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Abstract

Let p(n) denote the number of overpartitions of n. It was con-
jectured by Hirschhorn and Sellers that p(40n + 35) = 0 (mod 40)
for n > 0. Employing 2-dissection formulas of theta functions due
to Ramanujan, and Hirschhorn and Sellers, we obtain a generating
function for p(40n + 35) modulo 5. Using the (p, k)-parametrization
of theta functions given by Alaca, Alaca and Williams, we prove
the congruence p(40n + 35) = 0 (mod 5) for n > 0. Combining this
congruence and the congruence p(4n + 3) = 0 (mod 8) for n > 0
obtained by Hirschhorn and Sellers, and Fortin, Jacob and Mathieu,
we confirm the conjecture of Hirschhorn and Sellers.

1 Introduction

The objective of this paper is to give a proof of a conjecture of Hirschhorn
and Sellers on the number of overpartitons. We shall use the technique of

dissections of theta functions.
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Let us begin with some notation and terminology on g-series and parti-
tions. We adopt the common notation

o)

(1.1) (a:q)oo = [ J(1 = ag™),
n=0
where |g| < 1, and we write
(1.2) (a1, a2, n; Qoo = (a1 @)oo (@25 Qoo =+ (An; @)oo

Recall that the Ramanujan theta function f(a,b) is defined by

[e.9]

(13) f(a,b): Z an(n+1)/2bn(n—1)/27

n=—oo

where |ab| < 1. The Jacobi triple product identity can be restated as
(14) f(CL, b) = (-(l, _b7 aba ab)OO

Here is a special case of (1.3), namely,

o0

(15)  f=)=fl=¢,—¢*) = Y (=1)"¢"®" I = (g;0)e

n=—oo

For any positive integer n, we use f, to denote f(—q"), that is,

(1.6) Jo = H 1— g™

The function f, is related to the generating function of overpartitions.
A partition of a positive integer n is a nonincreasing sequence of positive
integers whose sum is n. An overpartition of n is a partition in which the
first occurrence of a number may be overlined, see Corteel and Lovejoy [CL].
For n > 1, let p(n) denote the number of overpartitions of n, and we set
p(0) = 1. Corteel and Lovejoy [CL] showed that the generating function for

p(n) is given by

(1.7) > p(n)g" =

Hirschhorn and Sellers [HS-1], and Fortin, Jacob and Mathieu [FJM]
obtained the following Ramanujan-type generating function formulas for
p(2n + 1), p(4n + 3), and p(8n + 7):

(1.8) f:p(zn +1)g"
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(1.9) Zp (4n +3)q f2f4
o0 22

(1.10) > p8n+7)q" = 64%
n=0

The above identities lead to congruences modulo 2, 8 and 64 for the overpar-
tition function. Mahlburg [M] proved that p(n) is divisible by 64 for almost
all n by using relations between p(n) and the number of representations of n
as a sum of squares. Using the theory of modular forms, Treneer [T] showed
that the coefficients of a wide class of weakly holomorphic modular forms
have infinitely many congruence relations for powers of every prime p other
than 2 and 3. In particular, Treneer [T] proved that p(5m3n) = 0 (mod 5) for
any n that is coprime to m, where m is a prime satisfying m = —1 (mod 5).

The following conjecture was posed by Hirschhorn and Sellers [HS-1].
Conjecture 1.1. Forn >0,
(1.11) p(40n +35) =0 (mod 40).

To prove the above conjecture, we derive a generating function for p(40n+
35) modulo 5 by using 2-dissection formulas for quotients of theta functions
given by Ramanujan [B], and Hirschhorn and Sellers [HS-2]. Then we use the
(p, k)-parametrization of theta functions due to Alaca, Alaca and Williams
[AAW, AW, W] to show that p(40n+35) = 0 (mod 5) for n > 0. Combining
this congruence and the congruence p(4n + 3) = 0 (mod 8) for n > 0, we
confirm the conjecture.

