomic polynomials and of at most one Salem
polynomial counted with multiplicities. Thus, Φg(t) is divided by a Salem polynomial of
degree d− 1 if and only if Φg(t) ∈ Pd(C) \Qd. The following lemma completes the proof:

Lemma 4.2. There is an element g ∈ G such that Φg(t) ∈ Pd(C) \Qd.

Proof. See the proof of [EOY16, Lemma 4.5]. �

This completes the proof of Theorem 4.1.
�

Remark 4.3. In order to prove Theorem 1.3, we essentially only need the case i) of Theorem
4.1. However, we need both two cases of Theorem 4.1 to prove Theorem 1.1 which can apply
to other K3 surfaces besides supersingular K3 surfaces.

Theorem 4.4. Let L be a hyperbolic lattice of signature (1, r+ 1) with r ≥ 0 and let e ∈ L
be a primitive element such that (e, e) = 0. Let g ∈ SO(L)(Z) be such that ord(g) =∞ and
g(e) = e. Suppose V is a g-stable R-linear subspace of LR. Then either V ⊂ e⊥, or e ∈ V
(or both).

Proof. Choose a Q-bases of LQ:

〈e, w1, · · · , wd−2, u〉,

where wi ∈ e⊥, and (u, e) = 1.
By [Og09, proof of Lemma 3.6] (see also [EOY16, Lemma 4.7]), replacing g by a suitable

power gN (N > 0) if necessary, we may assume

g =

 1 at c
0 Ir b
0 0t 1

 ,

with respect to the Q-bases chosen above. Here 1, 0 ∈ Q are the unit and the zero, c is in
Q, Ir is the r × r identity matrix, 0 ∈ Qr is the zero vector, b ∈ Qr is a column vector, at

is the transpose of a column vector a ∈ Qr, and simiarly for 0t.
We claim that b 6= 0. Suppose otherwise. Then g(u) = u+ ce, it follows that

(u, u) = (g(u), g(u)) = (u+ ce, u+ ce) = (u, u) + 2c(u, e) = (u, u) + 2c,

which implies c = 0. Then for all 1 ≤ i ≤ r

(u,wi) = (g(u), g(wi)) = (u,wi + aie) = (u,wi) + ai, where ai = at · ei.

Therefore, ai = 0 for all i. So g = Id, a contradiction to ord(g) =∞. Therefore, b 6= 0.
Without loss of generality, from now on, we may assume b = er.
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We claim that ar 6= 0. Suppose otherwise. Then for all k ≥ 1,

gk(u) = u+ kwr + kce.

Since gk preserves intersection form, it follows that

(u, u) = (gk(u), gk(u)) = (u, u) + k2(wr, wr) + 2k(u,wr) + 2kc

whence
(wr, wr)k

2 + (2(u,wr) + 2c)k = 0

for all positive integers k, a contradiction to (wr, wr) < 0. Therefore, ar 6= 0.
If V ⊂ e⊥, then we are done.
From now on, we assume V is not contained in e⊥. Then there exists 0 6= v ∈ V of the

following form

v = u+ αe+
r∑
i=1

βiwi,

where α, βi ∈ R. Then g(v) = u + wr + (c + α)e +
∑r

i=1 βi(wi + aie) whence g(v) − v =
wr + ce+

∑r
i=1 βiaie. Then g(g(v)−v)− (g(v)−v) = are ∈ V since V is g-stable. It follows

that e ∈ V by ar 6= 0. �

5. Proof of Theorems 1.1, 1.2 and 1.3

We need the following result to prove Theorem 1.1:

Theorem 5.1. Let X be a K3 surface defined over an algebraically closed field k of char-
acteristic p 6= 2, 3. Suppose rk(L∞(X)) ≥ 2, where the sublattice L∞(X) ⊂ NS(X) is
generated by all the elliptic fibrations with infinite automorphism groups. To simplify the
notation, we set L := L∞(X). Then there exists a subgroup G ⊂ Aut(X) such that

1) G′ ⊂ SO+(L), where G′ := (π ◦ ψ)(G) (see Section 2.2 for definition of π and ψ),
and

2) Any G′-stable R-linear subspace of LR is either {0} or LR.

