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Abstract

Sequence-based prediction of residue–residue contact in proteins becomes increasingly more important for improving pro-
tein structure prediction in the big data era. In this study, we performed a large-scale comparative assessment of 15 locally
installed contact predictors. To assess these methods, we collected a big data set consisting of 680 nonredundant proteins
covering different structural classes and target difficulties. We investigated a wide range of factors that may influence the
precision of contact prediction, including target difficulty, structural class, the alignment depth and distribution of contact
pairs in a protein structure. We found that: (1) the machine learning-based methods outperform the direct-coupling-based
methods for short-range contact prediction, while the latter are significantly better for long-range contact prediction. The
consensus-based methods, which combine machine learning and direct-coupling methods, perform the best. (2) The target
difficulty does not have clear influence on the machine learning-based methods, while it does affect the direct-coupling and
consensus-based methods significantly. (3) The alignment depth has relatively weak effect on the machine learning-based
methods. However, for the direct-coupling-based methods and consensus-based methods, the predicted contacts for targets
with deeper alignment tend to be more accurate. (4) All methods perform relatively better on b and aþb proteins than on a
proteins. (5) Residues buried in the core of protein structure are more prone to be in contact than residues on the surface (22
versus 6%). We believe these are useful results for guiding future development of new approach to contact prediction.

Key words: residue–residue contact; correlated mutation; direct-coupling; protein structure prediction; CASP

Introduction

Residue–residue contact map is a two-dimensional (2D) represen-
tation of protein structure, which presents those residue pairs that
are close in space when the protein folds into stable three-
dimensional (3D) structure. It was shown that it is possible to re-
construct the protein’s 3D structure from this 2D information [1–3].
In recent years, the predicted residue–residue contacts have been
successfully used as distance restraints to guide the molecular dy-
namics and Monte Carlo simulations, by adding them into the en-
ergy functions of ab initio structure modeling algorithms. For
example, assisted by the predicted contacts, structural models for
11 transmembrane proteins that do not have available 3D structure

information were predicted by the program EVfold_membrane [4].
In the 11th Critical Assessment of protein Structure Prediction
(CASP11) experiment, using predicted contacts by the tool
GREMLIN [5], the Baker group successfully predicted the structure
of a big free modeling (FM) target T0806 (256 residues), which has a
striking accuracy with root-mean-square deviation (RMSD) 3.6 Å
[6]. Without using the predicted contacts, the RMSD of the pre-
dicted model with the ROBETTA server degraded significantly to
11.6 Å [6]. Intensive efforts have been invested on sequence-based
prediction of residue–residue contact since the 90s of past century
[7, 8]. A summary of residue–residue contact prediction methods is
presented in Supplementary Table S1.
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Accurate prediction of residue–residue contacts remains an
open problem. The majority of current approaches for contact
prediction attempt to extract contact information from multiple
sequence alignment (MSA), usually through the simple identifi-
cation of correlated mutations [7, 9, 10] or by calculating the
mutual information between columns in the MSA [11]. The idea
behind these approaches is based on the fact that within a pro-
tein structure, interacting residue pairs are under evolutionary
pressure to maintain the structure [9, 12, 13]. That is to say, if a
residue is mutated during evolution, its interacting partner has
to make corresponding adaption to keep the structure stable. A
wide variety of machine learning-based algorithms, including
neural networks, support vector machines and linear regression
models, have been applied to the problem of residue contact
prediction [14–25]. They predict residue contacts by training
classifiers on a variety of sequence-based features including se-
quence profiles, predicted secondary structure, solvent accessi-
bility and correlated mutations. However, for many years,
accurate contact prediction was hampered by the difficulty of
extracting true contacts from the vastly intricate network of
residue pairs [26].

Recently, new progress in contact prediction was made by
direct-coupling methods (also called evolutionary coupling).
These methods aim to remove the residue pairs that show high
degree of correlated mutation but are not close in space. Such
correlated mutation is usually caused by the transitive relation-
ship: if both residue pairs A-B and B-C are correlated pairs, they
may lead to the pair A-C with unexpectedly high degree of cor-
related mutation. The residue pair A-C is called an indirect-
coupling pair, and many new methods aim to remove such
pairs [27–35]. With these methods, the predicted contacts are
much more accurate than before, and they have been success-
fully exploited to model the 3D structures of membrane and
transmembrane proteins [4, 36]. Furthermore, it was shown that
the combination of the classical machine learning-based meth-
ods and direct-coupling-based methods is able to improve the
accuracy of predicted contacts [34, 37].

Owing to its importance for protein structure modeling, resi-
due–residue contact prediction has been one of the sections in
the CASP experiments, one of the most influential activities in
the community of protein structure prediction. The CASP ex-
periments have helped assessing the progress made by various
contact prediction methods. However, the number of targets for
contact prediction assessment was limited. For example, the
numbers of proteins/domains used for assessing predicted con-
tacts from CASP6 to CASP11 were 11, 19, 12, 28, 29 and 50, re-
spectively [38–43]. Thus, assessment with large-scale data set is
in demand.

