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POSITIVE SCALAR CURVATURE ON FOLIATIONS

WEIPING ZHANG

Abstract. We generalize classical theorems due to Lichnerowicz and Hitchin on the

existence of Riemannian metrics of positive scalar curvature on spin manifolds to the

case of foliated spin manifolds. As a consequence, we show that there is no foliation of

positive leafwise scalar curvature on any torus, which generalizes the famous theorem

of Schoen-Yau and Gromov-Lawson on the non-existence of metrics of positive scalar

curvature on torus to the case of foliations. Moreover, our method, which is partly

inspired by the analytic localization techniques of Bismut-Lebeau, also applies to give a

new proof of the celebrated Connes vanishing theorem without using noncommutative

geometry.
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0. Introduction

It has been an important subject in differential geometry to study when a smooth

manifold carries a Riemannian metric of positive scalar curvature (cf. [18, Chap. IV]

and [12]). In this paper, we study related problems on foliations.

Let F be an integrable subbundle of the tangent vector bundle TM of a smooth

manifold M . For any Euclidean metric gF on F , let kF ∈ C∞(M), which will be called

the leafwise scalar curvature associated to gF , be defined as follows: for any x ∈ M , the

integrable subbundle F determines a leaf Fx passing through x such that F |Fx
= TFx.

Then, gF determines a Riemannian metric on Fx. Let kFx denote the scalar curvature
1
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2 WEIPING ZHANG

of this Riemannian metric. We define

kF (x) = kFx(x).(0.1)

For a closed spin manifold M , let Â(M) be the canonical KO-characteristic number

of M defined by that if dimM = 8k + 4i with i = 0 or 1, then Â(M) = 3+(−1)i

4
Â(M);1

if dimM = 8k + i with i = 1 or 2, then Â(M) ∈ Z2 is the Atiyah-Milnor-Singer α

invariant;2 while in other dimensions one takes Â(M) = 0.

The main result of this paper can be stated as follows.

Theorem 0.1. Let F be an integrable subbundle of the tangent bundle of a closed spin

manifold M . If F carries a metric of positive leafwise scalar curvature, then Â(M) = 0.

When F = TM , one recovers the classical theorems due to Lichnerowicz [19] (for the

case of dimM = 4k) and Hitchin [17] (for the cases of dimM = 8k + 1 and 8k + 2).

Example 0.2. Take any 8k+1 dimensional closed spin manifoldM such that Â(M) 6= 0.

By a result of Thurston [27], there always exists a codimension one foliation on M .

However, by our result, there is no metric of positive leafwise scalar curvature on the

associated integrable subbundle of TM .

Remark 0.3. It is a longstanding open question in foliation theory (cf. [33, Remark

C14]) that whether the existence of gF with kF > 0 implies the existence of gTM with

kTM > 0. This question admits an easy positive answer in the case where (M,F ) carries

a transverse Riemannian structure (when such a transverse Riemannian structure exists,

(M,F ) is called a Riemannian foliation). An approach to this question for codimension

one foliations is outlined in the long paper of Gromov [12, page 193].

Combining Theorem 0.1 with the well-known results of Gromov-Lawson [14] and Stolz

[26], one gets the following consequence which provides a positive answer to the above

question for simply connected manifolds of dimension greater than or equal to five.

Corollary 0.4. Let F be an integrable subbundle of the tangent bundle of a closed simply

connected manifold M with dimM ≥ 5. If F carries a metric of positive leafwise scalar

curvature, then M admits a Riemannian metric of positive scalar curvature.

For non-simply connected manifolds, recall that a famous result due to Schoen-Yau [25]

and Gromov-Lawson [13] states that there is no metrics of positive scalar curvature on

any torus. By combining Theorem 0.1 with the techniques of Lusztig [23] and Gromov-

Lawson [13], one obtains the following generalization to the case of foliations.

Corollary 0.5. There exists no foliation (T n, F ) on any torus T n such that the integrable

subbundle F of T (T n) carries a metric of positive leafwise scalar curvature.

If F is further assumed to be spin, then Corollaries 0.4 and 0.5 can also be deduced

from the following celebrated vanishing theorem of Connes, which provides another kind

of generalization of the Lichnerowicz theorem [19] to the case of foliations.