Proof. In order to construct G, we need the following:

Lemma 5.2. For any e ∈ E∞(X), there exists ge ∈ Aut(X)e such that (π ◦ψ)(ge) ∈ SO(L)
and ord((π ◦ ψ)(ge)) =∞.

Proof. By definition of E∞(X), Aut(X)e is an infinite subgroup of Aut(X). Since, by
Lemma 2.2, Ker(π◦ψ)∩Aut(X)e is finite, the image (π◦ψ)(Aut(X)e) is an infinite subgroup
of O(L). Since e ∈ L, by [Og07, Proposition 2.9], every element of (π◦ψ)(Aut(X)e)∩SO(L)
is of null-entropy. Thus, there exists h ∈ (π◦ψ)(Aut(X)e)∩SO(L) such that ord(h) =∞ by
[Og07, Proposition 2.2 (3)] (notice that the proof of [Og07, Proposition 2.2 (3)] is based on
even hyperbolic lattices, and is valid in any characteristic). Choose any ge ∈ (π ◦ ψ)−1(h).
Then order ord(ge) =∞ and (π ◦ ψ)(ge) ∈ SO(L) .

�

Now, for any e ∈ E∞(X), by Lemma 5.2, we can choose some ge ∈ Aut(X)e such
that (π ◦ ψ)(ge) ∈ SO(L) and ord((π ◦ ψ)(ge)) =∞. We set G := the subgroup of Aut(X)
generated by {ge|e ∈ E∞(X)}. Let G′ := (π◦ψ)(G). Then G′ ⊂ SO(L). Since G′(E∞(X)) =
E∞(X), it follows that G′ ⊂ SO+(L), which is the statement 1).
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Next we prove the statement 2). Let V be a non-zero G′-stable R-linear subspace of LR.
We may assume V 6= LR (otherwise, we are done). Then there exists e0 ∈ E∞(X) such
that e0 /∈ V . Since V is G′-stable, it follows that V is also (π ◦ ψ)(ge0)-stable. Then by
Theorem 4.4, we have that V ⊂ e⊥0 . For any e′ ∈ E∞(X) such that e′ 6= e0, by Hodge-index
Theorem, we have that (e0, e

′) > 0, which implies e′ /∈ V . Then by Theorem 4.4 again,
V ⊂ e′⊥. Therefore, V ⊂ ∩e∈E∞(X)e

⊥. But R〈E∞(X)〉 = LR and L is a non-degenerate
lattice. Thus V = 0. This completes the proof of Theorem 5.1.

�

Proof of Theorem 1.1. We prove the case 1) and the proof for the case 2) is similar.
Suppose d is even. Let L = L∞(X). Since d ≥ 2, it follows that the orthogonal

complement L⊥ of L in NS(X) is negative definite. Note that, for any f ∈ Aut(X), we
have f∗(L) = L and f∗(L⊥) = L⊥. So the Salem degree of any automorphism of X is an
even integer ≤ d. Thus, max{Salem degree of f | f ∈ Aut(X)} ≤ d. On the other hand, by
Theorem 4.1 and Theorem 5.1, X has an automorphism the entropy of which is a Salem
number of degree d, which implies max{Salem degree of f | f ∈ Aut(X)} ≥ d. Therefore,
max{Salem degree of f | f ∈ Aut(X)} = d. �

Proof of Theorem 1.2. If Y has exactly one elliptic fibration with infinite automorphism
group (i.e., rk(L∞(Y )) = 1), then every automorphism of Y must preserve this elliptic
fibration. Then, by [Og07, Proposition 2.9] (again the proof of [Og07, Proposition 2.9] is
valid in any characteristic), the entropy of any automorphism of Y must be zero, which
implies max{Salem degree of f | f ∈ Aut(Y )} = 0 (thus the conclusion of Theorem 1.2 is
true).

