








the Supporting Information A of (Yang and Chen, 2011). Therefore,

we suggest not using the DD dataset for training purpose in future

studies as the results from this dataset may be misleading.

3.2 Feature contribution and accuracy of SVM-fold
A total number of 574 features have been extracted. To investigate

their contribution to the overall prediction accuracy of SVM-fold,

they are divided into three groups: (S1) 80 PSI-BLAST-based fea-

tures; (S2) 34 PSIPRED-based features; and (S3) 460 HHblits-based

features. Figure 3 shows the performance obtained with all possible

combinations of feature groups on the five datasets.

When single-profile based features are used, the accuracy from

the PSIPRED-based features is the lowest (0.447–0.718) while that

from the HHblits-based features is the highest (0.729–0.92). The ac-

curacy from the PSI-BLAST-based features is slightly higher (�0.05)

than the PSIPRED-based features but significantly lower (>0.1)

than the HHblits-based features. This result is striking because both

PSSM and HMM represent the position-specific frequency profile

and they are of the same dimension (Lx20). A possible reason for

this difference is different methods are used to extract features.

Similar to the HHblits-based features, we extended the PSI-BASLST-

based features to the dimension of 460, and the corresponding ac-

curacy was improved marginally. Moreover, when adding them to

our final feature set, no significant improvement was observed (data

not shown). Thus for the PSI-BLAST profile, only 80 features were

kept in this study.

The accuracy is improved by the combination of different feature

groups. When combing the PSIPRED-based features with PSI-

BLAST-based features, the accuracy increases significantly by �0.1,

suggesting these two groups of features are complementary to each

other. Combination of the HHblits-based features with either the

PSI-BLAST- or PSIPRED-based features results to slight improve-

ment (0.01–0.04). The highest accuracy is achieved when all features

are used, i.e. 0.773, 0.9, 0.945, 0.865 and 0.84 for the DD, RDD,

EDD, TG and F184 datasets, respectively.

3.3 Accuracy of TA-fold
In TA-fold, we need to decide the E-value threshold of using either

HH-fold or SVM-fold. The RDD training set is used for this pur-

pose. A total of 9 thresholds (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5

and 10) were tested and the highest accuracy (0.865) was achieved

at the threshold of 0.05 (Supplementary Fig. S4). Similar to the case

of the parameter lmax, the E-value threshold 0.05 may not be opti-

mal for other datasets. However, our experiments suggest that the

accuracy does not change much when using dataset-specific E-value

thresholds. Thus for generality, this threshold is used for all datasets.

At this setting, the accuracy of TA-fold on the DD, RDD, EDD, TG

and F184 datasets are 0.799, 0.932, 0.971, 0.927 and 0.913,

respectively. This corresponds to the improvement of 2.8–8.7% and

0.5–5.1% over SVM-fold and HH-fold, respectively, suggesting that

SVM-fold and HH-fold are complementary to each other.

The statistical significance of the accuracy difference among

HH-fold, SVM-fold and TA-fold was investigated using the paired

Student’s t-tests. For each method, proteins with correctly/incor-

rectly predicted fold are labeled as 1/0. The P-values for the pairwise

comparisons are listed in Table 2. We can see that for the DD and

RDD datasets, the predictions by HH-fold and SVM-fold are essen-

tially the same as judged by the P-values (1 and 0.73). The ensemble

approach TA-fold does make statistically significant improvement

over SVM-fold and HH-fold as the P-values are smaller than 0.05.

On the large-size datasets EDD, TG and F184, HH-fold and TA-

fold predictions are much better than SVM-fold. This suggests the

advantage of template-based fold assignment over ab-initio fold

classification. The difference between TA-fold and HH-fold are not

significant on the EDD and TG datasets as witnessed by the respect-

ive P-values of 0.06 and 0.16, probably because the TA-fold predic-

tions are dominated by HH-fold for these two datasets. However,

on the largest dataset F184, TA-fold significantly outperforms

HH-fold at P-value 0.0114 (<0.05), which once again suggests that

HH-fold and SVM-fold is complementary to each other.