1Cf. [31, pp. 13] for a definition of the Hirzebruch Â-genus Â(M).
2Cf. [18, §2.7] for a definition.
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Theorem 0.6. (Connes [10, Theorem 0.2]) Let F be a spin integrable subbundle of

the tangent bundle of a compact oriented manifold M . If F carries a metric of positive

leafwise scalar curvature, then Â(M) = 0.

Recall that the proof of Theorem 0.6 outlined in [10] makes use of noncommutative

geometry in an essential way. It is based on the Connes-Skandalis longitudinal index

theorem for foliations [11] as well as the techniques of cyclic cohomology. Thus it relies

on the spin structure on F , and we do not see how to adapt it to prove Theorem 0.1,

where one assumes TM being spin instead.

On the other hand, while Theorem 0.1 is different from Connes’ result and also covers

the cases of dimM = 8k + 1 and 8k + 2 where the Hirzebruch Â-genus vanishes tauto-

logically, a common difficulty for both Theorems 0.1 and 0.6 is that there might be no

transverse Riemannian structure on the underlying foliated manifold.

To overcome this difficulty, Connes [10] introduces an important geometric idea, which

reduces the original problem to that on a fibration3 over the foliation under consideration.

The key advantage of this fibration is that the lifted (from the original) foliation is almost

isometric, i.e., very close to Riemannian foliations. On the other hand, however, this

fibration is noncompact. This makes the proof of Theorem 0.6 in [10], which relies

essentially on the noncommutative techniques, highly nontrivial.

Our proof of Theorem 0.1 is differential geometric and does not use noncommutative

geometry. It makes use of the sub-Dirac operators constructed in [22, §2b)] on the Connes

fibration, as well as the adiabatic limit computations on foliations also considered in [22].

The key point is that while Connes’ noncommutative proof of Theorem 0.6 relies heavily

on the analysis near the (fiberwise) infinity of the associated Connes fibration, our main

concern is on a compact subset of the Connes fibration. To be more precise, inspired

by [5], [6] and [10], we introduce a specific deformation of the sub-Dirac operator on the

Connes fibration and show that the deformed operator is “invertible” on certain compact

subsets of the Connes fibration (cf. (2.21) in Section 2.2 for more details).

Moreover, by modifying the sub-Dirac operators mentioned above (see Section 1.4 for

more details), our method applies to give a purely geometric proof of Theorem 0.6. This

new proof provides a positive answer to a longstanding question in index theory (cf. [16,

Page 5 of Lecture 9]).

We would like to mention that the idea of constructing sub-Dirac operators has also

been used in [20] to prove a generalization of the Atiyah-Hirzebruch vanishing theorem

for circle actions [1] to the case of foliations.

This paper is organized as follows. In Section 1, we discuss the case of almost isometric

foliations and carry out the local computations. We also introduce the sub-Dirac operator

in this case and prove Theorem 0.6 in the case where the underlying foliation is compact.

In Section 2, we work on noncompact Connes fibrations and carry out the proofs of

Theorems 0.1 and 0.6. We also include some new results in the end of the paper.

3Which will be called a Connes fibration in what follows.
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1. Adiabatic limit and almost isometric foliations

In this section, we discuss the geometry of almost isometric foliations in the sense of

Connes [10]. We introduce for this kind of foliations a rescaled metric and show that

the leafwise scalar curvature shows up from the limit behavior of the rescaled scalar

curvature. We also introduce in this setting the sub-Dirac operators inspired by the

original construction given in [22]. Finally, by combining the above two procedures, we

prove a vanishing result when the almost isometric foliation under discussion is compact.

This section is organized as follows. In Section 1.1, we recall the definition of the

almost isometric foliation in the sense of Connes. In Section 1.2 we introduce a rescaling

of the given metric on the almost isometric foliation and study the corresponding limit

behavior of the scalar curvature. In Section 1.3, we study Bott type connections on

certain bundles transverse to the integrable subbundle. In Section 1.4, we construct the

required sub-Dirac operator and compute the corresponding Lichnerowicz type formula.

In Section 1.5 we prove a vanishing result when the almost isometric foliation is compact

and verifies the conditions in Theorem 0.6.