There are several published reviews for residue–residue con-
tact prediction [26, 44, 45]. These reviews summarized the
methodology and development of the contact prediction meth-
ods. However, none of them performed comparative assess-
ment with large-scale benchmark data set. Thus, the
performance of contact predictors and factors that may affect
their accuracy remain to be assessed and compared experimen-
tally, which is the aim of this study.

Materials and methods
Benchmark data set

It is more rigorous to compare contact prediction methods if
they are trained and tested on the same data sets. However, it
may not be realistic to retrain all predictors developed by

different laboratories with a new training data set. As a com-
promise, for comparing various methods on the same test data
set, we collected a large set of 680 nonredundant benchmark
proteins/domains that are not homologous to the training pro-
teins used by the methods under comparison.

This data set was constructed from the Protein Data Bank
(PDB) [46] and the SCOP database [47] as follows. First, we
retrieved 66 113 structures based on three criteria: (1) To make
the assessment reliable, only structures in high resolution were
considered (i.e. resolution is 0–2 Å); (2) transmembrane proteins
were excluded because existing methods are mainly designed
for globular proteins; and (3) to rule out the influence of inter-
domain residue–residue interactions, the targets should be
single-domain proteins or individual domains consisting of
50–500 residues. To this end, the SCOP database was used [47].
Second, redundancy was removed using the program PSI-CD-
HIT [48] at 25% sequence identity cutoff, resulting to 5402 se-
quences. Third, 3038 proteins that are evolutionarily related to
the sequences in CASP6–CASP11 [38–43] and the training pro-
teins used by assessed methods (described later) were excluded,
as detected by PSI-BLAST [49] at an E-value cutoff 0.001.
Homology to the CASP sequences was considered here because
they may have been used by some predictors for training or
benchmark purpose (e.g. the CASP9 sequences were used by
DNcon [50]). Fourth, the target difficulty (easy, medium and
hard) of the remaining sequences was determined by the meta-
threading program LOMETS in the I-TASSER Suite [51], which
contains eight individual threading programs. Each target se-
quence was threaded through the PDB library to identify tem-
plates by the threading programs in LOMETS. Templates that
share >30% sequence identity with a target were excluded for
each threading program. The threading programs have their in-
herent significance score cutoffs (i.e. z-score) for deciding if a
template is good or bad (the cutoff values are available at [51]). If
the average number of good templates per threading program is
>1, the target is defined as an easy target, which usually indi-
cates the existence of homologous proteins in PDB. If there is no
good template for all threading programs, the target is defined
as a hard target. The rest are medium targets. Note that to de-
cide the difficulty of a target, only the sequence information is
used and templates with >30% sequence identity were
excluded. Thus, this determination of target difficulty is object-
ive. Among the 2364 sequences from the third step, 336 are clas-
sified as medium/hard targets. Then, we randomly selected 344
sequences from the easy targets, making 680 proteins/domains.
Finally, the native contacts (defined in the next section) were
computed from their structures and used for evaluating the pre-
dicted contacts. The sequence, structure, MSA and the native/
predicted contacts for the 680 benchmark proteins can be down-
loaded at http://yanglab.nankai.edu.cn/download/contact/.

Definition of native contacts

The native contacts of a protein are defined from the protein’s
3D experimental structure to evaluate predicted contacts. In this
study, the definition of contacts is directly taken from the CASP
experiments [38–43]. The Euclidean distances between Cb atoms
(Ca in case of glycine) of all residue pairs are first calculated using
their 3D coordinates. Then, a residue pair is defined as in contact
if their distance calculated at the first step is less than a specified
threshold (8.0 Å). Depending on the separation (denoted by s) of
two residues along the sequence, the contacts are classified into
three classes: short range (separation 6 � s < 12), medium range
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(12 � s < 24) and long range (s � 24). Contacts for those residues
that are too close along the sequence (s < 6) are omitted.

Selection of methods to be included in the assessment

Many methods have been developed for residue–residue contact
prediction. To assess various methods based on the same
standard, each method should be installed locally. Hence, the
inclusion of a method in this assessment is based on their avail-
ability for download as a standalone package. A total of 15
methods were selected, which can be categorized into three
classes: (1) machine learning-based methods: SVMSEQ [24],
NNcon [25], SVMcon [19], PSpro [52], PSpro.beta [52], BETAcon
[53], bbcontacts [35] and DNcon [50]; (2) direct-coupling-based
methods: PSICOV [27], CCMpred [33], FreeContact [31], GREMLIN
[5] and plmDCA [29]; (3) consensus-based methods: MetaPSICOV
[37] and PconsC2 [34]. Some other published methods, such as
CMAPpro [54], PhyCMAP [30], CoinDCA [55] and ProC_S3 [56], are
not included because they were not available for download at
the time of this study. As the boundary between methods is
becoming increasingly blurred, the above categorization may
not be unique. For example, the bbcontacts is an Hidden
Markov Model (HMM)-based predictor for contacts in b-strands,
which was trained on 943 domains containing b-contacts. As
the bbcontacts architecture belongs to the framework of ma-
chine learning approach, we classify it as into the group of ma-
chine learning-based methods. However, it may be also
categorized as a direct-coupling-based method as the output
from the direct-coupling method CCMpred is used, or a consen-
sus-based method because the predicted secondary structure is
combined with the CCMpred results.