Therefore, we may assume Y has at least two elliptic fibrations with infinite automor-
phism groups. Then by Theorem 1.1, it suffices to prove rk(L∞(X)) ≥ rk(L∞(Y )).

Fix an isometric embedding ι : NS(X) ↪→ NS(Y ). Let d = rk(L∞(Y )). Then we can
choose e1, ..., ed ∈ E∞(Y ) such that 〈e1, ..., ed〉 forms a Q-basis of L∞(Y )⊗Q.

Let hY ∈ Amp(Y ) ∩ NS(Y ) be an ample class. For any c ∈ NS(Y ) of square −2, by
Riemann-Roch Theorem, either c or −c is effective. Thus, the intersection pairing between
hY and any class in NS(Y ) of square −2 is not zero. Since ι(NS(X)) is a sublattice of NS(Y )
of finite index, there exists a sufficiently large integer N > 0, such that Ne1, ..., Ned, NhY ∈
ι(NS(X)). Note that the intersection pairing between NhY and any class in ι(NS(X)) of
square −2 is not zero. Since the ample cone Amp(X) of X is a standard fundamental
domain for the Weyl group W (NS(X)), it follows that there exists α ∈ W (NS(X)) such
that α(ι−1(NhY )) ∈ Amp(X) ∩NS(X). Then we claim the following:

Lemma 5.3. α(ι−1(Ne1)), ..., α(ι−1(Ned)) ∈ Nef(X) ∩ NS(X), where Nef(X) is the nef
cone of X.

Proof. Let C ⊂ X be a smooth rational curve. Then (α(ι−1(NhY )), [C]) > 0 by ampleness
of α(ι−1(NhY )), where [C] denotes the class of C in NS(X). Then (NhY , ι(α

−1([C]))) > 0.
Since ι(α−1([C])) of square −2, by Riemann-Roch Theorem, ι(α−1([C])) is an effective
class in NS(Y ). Then (Nei, ι(α

−1([C]))) ≥ 0, for all i. Thus, (α(ι−1(Nei)), [C]) ≥ 0. So
α(ι−1(Nei)) is a nef class in NS(X).

�
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For any 1 ≤ i ≤ d, let e′i be the primitive class in NS(X) such that R>0e′i = R>0α(ι−1(Nei)).
Then e′i ∈ E(X) according to Piatetsky-Shapiro and Shafarevich [PS71].

Lemma 5.4. e′i ∈ E∞(X) for all i.

Proof. Since ei ∈ E∞(Y ), by Lemma 2.1, rk(e⊥i ) − rk((e⊥i )(2)) > 0. Since rk(NS(X)) =
rk(NS(Y)), it follows that rk(e⊥i ) = rk(e′⊥i ). Since NS(X) is isometric to a sublattice of

NS(Y ), it follows that (e′⊥i )(2) is isometric to a sublattice of (e⊥i )(2). Then rk((e′⊥i )(2)) ≤
rk((e⊥i )(2)). Thus, rk(e′⊥i ) − rk((e′⊥i )(2)) ≥ rk(e⊥i ) − rk((e⊥i )(2)) > 0. Then, again by
Lemma 2.1, e′i ∈ E∞(X). �

Since dimQ(Q〈e1, ..., ed〉) = d, it follows that dimQ(Q〈e′1, ..., e′d〉) = d. Thus, rk(L∞(X)) ≥
d = rk(L∞(Y )). Then by Theorem 1.1,

max{Salem degree of f | f ∈ Aut(X)} ≥ max{Salem degree of f | f ∈ Aut(Y )}.