1.1. Almost isometric foliations. Let (M,F ) be a foliated manifold, where F is an

integrable subbundle of the tangent vector bundle TM of a smooth manifold M , i.e., for

any smooth sections X, Y ∈ Γ(F ), one has

[X, Y ] ∈ Γ(F ).(1.1)

Take a splitting TM = F ⊕ TM/F . Let pTM/F : TM = F ⊕ TM/F → TM/F be the

canonical projection. Following [7], we define the Bott connection to be any connection

∇TM/F on TM/F so that for any X ∈ Γ(F ) and U ∈ Γ(TM/F ), one has

∇TM/F
X U = pTM/F [X,U ].(1.2)

The key property of the Bott connection is that it is leafwise flat, that is, for any

X, Y ∈ Γ(F ), one has (cf. [31, Lemma 1.14])
(
∇TM/F

)2
(X, Y ) = 0.(1.3)

However, it may happen that ∇TM/F does not preserve any metric on TM/F .

Let G be the holonomy groupoid of (M,F ) (cf. [28]).

We make the assumption that there is a proper subbundle E of TM/F and choose a

splitting

TM/F = E ⊕ (TM/F )/E.(1.4)

Let q1, q2 denote the ranks of E and (TM/F )/E respectively.

Definition 1.1. (Connes [10, Section 4]) If there exists a metric gTM/F on TM/F with

its restrictions to E and (TM/F )/E such that the action of G on TM/F takes the form
(

O(q1) 0

A O(q2)

)
,(1.5)

where O(q1), O(q2) are orthogonal matrices of ranks q1, q2 respectively, and A is a q2×q1
matrix, then we say that (M,F ) carries an almost isometric structure.



POSITIVE SCALAR CURVATURE ON FOLIATIONS 5

Clearly, the existence of the almost isometric structure does not depend on the splitting

(1.4). We assume from now on that (M,F ) carries an almost isometric structure as above.

For simplicity, we denote E, (TM/F )/E by F⊥
1 , F⊥

2 respectively.

Let gF be a metric on F . Let gF
⊥
1 , gF

⊥
2 be the restrictions of gTM/F to F⊥

1 , F⊥
2 . Let

gTM be a metric on TM so that we have the orthogonal splitting

TM = F ⊕ F⊥
1 ⊕ F⊥

2 , gTM = gF ⊕ gF
⊥
1 ⊕ gF

⊥
2 .(1.6)

Let ∇TM be the Levi-Civita connection associated to gTM .

From the almost isometric condition (1.5), one deduces that for anyX ∈ Γ(F ), Ui, Vi ∈
Γ(F⊥

i ), i = 1, 2, the following identities, which may be thought of as infinitesimal

versions of (1.5), hold (cf. [22, (A.5)]):

〈[X,Ui], Vi〉+ 〈Ui, [X, Vi]〉 = X〈Ui, Vi〉,
〈[X,U2], U1〉 = 0.

(1.7)

Equivalently,
〈
X,∇TM

Ui
Vi +∇TM

Vi
Ui

〉
= 0,

〈
∇TM

X U2, U1

〉
+
〈
X,∇TM

U2
U1

〉
= 0.

(1.8)

In this paper, for simplicity, we also make the following assumption. This assumption

holds by the Connes fibration to be dealt with in the next section.

Definition 1.2. We call an almost isometric foliation as above verifies Condition (C) if

F⊥
2 is also integrable. That is, for any U2, V2 ∈ Γ(F⊥

2 ), one has

[U2, V2] ∈ Γ
(
F⊥
2

)
.(1.9)

1.2. Adiabatic limit and the scalar curvature. In this subsection, we study the

relationship between the leafwise scalar curvature and the scalar curvature on the total

manifold of an almost isometric foliation. For convenience, we recall the formula for the

Levi-Civita connection (cf. [4, (1.18)]) that for any X, Y, Z ∈ Γ(TM),

(1.10) 2
〈
∇TM

X Y, Z
〉
= X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X, Y 〉

+ 〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉.

Recall that by [22, Proposition A.2], if one rescales the metric gF
⊥
1 to 1

ε2
gF

⊥
1 and takes

ε → 0, then the almost isometric foliation in the sense of Definition 1.1 becomes an almost

Riemannian foliation in the sense of [22, Definition 2.1]. In order to get information on

the leafwise scalar curvature, one further rescales the metric 1
ε2
gF

⊥
1 ⊕ gF

⊥
2 (standardly)

to 1
β2 (

1
ε2
gF

⊥
1 ⊕ gF

⊥
2 ) (compare with [22, (1.4)] and [21]), which is equivalent to rescaling

gF to β2gF . Putting these two rescaling procedures together, it is natural to introduce

the following defomation of gTM .