Criteria for empirical evaluation

The predicted residue–residue contact map is a matrix of prob-
ability estimates, with element pij being the estimate for the
contact probability of the residues i and j. In general, the top L/n
predictions (sorted by the probability estimates) are selected,
which are then compared with the native contact map for
evaluation. A pair of residue is defined as a positive pair if the
two residues are in contact in the native contact map, and nega-
tive otherwise. In the literature, the value of n is usually set to
be 1, 2, 5 and 10, and the precision P (also named as accuracy by
some methods and was renamed to precision after CASP10) is
used to assess the contact predictions defined below.

P ¼ TP
TPþ FP

(1)

where TP and FP are the number of true positives and false posi-
tives, respectively. Note that this measure has been extensively
used in the CASP assessments [38–43] and all publications for
contact prediction methods, e.g. [5, 19, 24, 25, 27, 29–31, 33–35,
37, 50, 52–56].

In addition, the Jaccard distance (J-score) is introduced to
analyze the difference of the predicted contacts from different
predictors [57]:

dðX;YÞ ¼ 1� jX \ Yj
jX [ Yj (2)

where X and Y are the set of predicted contacts from two differ-
ent predictors, j X \Y j is the number of elements in the intersec-
tion of X and Y and the j X[Y j represents the number of

elements in the union of X and Y. The J-score has values in the
range of [0, 1], with the value of 0 corresponding to identical pre-
dictors and 1 for completely dissimilar ones.

Results and discussions

We ran 15 locally installed contact predictors with their default
parameters for the proteins in the benchmark data set and col-
lected their prediction results for assessment. Here, we make
analysis based on top L/5 contact predictions, and the corres-
ponding results for the top L, L/2 and L/10 are presented at the
Supplementary Data.

Assessment of the predictive performance for short-,
medium- and long-range contact predictions

The precisions of the top L/5 short-, medium- and long-range
predicted contacts for 15 predictors are listed in Table 1. From
the table, we can see that for machine learning-based methods,
the mean precision decreases from 0.35 for short-range contacts
to 0.29 and 0.26 for medium- and long-range contacts, respect-
ively. Note that bbcontacts is designed for predicting contacts in
b-strands, which are usually long-range contacts. Therefore, it
is anticipated that the precisions of short- and medium-range
contacts are lower than long-range contacts. Indeed, the preci-
sion (0.3) of long-range contact predictions by bbcontacts is
ranked at the second among all the machine learning-based
methods. For direct-coupling and consensus-based methods,
the predicted contacts are more accurate for medium and long
ranges than short range. For example, the precisions for PSICOV
and MetaPSICOV, representative methods of the two groups, are
0.28 and 0.59 for short-range contacts, which increase to 0.45
and 0.66, respectively, for long-range contacts.

Overall, the predicted short-range (respectively, long-range)
contacts by machine learning-based methods are more
(respectively, less) accurate than direct-coupling methods,
which suggest that these two groups of methods are comple-
mentary to each other. Thus, combining them may yield im-
proved performance for predicted contacts in all ranges as
revealed by the consensus-based methods, which have the
highest precisions in all categories of contacts. For example,
MetaPSICOV, which combines machine learning with three dif-
ferent direct-coupling methods (PSICOV, CCMpred and
FreeContact), improved the precision by 31.1, 26.9 and 48.7%
over PSICOV, CCMpred and FreeContact, respectively, for short-
range contacts.

Assessment of the predictive performance for a, b and
aþb proteins

To discuss the precision of contact predictions for proteins of
different structural classes, the proteins in the benchmark data
set are divided into three subsets of a, b and aþb classes, con-
sisting of 134, 150, 396 proteins, respectively. Table 1 shows that
the average precisions of the top L/5 predicted contacts (in all
ranges) by all considered methods are 0.34, 0.54 and 0.55 for a, b

and aþb proteins, respectively. This suggests that the contacts
for a proteins are more difficult to predict than others. We try to
find possible reasons for this difference based on detailed ana-
lysis on the contacts in the benchmark data set. For each pro-
tein, the negative-to-positive ratio (NPR) of residue pairs (i.e. the
number of residue pairs that are not in contact divided by the
number of residue pairs that are in contact) was first calculated.
Then, the average NPR over proteins belonging to each of the
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three classes was obtained, which are listed in Supplementary
Table S2. We can see that the NPR for a proteins is 65.4, which
means that distribution of contact and noncontact pairs is sig-
nificantly unbalanced. In contrast, the NPRs for b and aþb pro-
teins are relatively smaller (31.7 and 47.3, respectively), which
may explain the precision difference between proteins in differ-
ent structural classes. It is also interesting to see that the long-
range NPR is consistently higher than short- and medium-range
NPRs, which might be one of the reasons why long-range con-
tacts are more difficult to predict, especially for machine
learning-based methods (Table 1).