2 The generating function

In this Section, we derive a generating function of p(40n + 35) modulo 5.
We first recall several 2-dissection formulas for quotients of theta functions
due to Ramanujan [B], Hirschhorn and Sellers [HS-2].

The following relations are consequences of dissection formulas of Ra-
manujan collected in Entry 25 in Berndt’s book [B, p. 40]. Recall that

fn= (0" q") as given by (1.6).

Lemma 2.1. We have

PSP hfh
(2.) fi= fifis 2 fs
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1 R Tifts
22) 2R T
10
2% =l
and
(2.4) ! i + 4q f4f8.

fi s
Hirschhorn and Sellers [HS-2| established the following 2-dissection for-

mula.

Lemma 2.2. We have

(2.5) fs _ fsfn +q fi frofa0

fi Bho TR
By Lemmas 2.1 and 2.2, we are led to a generating function of p(40n+35)

modulo 5.

Theorem 2.3. We have

Z (40n + 35)¢" =2 2 zaflf2 4 3 3qf2F2 18 + 4¢° 7'
p(40n + 35)¢" = + + 4q + 3¢q + 4q
s f63f40 fi f55f24 bz ff7f4
50 26
(2.6) + 4q° f2 f4 + 4q* 2 31 +2q5 f31i (mod 5).
1 1

Proof. Recall that the theta functions ¢(q) and 1(q) are defined by

(2.7) ola)=fleo)= > ¢
and
(2.8) U(q) =

By the Jacobi triple product identity, we find

_ 5B

and
f2
(2.10) v(g) =7

fil
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Replacing ¢ by —¢ in (2.9) and (2.10), and using the fact that

f3

(2.11) f(@) = (¢ =) = o

we deduce that

(2.12) o(—q) =

f2
and
213 w-g) =20

In view of (1.3), (1.4) and (2.7), we see that

o0 (e 9] o0

gp(q) _ Z an _ Z q25n2+2q Z q25n2+10n+2q4 i q25n2+20n

(2.14) = 0(¢”) +2¢D(¢°) + 24" E(¢°),

where

215) D= Y = (g0
and

(2.16) E(q) = i ¢ = (=4, —¢", 0" 0") -

It is easily checked that

_ f3 f5 f20
f1f4 .

By the binomial theorem, we see that for any positive integer k,

(2.17) D(q)E(q)

(2.18) (1-¢")° = (1-¢%) (mod5),
which implies that

(2.19) ¢’(q) = ¢(¢°) (mod 5).

Based on (1.7), (2.9) and (2.19), we have

S ) (—g) = —— = 29
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0 (q) _ ((¢®) +2¢D(®) + 24" E(g%))"
©(q°) ©(q°)

o' (@*) + 349 (®)D(¢°) + 4¢°¢* () D*(¢°)

—

+2¢%0(¢°) D*(¢°) + 3¢"¢* (¢®) E(¢°) + 4" D*(¢”)
+3¢°¢* () D(@°) E(@°) + ¢°0(¢*°) D*(¢*) E(¢°)
+4q" D () E(¢°) + 46°0*(¢7) E*(¢°) + ¢ (¢®) D(¢°) E*(¢°)
+q'°D* () E*(¢°) + 24" (¢ E*(¢°)
(2:20) +4¢"D(¢°)E*(¢°) + ¢"°E*(¢°)")  (mod 5),
which yields

(2.21)
iﬁ(5n>(_q)n _ M) + 3Q¢2(QS)DSOQ()£(Q) +¢*D*(q) E*(q) (m0d 5).

Plugging (2.9) and (2.17) into (2.21), we get

2 22 i n — f1f4 +3 f1f4f +q2f52f220 (mod 5)

0 - f2f5f20 f2

Replacing ¢ by —¢ in (2.22) and invoking (2.11), we arrive at

T A fi fof?