For any β, ε > 0, let gTM
β,ε be the rescaled Riemannian metric on TM defined by

gTM
β,ε = β2gF ⊕ 1

ε2
gF

⊥
1 ⊕ gF

⊥
2 .(1.11)

We will always assume that 0 < β, ε ≤ 1.
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We will use the subscripts and/or superscripts “β, ε” to decorate the geometric data

associated to gTM
β,ε . For example, ∇TM,β,ε will denote the Levi-Civita connection associ-

ated to gTM
β,ε . When the corresponding notation does not involve “β, ε”, we will mean

that it corresponds to the case of β = ε = 1.

Let p, p⊥1 , p
⊥
2 be the orthogonal projections from TM to F , F⊥

1 , F⊥
2 with respect to

the orthogonal splitting (1.6). Let ∇F,β,ε, ∇F⊥
1 ,β,ε, ∇F⊥

2 ,β,ε be the Euclidean connections

on F , F⊥
1 , F⊥

2 defined by

∇F,β,ε = p∇TM,β,εp, ∇F⊥
1 ,β,ε = p⊥1 ∇TM,β,εp⊥1 , ∇F⊥

2 ,β,ε = p⊥2 ∇TM,β,εp⊥2 .(1.12)

In particular, one has

∇F = p∇TMp, ∇F⊥
1 = p⊥1 ∇TMp⊥1 , ∇F⊥

2 = p⊥2 ∇TMp⊥2 .(1.13)

By (1.10)-(1.13) and the integrability of F , the following identities hold for X ∈ Γ(F ):

∇F,β,ε = ∇F , p∇TM,β,ε
X p⊥i = p∇TM

X p⊥i , i = 1, 2,(1.14)

p⊥1 ∇TM,β,ε
X p = β2ε2p⊥1 ∇TM

X p, p⊥2 ∇TM,β,ε
X p = β2p⊥2 ∇TM

X p.

From (1.7)-(1.11), we deduce that for X ∈ Γ(F ), Ui, Vi ∈ Γ(F⊥
i ), i = 1, 2,

〈
∇TM,β,ε

U1
V1, X

〉
=
〈
∇TM

U1
V1, X

〉
=

1

2
〈[U1, V1] , X〉 ,(1.15)

while
〈
∇TM,β,ε

U2
V2, X

〉
=
〈
∇TM

U2
V2, X

〉
=

1

2
〈[U2, V2] , X〉 = 0.(1.16)

Equivalently, for any Ui ∈ Γ(F⊥
i ), i = 1, 2,

p⊥1 ∇TM,β,ε
U1

p = β2ε2p⊥1 ∇TM
U1

p, p⊥2 ∇TM,β,ε
U2

p = 0.(1.17)

Similarly, one verifies that
〈
∇TM,β,ε

U1
X,U2

〉
=

1

2
〈[U1, X ], U2〉 −

β2

2
〈[U1, U2], X〉 ,(1.18)

〈
∇TM,β,ε

U2
X,U1

〉
=

ε2

2
〈[U1, X ], U2〉+

β2ε2

2
〈[U1, U2], X〉 .

For convenience of the later computations, we collect the asymptotic behavior of var-

ious covariant derivatives in the following lemma. These formulas can be derived by

applying (1.7)-(1.18). The inner products appear in the lemma correspond to β = ε = 1.

Lemma 1.3. The following formulas hold for X, Y, Z ∈ Γ(F ), Ui, Vi, Wi ∈ Γ(F⊥
i ) with

i = 1, 2, when β > 0, ε > 0 are small,

〈
∇TM,β,ε

X Y, Z
〉
= O(1),

〈
∇TM,β,ε

X Y, U1

〉
= O

(
β2ε2

)
,
〈
∇TM,β,ε

X Y, U2

〉
= O

(
β2
)
,

(1.19)

〈
∇TM,β,ε

X U1, Y
〉
= O (1) ,

〈
∇TM,β,ε

X U1, V1

〉
= O (1) ,

〈
∇TM,β,ε

X U1, U2

〉
= O (1) ,

(1.20)
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〈
∇TM,β,ε

X U2, Y
〉
= O (1) ,

〈
∇TM,β,ε

X U2, U1

〉
= O

(
ε2
)
,
〈
∇TM,β,ε

X U2, V2

〉
= O (1) ,

(1.21)