Assessment of the predictive performance for easy,
medium and hard targets

Accurate contact predictions for hard targets that do not have
close homologous templates in PDB are especially helpful for
modeling the proteins’ 3D structure. Therefore, we divided the
proteins in the benchmark data set into easy, medium and hard
subsets of 344, 105 and 231 targets, respectively, based on the
LOMETS threading program in the I-TASSER Suite [51].

The precisions of the contact predictions are shown in
Table 1. From the table, we can see that the target difficulty

does not affect the performance of machine learning-based
methods much, which is especially obvious for short- and
medium-range contacts. On the other hand, for direct-coupling
and consensus-based methods, the precision decreases from
easy to medium and hard targets. The reason may be the insuf-
ficient homologous sequences for hard targets, which are
required for inferring the correlated mutations by direct-
coupling and consensus-based methods (see explanations in
Figure 1). This is interesting as the definition of target type is
based on threading, which aligns target sequence with protein
structures in PDB. However, the contact predictors evaluated in
this study make predictions solely from sequence alignment
and do not use any template information from PDB at all. We
conjecture that there must be some correlation between the
number of homologous sequences detected by sequence align-
ment (e.g. PSI-BLAST [49]) and target difficulty defined by se-
quence–structure alignment (e.g. LOMETS [51]), which is worth
of close investigations in future studies.

The effect of alignment depth to contact prediction

The alignment depth of a target is defined as the number of di-
verse homologous sequences [42] to the target. To analyze the

Table 1. The precisions (%) of the top L/5 predicted contacts by 15 predictors evaluated for different ranges, structural classes and target types

Methods Ranges Structural classes Target types

Short-range Medium-range Long-range a b aþ b Easy Medium Hard

DNcon 11.80 37.98 32.26 28.76 45.09 49.32 48.13 42.22 39.64
bbcontacts 12.71 14.39 30.16 3.82 64.58 57.52 59.56 43.08 34.48
PSpro.beta 37.97 18.31 21.22 29.13 45.64 44.07 43.38 40.77 38.96
PSpro 38.61 27.05 16.74 26.53 50.94 45.57 42.81 44.57 42.58
NNcon 39.56 30.06 21.37 29.49 50.91 45.74 43.25 45.15 43.64
SVMcon 42.49 34.79 26.06 35.10 47.96 49.45 45.40 48.63 46.57
BETAcon 45.71 35.31 27.88 34.91 59.61 55.27 52.66 54.22 50.64
SVMSEQ 48.49 37.17 29.74 37.77 53.34 57.57 55.63 52.96 48.32
FreeContact 9.95 10.70 13.62 10.28 13.84 14.22 15.70 12.91 10.09
PSICOV 27.53 31.46 44.64 38.09 51.68 56.19 66.96 45.54 31.56
plmDCA 28.71 33.77 48.79 42.26 57.03 60.17 69.84 52.22 36.96
GREMLIN 31.92 37.97 51.35 43.27 58.70 62.19 72.61 52.25 37.96
CCMpred 31.76 37.97 51.41 42.79 58.65 62.39 72.33 52.41 38.34
PconsC2 48.58 53.39 64.13 53.09 71.92 75.22 83.99 67.50 50.70
MetaPSICOV 58.61 58.14 66.35 60.17 81.81 83.81 87.44 75.41 67.22

Note. The best results for each group of methods are highlighted in bold type.

Figure 1. Precision of the top L/5 predicted long-range contacts as a function of the alignment depth. Three representative methods are used, (A) MetaPSICOV for con-

sensus-based methods, (B) CCMpred for direct-coupling-based methods and (C) SVMSEQ for machine learning-based methods. The lines are the linear fits of the cor-

responding data. PCC represents the Pearson’s correlation coefficient.
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dependence of method performance on the alignment depth,
homologous sequences were searched by HHblits [58] through
the database uniprot20_2015_06 with parameters ‘-oa3m
seq.a3m -e 0.001 -n 3’, followed by removing sequences that
have high sequence identity or low alignment coverage using
the program hhfilter with parameters ‘-i seq.a3m -o seq.a3m -id
62 -cov 60’. The number of remaining sequences after this filter-
ing is denoted by N_eff.