According to 2-dissection formulas (2.1), (2.2), (2.3), (2.5) and congruence
(2.23), we obtain

. — n __ f2 f85 f4f16) ( 20 5f10f40>
5 = 2 —4
nzzop( Wi =g (f%ffﬁ T )\ s 2

(2.23) f:p(fm)qn _ hfs Squfm +q fin (mod 5).
n=0

B fofi 5f10f§0> <f8fzo ffflofm)

320 (f220f820 2 Jao f3 fao e f3 fs fao
2f10 < ffo 2 5f20f80)

e f2 fir]ofgo " f10f40

I E + 2 fi fre /50 34 fefiofio 34 f3 fiofio

N R N 212 s faf?

2f10f40 3 5 f8f20 +q6f8f10f20f820_ 6fff126f280

TR TR, 2 st
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7f4f10f80 7f10f20f80 10 f85fz§0
e f3 fs.f20 29 Jafao a I3 fie a0
(2.24) + QQHJ;%]}SGQS (mod 5).

Extracting the terms of odd powers of ¢ on both sides of (2.24), we have

2n+1 f4f16f f8f10f40_ 5 f8f20 7f4f10f80
;;plm“+® =i U R T s

7f10f20f80 11 ffffofO
2 J2S10 +2 fa fafa

(2.25) + (mod 5).

Dividing both sides of (2.25) by ¢ and replacing ¢* by ¢, we get

_, BRIB B g S
f1f4f5f20 f1f40 f1f5f8

3f2f5f40_|_ q3f5f10f40 +2¢ 5f2f8f20 (mod 5).

[ fafio Jif20 ffafio

Employing 2-dissection formulas (2.4), (2.5) and congruence (2.26), we de-
duce that

Zp 10n +5)¢" =
n=0

(2.26) +

o n:ﬁﬁ%(i4 Qm%<5é N&%Y
2 100+ 8)" =275 B i+ a ) (g 40
f4f20 (f8f220 + f4f10f40)
f4o f3 fao fzfsfzo
2 ( 4 f4fs>< % 5f20f40>
_ 3,214]10 4 4
e g Him T
s f5 fi (f8f220 fff1of4o>3
e Jaf1o f22f40+qf§f8f20

2 3f10f40 <f8f20 fffloleo)

fao \f3fa0 Jrqu?’fzafm

4ﬂ5ﬁﬁﬁo<l4+4n&)

f4f10 4f8 2
N 7Y 9 A I3 TafS 15 f4f10f20
=—-3 3q —
i e s T
ap ST SR

f214f8f10f40 f2f8 f210f10f40
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3f8f10f20f40 3 fgfgo 4f4f10f4()
R e U e T B RS,

4f4f8f20f40 5f4f10f40 5 fingO
T T T

FFSS  Gf AR L flfp
2 6 8J20 6J4J10J40 2 7 4 20J 40
B N T T N

R 11 fi fufs fi
927 8JaJ8J20/40 10_Ja Ja0 11J4J8J40 d5).
(227) o 2 fio 2 2f8f20 o 15 f30 (mod 5)

Extracting the terms of odd powers of ¢ on both sides of (2.27), then dividing

_|_

by ¢ and replacing ¢ by ¢, we find that

— f2f4 _Lafsfio ., [3fifa faf2 Frofa0
2 PR+ 15)q" =5 e = Tt = 2 0f5f20+2q 72
f4f10 2f2f5f20 2 f13f10
Tt o P
Y WYY 1
(2:28) Mg T g (mod D)
By (2.18), we see that
(2.29) fs=f7 (mod 5).