〈
∇TM,β,ε

U1
X, Y

〉
= O (1) ,

〈
∇TM,β,ε

U1
X, V1

〉
= O

(
β2ε2

)
,
〈
∇TM,β,ε

U1
X,U2

〉
= O (1) ,

(1.22)

〈
∇TM,β,ε

U1
V1, X

〉
= O (1) ,

〈
∇TM,β,ε

U1
V1,W1

〉
= O (1) ,

〈
∇TM,β,ε

U1
V1, U2

〉
= O

(
1

ε2

)
,

(1.23)

〈
∇TM,β,ε

U1
U2, X

〉
= O

(
1

β2

)
,
〈
∇TM,β,ε

U1
U2, V1

〉
= O (1) ,

〈
∇TM,β,ε

U1
U2, V2

〉
= O (1) ,

(1.24)

〈
∇TM,β,ε

U2
X, Y

〉
= O (1) ,

〈
∇TM,β,ε

U2
X,U1

〉
= O

(
ε2
)
,
〈
∇TM,β,ε

U2
X, V2

〉
= 0,(1.25)

〈
∇TM,β,ε

U2
U1, X

〉
= O

(
1

β2

)
,
〈
∇TM,β,ε

U2
U1, V1

〉
= O (1) ,

〈
∇TM,β,ε

U2
U1, V2

〉
= O (1) ,

(1.26)

〈
∇TM,β,ε

U2
V2, X

〉
= 0,

〈
∇TM,β,ε

U2
V2, U1

〉
= O

(
ε2
)
,
〈
∇TM,β,ε

U2
V2,W2

〉
= O (1) .(1.27)

Proof. Formulas in (1.19) follows from (1.14).

The first formula in (1.20) follows from (1.11) and the second formula in (1.19). The

second one is trivial and the third one follows from (1.18).

The first formula in (1.21) follows from (1.11) and the third formula in (1.19). The

second one follows from the second formulas in (1.7) and (1.18). The third one is trivial.

The first formula in (1.22) follows from (1.1), (1.10) and (1.11). The second one follows

from (1.17) and the third one follows from the first formula in (1.18).

The first formula in (1.23) follows from (1.11) and the second formula in (1.22). The

second formula is trivial. For the third formula, the 1
ε2

factor comes from the terms

involving 〈[U1, U2], V1〉, 〈[V1, U2], U1〉 and U2〈U1, V1〉.
The first formula in (1.24) follows from the first formula in (1.18). The second one is

trivial, and the third one follows from (1.9).

The first formula in (1.25) follows from the first formula in (1.14). The second one

follows from the second formula in (1.18), and third one follows from (1.16).

The first formula in (1.26) follows from (1.11) and the second formula in (1.25). The

second one is trivial, and the third one follows from (1.9).

The first formula in (1.27) follows from the third formula in (1.25). The second one

follows from the third formula in (1.26), and the third one is trivial.

The proof of Lemma 1.3 is completed. �
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In what follows, when we compute the asymptotics of various covariant derivatives,

we will simply use the above asymptotic formulas freely without further notice.

Let RTM,β,ε = (∇TM,β,ε)2 be the curvature of ∇TM,β,ε. Then for any X, Y ∈ Γ(TM),

one has the following standard formula,

RTM,β,ε(X, Y ) = ∇TM,β,ε
X ∇TM,β,ε

Y −∇TM,β,ε
Y ∇TM,β,ε

X −∇TM,β,ε
[X,Y ] .(1.28)

Let RF = (∇F )2 be the curvature of ∇F . Let kTM,β,ε, kF denote the scalar curvatures

of gTM,β,ε, gF respectively. Recall that kF is defined in (0.1). The following formula for

kF is obvious,

kF = −
rk(F )∑

i, j=1

〈
RF (fi, fj) fi, fj

〉
,(1.29)

where fi, i = 1, · · · , rk(F ), is an orthonormal basis of (F, gF ). Clearly, when F = TM ,

it reduces to the usual definition of the scalar curvature kTM of gTM .