The precision of the top L/5 long-range contact prediction as
a function of alignment depth is shown in Figure 1. For this ana-
lysis, we selected three representative methods: SVMSEQ from
machine learning-based methods; CCMpred from direct-
coupling-based methods; and MetaPSICOV from consensus-
based methods. Outlier targets with exceptionally big numbers
of N_eff (>2500) were removed, as they may affect the correl-
ation analysis performed here. The Pearson’s correlation coeffi-
cient (PCC) between the precision and N_eff was calculated for
quantitative measurement of the correlation. As shown in the
figure, the machine learning-based method, SVMSEQ, is in gen-
eral insensitive to the alignment depth, as no clear correlation
is observed (PCC ¼ 0.176). On the contrary, CCMpred and
MetaPSICOV demonstrate higher precisions for targets with
deeper alignments and their corresponding PCCs are 0.637 and
0.525, respectively.

Statistical tests of the performance difference between
different predictors

The statistical significance of the difference in precision of pre-
dictors is measured using the nonparametric Wilcoxon signed-
rank test on the 680 benchmark proteins. The Student’s t-test is
not adopted here because the samples do not follow a normal
distribution as indicated by the Anderson–Darling test. In this
study, the implementation of Wilcoxon signed-rank test is from
the R package, in which two paired vectors of identical size (680,
each element represents the precision value for one protein) are
used as inputs. The P-value returned from the test indicates the
significance level of the difference between the two vectors,
which correspond to two contact predictors. The test results are
listed in Table 2. It indicates that the consensus-based methods
are significantly better than other predictors. The consensus-
based method PconsC2 is inferior to MetaPSICOV, probably
because of different consensus strategy used. All of the direct-
coupling-based predictors, except for FreeContact, are signifi-
cantly better than machine learning-based predictors on long-
range contact prediction. On the other hand, the top machine
learning-based methods, SVMSEQ and BETAcon, generate com-
parable results and outperform direct-coupling-based methods
for short- and medium-range contact prediction.

Evolutionary relationship between predictors

The predictors evaluated in this study are different from each
other in terms of either methodology or implementation.
However, some of them resemble each other and are thus div-
ided into three groups of machine learning-based, direct-
coupling-based and consensus-based methods. It is interesting
to investigate further the evolutionary relationship between
these predictors. This is also important for developing ensemble
algorithms, which work well only when the individual pre-
dictors are complementary (explained in the next section).

With neighbor-joining algorithm, we clustered the 15 pre-
dictors based on the pair-wise Jaccard distance of the predicted
contacts [Equation (2)]. Figure 2 shows the clustering results forT
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the top L/5 contact predictions. It is apparent that the machine
learning-based methods and the direct-coupling-based meth-
ods are far from each other, showing high level of dissimilarity.
Interestingly, the two consensus-based methods are divided
into two clusters. The cluster of machine learning-based meth-
ods encompasses MetaPSICOV, while PconsC2 is involved in the
cluster of direct-coupling-based methods. This can be explained
by the difference between the consensus strategies adopted in
these algorithms. MetaPSICOV combines machine learning-
based methods with direct-coupling-based methods, while
PconsC2 combines direct-coupling-based methods using align-
ments that are generated by HHMER and HHblits with a set of
parameter combinations.

What is the upper limit of contact prediction by
combining individual predictors?

A straightforward way to improve existing methods is combing
them to develop an ensemble/meta approach. Nothing can be
improved by combing two identical methods, so it is worthy
investigating the overlap of predicted contacts by these meth-
ods. A Venn diagram (Figure 3A) on the 680 benchmark proteins
is used to show the overlap between the predicted contacts. We
can see that the area of overlap between machine learning-
based methods and direct-coupling-based methods is relatively
small, as they use different prediction techniques. The consen-
sus-based methods, which generally combine the machine
learning-based methods and direct-coupling-based methods,
have a high area of overlap with the machine learning-based
methods and direct-coupling-based methods.

The upper limit of contact prediction by a meta approach
can be estimated simply by always selecting a correctly pre-
dicted contact if any of the individual methods for combination
makes a correct prediction. Figure 3B shows the upper limit of
contact predicting methods for easy, medium and hard targets
by combing different groups of methods. The upper limit of
combing direct-coupling-based methods is slightly lower than
that of machine learning-based methods for easy target.
However, for medium and hard targets, the upper limit of comb-
ing direct-coupling methods is much lower. The reason may be

that there are too few homologous sequences for medium and
hard target. Though the upper limit of combining machine
learning is higher, this limit is hard to achieve because they
usually predict contacts with high false-positive rate and thus
difficult to pick up the true contacts from a big number of pre-
dictions. The upper limit of combing consensus-based methods
is the highest as this is kind of ‘consensus of consensus’. The
upper limit of combing all methods is the highest as this com-
bination covers more methods than the combination of simply
machine learning-based methods, direct-coupling-based meth-
ods or consensus-based methods.

Figure 3C illustrates the upper limit of the precision for a
meta-predictor on the top L/5 long-range contacts (short- and
medium-range contacts can be found at the Supplementary
Data). For combinations with k different number of methods,
we use a brute-force method to select the one that achieves the
highest precision. For example, the best combination for three
methods may be DNcon, MetaPSICOV and PconsC2 with the
precision of 0.86. We find that the upper precision is >0.9 if the
number of predictors for combination is �6. When more pre-
dictors are included, the upper precision is improved but not
significant. Thus, we suggest combining the following six pre-
dictors to construct a meta-predictor: DNcon, BETAcon,
SVMSEQ, CCMpred, MetaPSICOV and PconsC2.