3.4 Comparison with machine learning-based ab-initio

methods
To demonstrate the effectiveness of the proposed methods, we com-

pare SVM-fold and TA-fold with machine learning-based ab-initio

methods on four benchmark datasets, DD, RDD, EDD and TG. The

results of F184 dataset are not available for other methods and this

dataset is not used for comparison. Many ab-initio methods have

been developed for protein fold classification. Five representative

ones were selected based on three criteria: (i) developed recently;

(ii) tested on most of the above four datasets and (iii) shown to have

competitive performance. As we do not have the per-protein predic-

tions for other methods, we are unable to perform statistical test to

estimate the significance level of the accuracy difference.

As the DD dataset was divided into training and independent

test sets, the accuracies reported were for the test set. However, for

the compared method ACCFold (Dong et al., 2009) (resp., NiRecor

(Cheung et al., 2016)), its accuracy was from a 2-fold (resp., 10-

fold) cross-validation. It was shown that the accuracy of ACCFold

would be 0.666 for the independent test set (Yang and Chen, 2011).

The accuracy of NiRecor decreased from 0.812 to 0.793 when

5-fold cross-validation was applied (Cheung et al., 2016). So it is un-

fair to compare with these two methods on the DD dataset and thus

omitted.

From Table 3, we can see that SVM-fold outperforms all com-

pared ab-initio methods by 0.6–8.2% on the four benchmark data-

sets. When we compare the ensemble approach TA-fold with the
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Fig. 3. The contribution of features to the overall accuracy of SVM-fold

Table 2. The P-values of the paired Student’s t-tests on the accur-

acy difference between the proposed methods

Dataset HH-fold

versus

SVM-fold

TA-fold

versus

SVM-fold

TA-fold

versus

HH-fold

DD 1 0.01 0.01

RDD 0.73 0.002 0.004

EDD 1.2391 � 10�4 2.6413 � 10�13 0.06

TG 1.0286 � 10�9 5.8514 � 10�20 0.16

F184 3.8401 � 10�52 1.7956 � 10�98 0.0114
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methods TAXFOLD, PFPA and HMMFold on the DD dataset, TA-

fold makes improvement of 5.4%, 8.6% and 11.7%, respectively.

For the RDD dataset, TA-fold achieved an accuracy of 0.932, which

is 26.3% and 12% higher than ACCFold and TAXFOLD, respect-

ively. For the extended DD dataset, EDD, the accuracy of all meth-

ods except ACCFold is higher than 0.9, suggesting that it is very

accurate to predict folds for proteins in the 27 SCOP folds. On the

EDD dataset, TA-fold achieves an accuracy of 0.971, 3.5% higher

than the second best method HMMFold. When the number of

SCOP folds is increased to 30 in the TG dataset, the accuracy of all

methods decreases. TA-fold is the first method to achieve>0.9 ac-

curacy on this dataset, which may be attributed mainly to the

template-based assignment algorithm HH-fold (see Table 2).

3.5 Comparison with template-based methods
As TA-fold combines template-based method with ab-initio method,

it is indispensable to compare it with template-based threading algo-

rithms. Three state-of-the-art threading methods are selected for

comparison: HHpred (Soding et al., 2005), SPARKS-X (Yang et al.,

2011) and FFAS-3D (Xu et al., 2014). A 2-fold cross-validation is

adopted to evaluate the accuracy on the LE dataset because it has

been applied to the same dataset by previous studies (Dong et al.,

2009; Lyons et al., 2015; Yang and Chen, 2011). Nevertheless, a 5-

fold cross-validation was also tested for TA-fold and similar accur-

acy was obtained (i.e. 0.822, 0.76 and 0.576 at the family, super-

family and fold levels, respectively), which suggests that there is no

overfitting with the 2-fold cross-validation. For each level (family,

superfamily or fold), the whole dataset is divided into two subsets

with the same procedure used in previous studies (Dong et al., 2009;

Lyons et al., 2015; Yang and Chen, 2011). The division at the super-

family/fold level was made in such a way that the training and test

proteins come from different families/superfamilies. In addition, for

each subset there should be at least one protein in each category so

that SVM-fold can be trained. For more details about the division,

one may refer to (Dong et al., 2009).

The test results are listed in Table 4. We can see that the accur-

acy for HH-fold is comparable to the state-of-the-art threading

methods at the family and fold levels. At the superfamily level, HH-

fold outperforms other threading methods by 11–26%. Note that

both HHpred and HH-fold use HHsearch for template identifica-

tion but with different results at the superfamily and fold levels.