Proposition 1.4. If Condition (C) holds, then when β > 0, ε > 0 are small, the

following formula holds uniformly on any compact subset of M ,

kTM,β,ε =
kF

β2
+O

(
1 +

ε2

β2

)
.(1.30)

Proof. By (1.1), (1.14), (1.28) and Lemma 1.3, one deduces that when β > 0, ε > 0 are

very small, for any X, Y ∈ Γ(F ), one has

(1.31)
〈
RTM,β,ε(X, Y )X, Y

〉
=
〈
∇TM,β,ε

X

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

Y X, Y
〉

−
〈
∇TM,β,ε

Y

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

X X, Y
〉
−
〈
∇TM,β,ε

[X,Y ] X, Y
〉

=
〈
RF (X, Y )X, Y

〉
− β2ε2

〈
p⊥1 ∇TM

Y X,∇TM
X Y

〉
− β2

〈
p⊥2 ∇TM

Y X,∇TM
X Y

〉

+ β2ε2
〈
p⊥1 ∇TM

X X,∇TM
Y Y

〉
+ β2

〈
p⊥2 ∇TM

X X,∇TM
Y Y

〉

=
〈
RF (X, Y )X, Y

〉
+O

(
β2
)
.

For X ∈ Γ(F ), U ∈ Γ(F⊥
1 ), by (1.7)-(1.28), one finds that when β, ε > 0 are small,

(1.32)
〈
RTM,β,ε(X,U)X,U

〉
=
〈
∇TM,β,ε

X

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

U X,U
〉

−
〈
∇TM,β,ε

U

(
p + p⊥1 + p⊥2

)
∇TM,β,ε

X X,U
〉
−
〈
∇TM,β,ε

(p+p⊥1 +p⊥2 )[X,U ]
X,U

〉

= β2ε2
〈
∇TM

X p∇TM
U X,U

〉
+ β2ε2

〈
∇TM,β,ε

X p⊥1 ∇TM
U X,U

〉
− ε2

〈
p⊥2 ∇TM,β,ε

U X,∇TM,β,ε
X U

〉

−β2ε2
〈
∇TM

U p∇TM
X X,U

〉
− β2ε2

〈
∇TM,β,ε

U p⊥1 ∇TM
X X,U

〉
+ ε2

〈
p⊥2 ∇TM,β,ε

X X,∇TM,β,ε
U U

〉

−β2ε2
〈
∇TM

(p+p⊥1 )[X,U ]
X,U

〉
−
〈
∇TM,β,ε

p⊥2 [X,U ]
X,U

〉
= O

(
β2 + ε2

)
.
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Similarly, for X ∈ Γ(F ), U ∈ Γ(F⊥
2 ), one has that when β > 0, ε > 0 are small,

(1.33)
〈
RTM,β,ε(X,U)X,U

〉
=
〈
∇TM,β,ε

X

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

U X,U
〉

−
〈
∇TM,β,ε

U

(
p + p⊥1 + p⊥2

)
∇TM,β,ε

X X,U
〉
−
〈
∇TM,β,ε

(p+p⊥1 +p⊥2 )[X,U ]
X,U

〉

= β2
〈
∇TM

X p∇TM
U X,U

〉
− 1

ε2

〈
p⊥1 ∇TM,β,ε

U X,∇TM,β,ε
X U

〉
+ β2

〈
∇TM,β,ε

X p⊥2 ∇TM
U X,U

〉

−β2
〈
∇TM

U p∇TM
X X,U

〉
− β2ε2

〈
∇TM,β,ε

U p⊥1 ∇TM
X X,U

〉
− β2

〈
∇TM,β,ε

U p⊥2 ∇TM
X X,U

〉

−β2
〈
∇TM

p[X,U ]X,U
〉
− β2

〈
∇TM

p⊥2 [X,U ]X,U
〉
= O

(
β2 + ε2

)
.

For U, V ∈ Γ(F⊥
1 ), one verifies that

(1.34)
〈
RTM,β,ε(U, V )U, V

〉
=
〈
∇TM,β,ε

U

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

V U, V
〉

−
〈
∇TM,β,ε

V

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

U U, V
〉
−
〈
∇TM,β,ε

(p+p⊥1 +p⊥2 )[U,V ]
U, V

〉

= β2ε2
〈
∇TM

U p∇TM,β,ε
V U, V

〉
+
〈
∇TM

U p⊥1 ∇TM
V U, V

〉
− ε2

〈
p⊥2 ∇TM,β,ε

V U,∇TM,β,ε
U V

〉

−β2ε2
〈
∇TM

V p∇TM,β,ε
U U, V

〉
−
〈
∇TM

V p⊥1 ∇TM
U U, V

〉
+ ε2

〈
p⊥2 ∇TM,β,ε

U U,∇TM,β,ε
V V

〉

−
〈
∇TM,β,ε

p[U,V ] U, V
〉
−
〈
∇TM

p⊥1 [U,V ]U, V
〉
−
〈
∇TM,β,ε

p⊥2 [U,V ]
U, V

〉

= −ε2
〈
p⊥2 ∇TM,β,ε

V U,∇TM,β,ε
U V

〉
+ ε2

〈
p⊥2 ∇TM,β,ε

U U,∇TM,β,ε
V V

〉
+O (1) = O

(
1

ε2

)
,

from which one gets that when β > 0, ε > 0 are small,

ε2
〈
RTM,β,ε(U, V )U, V

〉
= O (1) .(1.35)