We admit that the upper limit based on the above combin-
ation strategy is difficult to achieve. However, the upper limit is
possible to reach if we combine predictors appropriately. For ex-
ample, MetaPSICOV, which combines three different direct-
coupling methods, PSICOV, CCMpred and FreeContact, has the
precision of 66.35% for long-range contacts. However, the esti-
mated upper limits of combining these methods are slightly
lower (65.06%). This may be attributed to the additional neural
network training in MetaPSICOV, which was not accounted in
our combination strategy.

Are contacts in the core or on the surface of a
protein structure?

By intuition, residues buried in the core are more possible to be
in contact than those on the surface of a protein structure,
which is investigated using the benchmark proteins. The rela-
tive solvent accessibility (RSA) is calculated by the tool Naccess
[59]. The values of RSA vary from 0 to 100%. A residue is re-
garded as in the core or on the surface of protein structure de-
pending on whether the value of RSA is below or above a
prespecified cutoff (5% in this study). The residue pairs are then
divided into three different types: surface–surface, core–core
and surface–core.

Figure 4 shows the distribution of surface–surface, core–core
and surface–core type for all the residue pairs (Figure 4A). We
can see the majority of residue pairs (64%) are located on the
surface, and only 5% residue pairs are in the core. When only
considering the contact residue pairs (Figure 4B), the proportion
of surface–surface/core–core residue pairs decreases/increases
to 56 or 13% and the surface–core residues remains unchanged
(31%). The ratio of core–core residue pairs is still lower than that
of surface–surface residue pairs. This is because the number of
residues buried in the core is much smaller than surface resi-
dues (shown in Figure 4A). Dividing the number of contact resi-
due pairs in each category by the number of residue pairs in the
corresponding type, we obtained Figure 4C. We can see from the
proportion of contacts to all residue pairs for core–core type is
the largest (22.2%), significantly higher than that for surface–
surface and surface–core types. This observation may find its

Figure 2. Neighbor-joining dendrogram illustrating the relationship between dif-

ferent predictors.
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application to improved contact prediction by considering a
higher probability of assigning contacts for residue pairs buried
in the core, given the availability of accurate sequence-based
solvent accessibility prediction.

Progress of contact prediction in CASP

As pointed out in the CASP experiments [39, 41, 42], it is nontri-
vial to measure the progress of contact prediction methods.

As a rough estimation, we collected data from CASP to show the
progress of contact prediction method in the past decade. The
precision values for CASP9–CASP11 were taken from the CASP11
assessment article (Figure 11 in [42]), while the CASP7 and
CASP8 data were calculated using the raw contact predictions,
downloaded from the CASP data archive (http://predictioncen
ter.org/download_area/). Figure 5 shows the precision of the
best method in each CASP for the top L/5 predicted long-range
contacts of the FM targets. Although new methods are

Figure 3. The upper limit of contact prediction by combing individual predictors. (A) The Venn diagram of machine learning-based, direct-coupling-based and consen-

sus-based methods. (B) The upper limit of contact prediction for easy, medium and hard targets. (C) The upper limit of precision for meta-predictors on the top L/5

long-range contacts. For each number, selected predictors are indicated by filled squares. Colored version of the figure is available online.

Figure 4. The distribution of residue pairs in protein structure. (A) All residue pairs are considered. (B) Only residue pairs in contact are considered. (C) The ratio of resi-

due pairs in contact over residue pairs at the corresponding category. Colored version of the figure is available online.
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developed in each CASP (e.g. SAM-T06, 3Dpro, SMEG-CCP and
MULTICOM), there is no substantial improvement from CASP7
to CASP10 (precision around 20%), probably because the targets
are becoming increasingly more difficult [41]. However, it is
encouraging that there is a big jump in the precision (27%) in
CASP11, which was achieved by the method CONSIP2 (i.e.
MetaPSICOV evaluated in this study).

Performance of 15 methods in CASP12

Note that the CASP sequences before CASP11 were excluded in
our benchmark data set as they may have been used by existing
predictors. However, the targets from the on-going CASP12 ex-
periment are brand new for all predictors and thus can be used
for assessment. We collected 17 CASP12 targets that have
released PDB structures at the time of this study and ran the 15
locally installed contact predictors. The list of these targets and
the predicted contacts by each predictor are available at http://
yanglab.nankai.edu.cn/download/contact/. Table 3 shows the
precisions of the top L, L/2, L/5 and L/10 predictions at different
ranges. From the table, we can see that for machine learning-
based methods, SVMSEQ performs the best for short-range con-
tact, while DNcon performs better for medium- and long-range

contacts. For direct-coupling-based methods, plmDCA is con-
sistently better than others for all ranges. Consistent to the
evaluation results on the 680 benchmark proteins, the precision
from consensus-based methods is the highest for all ranges. For
example, for the top L/5 long-range contact predictions, the pre-
cision of MetaPSICOV is 64.72%, which is much higher than
DNcon (46.52%) and plmDCA (42.67%), representatives of the
machine learning-based and direct-coupling-based methods.