Substituting (2.29) into (2.28) gives

101 29 77 29
p(20n + 15)¢" = 32— ———2q +20f7f5 17 + 4=
> =g o U
(2.30) + 3¢ f5 1 + 3¢ 7 23f 35f46 db
: q f2 + q f132f4 - fl 19 (mO )

Combining 2-dissection formulas (2.3), (2.4) and congruence (2.30), we see
that

101

S s s 9 =20 (B ) g (Y
N

2 B
29 7 14
2 2 4 f4f8
fo -t (i)
£0 f214f8 2

4
29 14 f f4

_|_q ( +4 48) +3q2f5 14
f s 5 2
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8
Lot (L Y +4qms)

i \f3'fe 5
f4
- 2q3 29 rl14 ( +4q
? [
14
5f fi fs
o (f214f8 A )
134 29 122 26 110
4 2 4 f2f4 f
— 2542 + 3¢ +q
5w M R Y
+4q° 5{;2824 +3 3f2f4f8 +q' 518616 +4¢° 47748
15015 I5 f I fs
50 38 14 £32
7f4 fS 8J4 8 9f4 10/4 J8
+ 4q +q 2 + 4q 31 + q i
48
(2.31) + 2q11f4 + 3¢" (mod 5).

f19f10
Extracting the terms of odd powers of ¢ on both sides of (2.31), then dividing
by ¢ and replacing ¢* by ¢, we obtain (2.6). This completes the proof. [

3 Proof of Conjecture 1.1

In this section, we use the (p, k)-parametrization of theta functions given
by Alaca, Alaca and Williams [AAW, AW, W] to represent the generating
function of p(40n + 35) modulo 5 as a linear combination of functions in
p and k, where p and k are defined in terms of the theta function ¢(q) as

given by
p=plq) = @2(%2_(;.;2)((13)
and
oy 9@
(3.1) k= k(q) = R

see Alaca, Alaca and Williams [AAW]. Williams [W] proved that

f2f3-f12
f1f4f9

We have the following congruence.

(3.2)
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Theorem 3.1. Forn > 0,
(3.3) p(40n +35) =0 (mod 5).

Proof. The following representations of qi f1, qT12 fo and q% f4 in terms of p
and k are due to Alaca and Williams [AW],

(3.4) g2 fy = 276p2i (1 — p)2(1 + p)o (1 + 2p)5 (2 + p)ske,
(3.5) qizfy =27 3p1(1 — p)i(1+ p)i2(1 + 2p)i (2 + p)ik?
and

(36) gt =27 pr (L= p)s (L4 p)F(1+2p)8 (2 + p)2hE.

Substituting (3.4), (3.5) and (3.6) into (2.6), we find that

(3.7)
a 297/8(1 4 2p)21/8(9 21/8
=0 167/3(1 — p)S(1 + p)>Vk

where F(p, k) is given by
F(p, k) = 5k'°(524288 + 6029312p + 88735744p> + 840761344p°
+ 5072977920p* + 22470361088p° + 75791417344p°
+ 196034666496p" + 392385622016p° 4+ 610286094336p°
+ 731633712128p" + 663209854464p" + 441020946176p">
+ 204189055872p'3 + 59086163776p™* + 8129694944p'°
+ 138932400p'® + 2477318p* — 16585772p'8

(3.8) + 33708184p'" + 19661p™).
By (3.4) and (3.5), we have

S5 V2R (1 + 2p) P8 (2 4 p) P8

(39) 57 1671 - pp(L+ p2VR

Hence (3.7) can be rewritten as

e 22
(3.10) 29 " p(40n + 35)¢" = 2: F(p. k) (mod 5),
1

n=0
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where F(p, k) is defined by (3.8). Clearly, }% is a formal power series in ¢
with integer coefficients. By (3.1) and (3.2), we see that p and k are also
formal power series in ¢ with integer coefficients. It can be seen that the
coefficients of F'(p,k) are divisible by 5. So we reach the assertion that
p(40n + 35) = 0 (mod 5) for n > 0. O

To complete the proof of Conjecture 1.1, we recall that Hirschhorn and
Sellers [HS-1], and Fortin, Jacob and Mathieu [FJM] independently derived
the congruence

(3.11) p(4n+3) =0 (mod 8),
for n > 0. This yields
(3.12) p(40n +35) =0 (mod 8),

for n > 0. Combining (3.12) and the congruence p(40n + 35) = 0 (mod 5)
for n > 0, we come to the conclusion that p(40n + 35) = 0 (mod 40) for
n > 0. ]
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