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. First we consider the cases p = 11 or > 13. It is known that the
supersingular K3 surface X(p) of Artin invariant one is isomorphic to Km(E×FpE) for any
supersingular elliptic curve E over Fp ([Ogu79], [Shi75]). The two natural projections from
E×Fp E to the two factors induce two elliptic fibrations on X(p) with Mordell-Weil rank 4,
by the formula of Mordell-Weil rank [Shi90]. Hence rk(L∞(X(p))) ≥ 2. By Theorem 1.4,
max{Salem degree of f | f ∈ Aut(X(p))} = 22. By [RS78], the Artin invariant σ(X) of
X determines NS(X) up to isometry. Moreover, by explicit classification of the lattices
NS(X) and NS(X(p)) in [RS78], NS(X) is isometric to a sublattice of NS(X(p)) (cf. [Li15,
proof of Proposition 3.9]). Then by Theorem 1.2, max{Salem degree of f | f ∈ Aut(X)} ≥
max{Salem degree of f | f ∈ Aut(X(p))} = 22. Then the maximal Salem degree of auto-
morphisms of X is 22 since the Picard number of X is 22. Thus, when p = 11 or > 13,
there exists f ∈ Aut(X) the entropy of which is the logarithm of a Salem number of degree
22. The case p = 3 is proved by [EO15] and [Sh16]. The cases p = 5, 7, 13 are proved by
[Sh16] (the case p = 7 is also covered by [Br15]). This completes the proof of Theorem 1.3.

�

6. The exceptional sublattice, elliptic fibrations and Salem numbers

In this section, we discuss some relationships among the exceptional sublattice, elliptic
fibration and the maximal Salem degree of automorphisms of K3 surfaces.

Following [Ni14], for a K3 surface X, we define the exceptional sublattice of the Néron-
Severi group NS(X) by

E(NS(X)) := {x ∈ NS(X)| the orbit Aut(X)(x) of x in NS(X) is finite}.

Clearly, E(NS(X)) is a primitive sublattice of NS(X). For a sublattice F ⊂ NS(X) we
denote by Fpr the primitive sublattice Fpr = NS(X) ∩ (F ⊗Q) ⊂ NS(X)⊗Q generated by
F .

Theorem 6.1. ([Ni14, Theorem 4.1]) Let X be a K3 surface defined over an algebraically
closed field k of characteristic p 6= 2, 3. Suppose X has at least two elliptic fibrations with
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infinite automorphism groups. Then

E(NS(X)) = ∩
e∈E∞(X)

(e⊥)(2)pr = L∞(X)⊥.

Proof. Since X has at least two elliptic fibrations with infinite automorphism groups, it fol-
lows that the sublattice L∞(X)⊥ ⊂ NS(X) is negative definite. Then L∞(X)⊥ ⊂ E(NS(X))
since L∞(X)⊥ is Aut(X)-stable and O(L∞(X)⊥) is a finite group. On the other hand,

by [Ni14, Theorem 4.1], E(NS(X)) = ∩
e∈E∞(X)

(e⊥)
(2)
pr ⊂ L∞(X)⊥. Thus, E(NS(X)) =

∩
e∈E∞(X)

(e⊥)
(2)
pr = L∞(X)⊥. �

For a K3 surface with even Picard number, we collect various methods to check whether
it has an automorphism of maximal possible Salem degree:

Theorem 6.2. Let X be a K3 surface defined over an algebraically closed field k of char-
acteristic p 6= 2, 3. Suppose X has even Picard number ρ(X) ≥ 4, and suppose X has at
least one elliptic fibration with infinite automorphism group. Then the following statements
are equivalent to each other:

1) Any Aut(X)-stable R-linear subspace of NS(X)⊗ R is either {0} or NS(X)⊗ R;
2) Any Aut(X)-stable Q-linear subspace of NS(X)⊗Q is either {0} or NS(X)⊗Q;
3) Q〈E∞(X)〉 = NS(X)⊗Q;
4) There exists f ∈ Aut(X) such that the Salem degree of f is ρ(X);

5) ∩
e∈E∞(X)

(e⊥)
(2)
pr = {0};

6) E(NS(X)) = {0}.