We want to mention that the number of targets is too few

(17) to divide them into groups by target difficulty and structural
class. As the official evaluation in the CASP experiments is re-
stricted to hard targets only, the precision values listed in
Table 3 are anticipated be different with the final CASP12 results
(to be released this December). Nevertheless, the conclusions
from the 17 CASP12 targets are largely in consistent with those
made based on the 680 benchmark proteins.

Case studies

We selected a hard a target (PDB ID: 3l5xA) and an easy b target
(PDB ID: 1vcaA) as cases for detailed analysis. The protein 3l5xA
is a mouse anti-human IL-13 antibody, and 1vcaA is an
integrin-binding fragment of vascular cell adhesion molecule-1.

Figure 6 shows the performance of the hard a target (3l5xA)
for long-range contact prediction. The circle in the center repre-
sents all of the native long-range contacts on top L. The pairs
colored in red represent the disulfide bonds. Because it is a co-
valent bond, the disulfide bond can be considered as part of the
primary structure of a protein, and they are important in deter-
mining the structure of proteins. The blue circles on the upper-
right corner show the correctly predicted contacts by machine
learning-based methods. It is noteworthy that the majority of
the machine learning-based methods correctly predicted the di-
sulfide bonds. The orange circles in the lower-left corner show
the correctly predicted contacts by direct-coupling-based meth-
ods, while the yellow circles in the lower-right corner represent
those by consensus-based methods. As we can see, the per-
formance of direct-coupling-based methods as well as the con-

sensus-based methods is relatively low because there are only
two diverse homologous sequences for this target.

CASP7 CASP8 CASP9 CASP10 CASP11
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10
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Figure 5. The precision of the best methods in the CASP7–CASP11 experiments

on the top L/5 long-range contact prediction.

Table 3. The precisions (%) of the top L, L/2, L/5 and L/10 predicted contacts by 15 predictors for 17 CASP12 targets that have released structures

Methods Short Medium Long

L L/2 L/5 L/10 L L/2 L/5 L/10 L L/2 L/5 L/10

DNcon 23.00 25.17 26.22 28.04 22.98 39.12 50.11 54.85 19.20 33.90 46.52 54.54
bbcontacts 2.43 4.86 12.21 22.59 2.36 4.72 11.88 19.95 3.36 6.72 16.91 32.43
PSpro.beta 23.68 32.52 44.88 49.59 13.01 17.69 22.78 29.84 14.09 17.45 21.75 23.71
PSpro 4.22 8.44 20.73 35.43 2.18 4.35 10.09 14.30 0.00 0.00 0.00 0.00
NNcon 25.50 33.74 44.73 52.73 16.84 21.66 25.10 29.11 16.54 22.22 29.76 33.85
SVMcon 16.20 24.39 33.17 41.59 12.18 17.31 25.86 31.14 8.79 13.60 19.56 24.20
BETAcon 24.26 33.20 46.02 50.42 14.65 18.85 24.72 29.10 15.17 20.47 28.46 32.15
SVMSEQ 45.13 55.00 62.43 67.72 32.54 37.69 44.48 52.01 26.91 32.16 35.52 36.41
FreeContact 19.10 19.67 20.67 23.30 9.22 9.79 11.03 10.24 9.23 11.47 14.43 17.33
PSICOV 15.98 21.57 26.17 28.99 13.20 18.44 24.56 27.74 15.93 20.67 25.27 30.44
GREMLIN 30.71 34.52 37.85 41.49 21.17 25.77 33.46 36.73 26.80 32.67 35.69 36.50
CCMpred 25.71 30.39 34.14 37.50 18.21 23.31 31.27 33.21 23.41 28.34 32.74 34.44
plmDCA 34.37 38.24 47.27 51.79 24.53 32.20 40.02 41.21 31.51 37.97 42.67 46.68
PconsC2 52.25 58.51 63.00 63.74 42.95 51.99 58.58 62.97 47.19 52.55 57.09 59.75
MetaPSICOV 50.15 58.64 70.55 74.39 42.00 52.18 60.39 66.31 48.08 56.85 64.72 68.73

Note. The best results for each group of methods are highlighted in bold type.

