
















The case of the easy b target (1vcaA) is shown in Figure 7.
There are three b-strands in the structure of this target. Some
methods designed for b–b contact prediction in the machine
learning-based methods, such as bbcontacts, PSpro.beta and
BETAcon, show excellent ability to predict the contacts in these
strands. The direct-coupling-based methods and consensus-
based methods have high precision for this target (> 0.4 for top
L, except for plmDCA, and > 0.75 for top L/5). In addition, the
pairs colored in red representing the disulfide bonds were cor-
rectly predicted by the majority of the methods.

Conclusions

Accurate prediction of residue–residue contact is critical for suc-
cessful prediction of protein structure, especially for ab initio
modeling targets. We performed a large-scale comparative re-
view of a set of 15 locally installed contact predictors. These
methods are categorized into three groups: machine learning-
based methods, direct-coupling-based methods and consensus-
based methods.

To benchmark and compare contact prediction methods, we
collected a large data set consisting of 680 nonredundant pro-
teins, that cover different structural classes (a, b and aþ b), and
target types (easy, medium and hard). Our analyses show that
the precisions of the top L/5 predicted long-range contacts by the
machine learning and direct-coupling-based predictors are
about 30 and 51%, respectively. The consensus-based methods,
which combine machine learning and direct-coupling methods,
achieve the highest precision of about 66%. The machine
learning-based methods are shown to be significantly better
than the direct-coupling-based methods for short-range contact
prediction, while the direct-coupling-based methods perform
better on long-range contact prediction. We note that this con-
clusion is largely consistent with the literature, especially with

the results of R2C [60]. Among the machine learning-based meth-
ods, the SVMSEQ and BETAcon usually significantly outperform
other predictors. The best performed methods among the direct-
coupling-based methods are CCMpred and GREMLIN. When con-
sidering the different categories of targets, our analyses show
that, as expected, easy targets are easier to predict for the direct-
coupling-based methods and consensus-based methods, while
hard targets suffer lower precision scores. In the work of [34], it
was shown that direct-coupling methods (PSICOV and plmDCA)
and consensus-based methods (PconsC and PconsC2) have
higher precision for b and a þ b targets than a targets. The as-
sessment in this study suggests that this conclusion holds true
for all methods. The effect of alignment depth to contact predic-
tion has been investigated in some of the previous studies, such
as in CASP11 [42], MetaPSICOV [37], coinDCA [55] and PhyCMAP
[30]. Similar to that revealed in the CASP11 experiment [42], we
find that the number of diverse homologous sequences (i.e.
alignment depth) has weaker effect on the machine learning-
based methods compared with direct coupling-based methods.
In addition, our experiments suggest that the residues buried in
the core of protein structure are more prone to be in contact
than residues on the surface (22 versus 6%). As sequence-based
prediction of solvent accessibility is accurate, this conclusion
may be used for improving the contact prediction by considering
a higher probability of assigning contacts for residue pairs buried
in the core.

As direct improvements can be obtained by building meta
predictors, an effective selection of individual methods is neces-
sary. To illustrate this, we introduced the evaluation index of
Jaccard distance (J-score) for analysis of the similarity of the pre-
dicted contacts by different predictors. By estimating the theor-
etical upper limit of the contact prediction methods, we
investigated the feasibility of building ensembles that would
improve the accuracy of prediction.

Figure 6. The predicted contacts for a hard target (3l5xA). The PDB structure is shown in cartoon, and the center circle is the native contacts with lines indicating the

contacting pairs. Disulfide bonds (S-S bond) are shown in red color.
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As demonstrated in this study, the contact prediction is much
more accurate than before but still not satisfactory, especially for
targets with shallow alignment depth. The CASP11 experiments
and the literature have witnessed the progress of contact predic-
tions and successful application of predicted contacts to 3D struc-
ture modeling. Additional assessment on 17 CASP12 targets with
released structure information suggests that consensus-based
methods consistently outperform others. We believe that more
progress on protein contact prediction and structure modeling
will be made in the on-going CASP12 experiments.

Key Points

• A large data set consisting of 680 nonredundant pro-
teins covering different structural classes and target
difficulties was carefully collected for assessing con-
tact predictors.

• The performance of 15 locally installed predictors is
assessed and compared.

• The target difficulty does not have clear influence on
the machine learning-based methods, while it does af-
fect the direct-coupling and consensus-based methods
significantly.

• The alignment depth has weak (resp., strong) effect on
the machine learning-based methods (resp., direct-
coupling and consensus-based methods).

• Residues buried in the core of protein structure are
more prone to be in contact than residues on the
surface.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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