This is mainly due to the fact that preprocessing was performed on

the LE dataset here.

As an ensemble approach TA-fold, it has the advantage of both

template-based method and ab-initio method. It is thus anticipated

that TA-fold outperforms other threading methods at each level of

the LE dataset. For example, TA-fold achieves an accuracy of 0.539

at the fold level, which is 19.2% higher than SPARKS-X, one of the

most popular threading methods. Though TA-fold performs well in

this test, it is necessary to point out that TA-fold does not provide

an alignment, nor cover as many folds as the other threading

methods.

3.6 Application of TA-fold to structural class prediction
As mentioned earlier, the first level of the SCOP hierarchy is struc-

tural class, in which four main classes exist: a, b, a/b and aþb.

Many methods have been proposed to predict structural class from

amino acid sequence over the past two decades (Chou and Zhang,

1995; Mizianty and Kurgan, 2009; Yang et al., 2010; Yang et al.,

2009). We applied TA-fold to the structural class prediction using

five benchmark datasets, where the native class information was

taken from the SCOP database. For each dataset, the proteins that

do not belong to any of the four classes were removed before run-

ning TA-fold.

The prediction accuracy of TA-fold is listed in Table 5. We can

see the overall accuracies for the RDD, EDD, TG and F184 datasets

are>0.95. The accuracy on DD is relatively lower probably due to

the errors in this dataset mentioned in the Section 3.1. The accuracy

Table 4. Comparison with threading methods on the LE dataset

Method Family Superfamily Fold

(555/176) (434/86) (321/38)

HHpred 0.829 0.588 0.252

FFAS-3D 0.849 0.666 0.358

SPARKS-X 0.841 0.59 0.452

HH-fold 0.845 0.74 0.421

TA-fold 0.852 0.742 0.539

The accuracies for other methods are taken from (Xu et al., 2014). The

numbers in parentheses are the number of sequences/categories. The best re-

sults are highlighted in bold type.

Table 5. The comparison of TA-fold with RKS_PPSC for structural

class prediction

Dataset Method/# Accuracy

a b a/b aþ b Overall

#Samples 61 117 143 35 356

DD RKS_PPSC 0.836 0.803 0.657 0.714 0.75

TA-fold 0.934 0.966 0.832 0.543 0.862

#Samples 60 117 142 34 353

RDD RKS_PPSC 0.867 0.88 0.859 0.853 0.867

TA-fold 1 0.974 0.986 0.686 0.955

#Samples 556 967 1311 460 3294

EDD RKS_PPSC 0.883 0.895 0.874 0.822 0.874

TA-fold 0.996 0.993 0.995 0.97 0.991

#Samples 252 478 589 185 1504

TG RKS_PPSC 0.909 0.845 0.883 0.8 0.865

TA-fold 0.976 0.983 0.992 0.876 0.972

#Samples 1185 1471 1828 1423 5907

F184 RKS_PPSC 0.915 0.829 0.851 0.73 0.829

TA-fold 0.986 0.987 0.976 0.954 0.975

Table 3. The accuracy of SVM-fold and TA-fold and other methods

for protein fold classification

Method (Reference) Dataset

DD RDD EDD TG

ACCFold (Dong et al., 2009) 0.701a 0.738c 0.859 0.664

TAXFOLD (Yang and Chen, 2011) 0.715 0.832 0.9 NA

PFPA (Wei et al., 2015) 0.736 NA 0.926 NA

HMMFold (Lyons et al., 2015) 0.758 NA 0.938 0.86

NiRecor (Cheung et al., 2016) 0.812b NA 0.917 0.846

SVM-fold (This Article) 0.773 0.9 0.945 0.865

TA-fold (This Article) 0.799 0.932 0.971 0.927

For the DD and RDD datasets, the accuracy reported is for the independent

dataset. For the EDD and TG datasets, the accuracy was obtained using 10-

fold cross-validation. The best results are highlighted in bold type.
afrom 2-fold cross-validation;
bfrom 10-fold cross-validation;
cfrom Ref. (Yang and Chen, 2011).
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for proteins in the aþb class is lower than other classes, especially

for the DD and RDD datasets probably because the number of pro-

teins in this class is relatively smaller than others. We looked into

the predictions and found that for these two datasets, some proteins

in the aþb class were wrongly predicted into the a/b class. This may

be explained by the fact that there are some overlap between the

aþb and a/b proteins because both classes contain structural motifs

of a-helices and b-strands. We note that even human experts may

differ in categorizing proteins in these two classes. For example, the

CATH database merges them into a single ab class (Sillitoe et al.,

2015).