8 | Wuyun et al.

 by guest on N
ovem

ber 1, 2016
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: ,
Deleted Text: ,
Deleted Text: a total of 
http://yanglab.nankai.edu.cn/download/contact/
http://yanglab.nankai.edu.cn/download/contact/
Deleted Text: ,
Deleted Text: learning 
Deleted Text: ;
Deleted Text: coupling 
Deleted Text: consensus 
Deleted Text: learning 
Deleted Text: coupling 
Deleted Text: learning 
Deleted Text: learning 
Deleted Text: coupling 
Deleted Text: consensus 
Deleted Text: coupling 
Deleted Text: consensus 
http://bib.oxfordjournals.org/


The case of the easy b target (1vcaA) is shown in Figure 7.
There are three b-strands in the structure of this target. Some
methods designed for b–b contact prediction in the machine
learning-based methods, such as bbcontacts, PSpro.beta and
BETAcon, show excellent ability to predict the contacts in these
strands. The direct-coupling-based methods and consensus-
based methods have high precision for this target (>0.4 for top
L, except for plmDCA, and >0.75 for top L/5). In addition, the
pairs colored in red representing the disulfide bonds were cor-
rectly predicted by the majority of the methods.

Conclusions

Accurate prediction of residue–residue contact is critical for suc-
cessful prediction of protein structure, especially for ab initio
modeling targets. We performed a large-scale comparative re-
view of a set of 15 locally installed contact predictors. These
methods are categorized into three groups: machine learning-
based methods, direct-coupling-based methods and consensus-
based methods.

To benchmark and compare contact prediction methods, we
collected a large data set consisting of 680 nonredundant pro-
teins, that cover different structural classes (a, b and aþb), and
target types (easy, medium and hard). Our analyses show that
the precisions of the top L/5 predicted long-range contacts by the
machine learning and direct-coupling-based predictors are
about 30 and 51%, respectively. The consensus-based methods,
which combine machine learning and direct-coupling methods,
achieve the highest precision of about 66%. The machine
learning-based methods are shown to be significantly better
than the direct-coupling-based methods for short-range contact
prediction, while the direct-coupling-based methods perform
better on long-range contact prediction. We note that this con-
clusion is largely consistent with the literature, especially with

the results of R2C [60]. Among the machine learning-based meth-
ods, the SVMSEQ and BETAcon usually significantly outperform
other predictors. The best performed methods among the direct-
coupling-based methods are CCMpred and GREMLIN. When con-
sidering the different categories of targets, our analyses show
that, as expected, easy targets are easier to predict for the direct-
coupling-based methods and consensus-based methods, while
hard targets suffer lower precision scores. In the work of [34], it
was shown that direct-coupling methods (PSICOV and plmDCA)
and consensus-based methods (PconsC and PconsC2) have
higher precision for b and aþ b targets than a targets. The as-
sessment in this study suggests that this conclusion holds true
for all methods. The effect of alignment depth to contact predic-
tion has been investigated in some of the previous studies, such
as in CASP11 [42], MetaPSICOV [37], coinDCA [55] and PhyCMAP
[30]. Similar to that revealed in the CASP11 experiment [42], we
find that the number of diverse homologous sequences (i.e.
alignment depth) has weaker effect on the machine learning-
based methods compared with direct coupling-based methods.
In addition, our experiments suggest that the residues buried in
the core of protein structure are more prone to be in contact
than residues on the surface (22 versus 6%). As sequence-based
prediction of solvent accessibility is accurate, this conclusion
may be used for improving the contact prediction by considering
a higher probability of assigning contacts for residue pairs buried
in the core.

As direct improvements can be obtained by building meta
predictors, an effective selection of individual methods is neces-
sary. To illustrate this, we introduced the evaluation index of
Jaccard distance (J-score) for analysis of the similarity of the pre-
dicted contacts by different predictors. By estimating the theor-
etical upper limit of the contact prediction methods, we
investigated the feasibility of building ensembles that would
improve the accuracy of prediction.

Figure 6. The predicted contacts for a hard target (3l5xA). The PDB structure is shown in cartoon, and the center circle is the native contacts with lines indicating the

contacting pairs. Disulfide bonds (S-S bond) are shown in red color.
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As demonstrated in this study, the contact prediction is much
more accurate than before but still not satisfactory, especially for
targets with shallow alignment depth. The CASP11 experiments
and the literature have witnessed the progress of contact predic-
tions and successful application of predicted contacts to 3D struc-
ture modeling. Additional assessment on 17 CASP12 targets with
released structure information suggests that consensus-based
methods consistently outperform others. We believe that more
progress on protein contact prediction and structure modeling
will be made in the on-going CASP12 experiments.

Key Points

• A large data set consisting of 680 nonredundant pro-
teins covering different structural classes and target
difficulties was carefully collected for assessing con-
tact predictors.

• The performance of 15 locally installed predictors is
assessed and compared.

• The target difficulty does not have clear influence on
the machine learning-based methods, while it does af-
fect the direct-coupling and consensus-based methods
significantly.

• The alignment depth has weak (resp., strong) effect on
the machine learning-based methods (resp., direct-
coupling and consensus-based methods).

• Residues buried in the core of protein structure are
more prone to be in contact than residues on the
surface.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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Figure 7. The predicted contacts for an easy target (1vcaA). The PDB structure is shown in cartoon at the center. The residues around the outer circle are colored accord-

ing to the colors of b-strands.
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