Proof. 1) =⇒ 2) =⇒ 3): Trivial.
3) =⇒ 1): By Theorem 5.1.
3) =⇒ 4): By Theorem 1.1.
4) =⇒ 3): Suppose X has an automorphism f ∈ Aut(X) whose entropy is the logarithm

of a Salem number of degree ρ(X). Then NS(X)⊗Q has no non-trivial f -stable Q-subspace
(cf. [Mc02, Proof of Theorem 3.4]). On the other hand, Q〈E∞(X)〉 is clearly f -stable.
Therefore, Q〈E∞(X)〉 = NS(X)⊗Q.

5) ⇐⇒ 6): By Theorem 6.1.
2) =⇒ 6): By definition, E(NS(X)) ⊗ Q is clearly an Aut(X)-stable Q-linear subspace

of NS(X) ⊗ Q. Then either E(NS(X)) = {0} or NS(X). If E(NS(X)) = NS(X), then
Aut(X) must be a finite group, a contradiction to the assumption E∞(X) 6= ∅. Therefore,
E(NS(X)) = {0}.

6) =⇒ 3): Since E(NS(X)) = {0}, it follows that E∞(X) is an infinite set. Then the
sublattice L∞(X)⊥ ⊂ NS(X) is negative definite and O(L∞(X)⊥) is a finite group. Obvi-
ously, L∞(X)⊥ is Aut(X)-stable. Then L∞(X)⊥ ⊂ E(NS(X)) = {0}. Thus, Q〈E∞(X)〉 =
NS(X)⊗Q.

�

Remark 6.3. i) By Theroems 1.3 and 6.2, E(NS(X)) = {0} for any supersingular
K3 surface X in odd characteristic.
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ii) Let X be the Kummer surface of the Jacobian of a very general curve C of genus
2 over an algebraically closed field of characteristic 0. Then X is a K3 surface of
Picard number 17. Elliptic fibrations with a section on X are completely classified
in [Ku14]. Using elliptic fibrations explicitly given in the table on [Ku14, p. 609-
610], one can easily show that rk(L∞(X)) = 17. Thus, by Theorem 1.1, X has an
automorphism the entropy of which is the logarithm of a Salem number of degree
16.

iii) Let X be the Kummer surface Km(E ×F ), where complex elliptic curves E and F
are not isogenous. Then X is a complex K3 surface with Picard number 18. Thanks
to complete classification of elliptic fibrations with a section on X ([Og89]), one can
show that rk(L∞(X)) ≥ 10. Thus, by Theorem 1.1, max{Salem degree of f | f ∈
Aut(X)} ≥ 10. (See [Og16] for a higher dimensional application.) On the other
hand, the exceptional lattice E(NS(X)) is negative definite and, by [Og89, Lemma 1.4],
contains a sublattice of rank 8. Then the Salem degree of any automorphism of X
must be ≤ 18 − 8 = 10. Therefore, we conclude that max{Salem degree of f | f ∈
Aut(X)} = 10. Note that NS(X) is a 2-elementary lattice (for similar examples of
K3 surfaces Y with E(NS(Y )) 6= {0}, see [Ni99, Section 3]).

Remark 6.4. Let SEK3′ be the set of all even hyperbolic lattices S of rk(S) ≥ 3 with
the following property: There exists a K3 surface X defined over an algebraically closed
field of characteristic 6= 2, 3 such that S is isometric to NS(X), and E(NS(X)) 6= {0}. By
[Ni14, Theorem 4.4] and [LM11, Theorem 6.1], the set SEK3′ is finite (note that SEK3′

defined here is a subset of the set SEK3 defined by [Ni14, Definition 4.5]). A consequence
of finiteness of SEK3′ is the following: There are only finitely many singular K3 surfaces X
(i.e., complex K3 surfaces with Picard number 20) such that max{Salem degree of f | f ∈
Aut(X)} ≤ 18. It would be interesting to find the finite set of Néron-Severi groups SEK3′

(or even SEK3) of K3 surfaces.
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