TA-fold is compared with RKS_PPSC (Yang et al., 2010), one of

the best programs for structural class prediction using predicted sec-

ondary structure. Note that there are some other good structural

class prediction programs, such as the iFC2 (Chen et al., 2011) and

MODAS (Mizianty and Kurgan, 2009). However, RKS_PPSC was

selected for the sake of easy comparisons as we have the source

codes and executables to run it locally for all datasets. The results of

RKS_PPSC are listed in Table 5 as well. We can see that the overall

accuracy of TA-fold is significantly higher than RKS_PPSC on all

datasets, though the accuracy for the aþb class in the DD and RDD

datasets is higher for RKS_PPSC. This demonstrates that TA-fold is

also effective for structural class prediction.

3.7 Online TA-fold server
To facilitate the use of TA-fold, we have setup a web server to im-

plement the TA-fold algorithm, which is freely available at http://

yanglab.nankai.edu.cn/TA-fold. The only input information is the

amino acid sequence of the query protein to be predicted. A job ID

will be assigned to each submission. After the job is finished, a noti-

fication email will be sent to the users for accessing the prediction re-

sults. In general, the prediction can be completed within 15 min. The

output of the server includes the predicted fold together with a con-

fidence score (C-score), a summary of the submitted sequence, pre-

dicted secondary structure and sequence profiles. The C-score is in

the range of [0, 1], obtained from the probability outputs of SVM

and HHsearch. In general, a higher C-score indicates a more reliable

prediction. Based on the analysis of the predictions on RDD dataset,

a recommended C-score cutoff for trusting a prediction is 0.22, at

which 96% proteins are predicted with an accuracy of 0.96

(Supplementary Fig. S5).

Note that the server takes each submission as a single-domain

protein. Thus when the query protein contains multiple domains, it

is advisable to split the protein into domains using other domain

prediction software and submit each domain sequence to the server.

This may be made automated by developing in-house domain pars-

ing algorithm in future.

We estimate the possibility that the fold of a protein can be clas-

sified with the server as follows. The maximum number of folds that

TA-fold could deal with is 184 (in the F184 dataset). As mentioned

before, there are 8679 sequences from 1222 folds at 25% sequence

identity cutoff in the SCOPe database. After filtering, 6451 proteins

from 184 folds were kept in the F184 dataset. Therefore, though the

proportion of folds considered is small (15%¼184/1222), the possi-

bility of a query protein being a TA-fold target is high (74%¼6451/

8679). Anyway, SVM-fold is not applicable for the remaining 26%

proteins that do not belong to any of the 184 folds. The SVM-fold

models remain to be re-built in future when there are enough sam-

ples for training.

To partially solve the above limitation, we incorporated proteins

from other folds in the SCOP database into the HH-fold database.

Currently, the maximum number of folds considered is 1193 (list

available at http://yanglab.nankai.edu.cn/TA-fold/1193_name.txt).

When the query proteins do not belong to any of the 184-folds and

the confidence scores of the predictions are anticipated to be lower

(<0.22), users are encouraged to check the prediction results in the

1193 folds.

4 Conclusions

Accurate classification of protein fold is essential for protein struc-

ture prediction. We have developed two complementary algorithms,

HH-fold for template-based fold assignment, and SVM-fold for sup-

port vector machine-based ab-initio fold classification using features

extracted from three complementary sequence profiles. These two

algorithms are then combined to make accurate and robust fold type

prediction, resulting to the ensemble approach TA-fold.

The proposed methods were assessed and compared with both

machine learning-based ab-initio methods and template-based

threading methods on six benchmark datasets. Experiments show

that TA-fold consistently outperforms both ab-initio and threading

methods. TA-fold was successfully applied to the problem of protein

structural class prediction with accuracy of>0.95 for datasets of

updated class information. We attribute the success of TA-fold to

three factors: (1) template-based fold assignment; (2) ab-initio classi-

fication using features from three complementary sequence profiles

that contain rich evolution information of query protein; and (3) in-

tegration of (1) and (2).
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