For U, V ∈ Γ(F⊥
2 ), one verifies directly that

(1.36)
〈
RTM,β,ε(U, V )U, V

〉
=
〈
∇TM,β,ε

U

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

V U, V
〉

−
〈
∇TM,β,ε

V

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

U U, V
〉
−
〈
∇TM,β,ε

[U,V ] U, V
〉

= β2
〈
∇TM

U p∇TM,β,ε
V U, V

〉
− 1

ε2

〈
p⊥1 ∇TM,β,ε

V U,∇TM,β,ε
U V

〉
+
〈
∇TM

U p⊥2 ∇TM
V U, V

〉

− β2
〈
∇TM

V p∇TM,β,ε
U U, V

〉
+

1

ε2

〈
p⊥1 ∇TM,β,ε

U U,∇TM,β,ε
V V

〉
−
〈
∇TM

V p⊥2 ∇TM
U U, V

〉

−
〈
∇TM

[U,V ]U, V
〉
= O(1).
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For U ∈ Γ(F⊥
1 ), V ∈ Γ(F⊥

2 ), one verifies directly that,

(1.37)
〈
RTM,β,ε(U, V )U, V

〉
=
〈
∇TM,β,ε

U

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

V U, V
〉

−
〈
∇TM,β,ε

V

(
p+ p⊥1 + p⊥2

)
∇TM,β,ε

U U, V
〉
−
〈
∇TM,β,ε

[U,V ] U, V
〉

= −β2
〈
p∇TM,β,ε

V U,∇TM,β,ε
U V

〉
− 1

ε2

〈
p⊥1 ∇TM,β,ε

V U,∇TM,β,ε
U V

〉
+
〈
∇TM,β,ε

U p⊥2 ∇TM,β,ε
V U, V

〉

+ β2
〈
p∇TM,β,ε

U U,∇TM,β,ε
V V

〉
+

1

ε2

〈
p⊥1 ∇TM,β,ε

U U,∇TM,β,ε
V V

〉
−
〈
∇TM

V p⊥2 ∇TM,β,ε
U U, V

〉

+
1

ε2

〈
U,∇TM,β,ε

[U,V ] V
〉
= O

(
1

ε2
+

1

β2

)
,

from which one gets that when β > 0, ε > 0 are small,

ε2
〈
RTM,β,ε(U, V )U, V

〉
=
〈
RTM,β,ε(V, U)V, U

〉
= O

(
1 +

ε2

β2

)
.(1.38)

From (1.29), (1.31)-(1.33), (1.35), (1.36) and (1.38), one gets (1.30). �

1.3. Bott connections on F⊥
1 and F⊥

2 . From (1.7) and (1.9)-(1.12), one verifies di-

rectly that for X ∈ Γ(F ), Ui, Vi ∈ Γ(F⊥
i ), i = 1, 2, one has

〈
∇F⊥

1 ,β,ε
X U1, V1

〉
= 〈[X,U1] , V1〉 −

β2ε2

2
〈[U1, V1] , X〉 ,(1.39)

〈
∇F⊥

2 ,β,ε
X U2, V2

〉
= 〈[X,U2] , V2〉 .

By (1.39), one has that for X ∈ Γ(F ), Ui ∈ Γ(F⊥
i ), i = 1, 2,

lim
ε→0+

∇F⊥
i ,β,ε

X Ui = ∇̃F⊥
i

X Ui := p⊥i [X,Ui] .(1.40)

Let ∇̃F⊥
i be the connection on F⊥

i defined by the second equality in (1.40) and by

∇̃F⊥
i

U Ui = ∇F⊥
i

U Ui for U ∈ Γ(F⊥
1 ⊕ F⊥

2 ). In view of (1.2) and (1.40), we call ∇̃F⊥
i a Bott

connection on F⊥
i for i = 1 or 2. Let R̃F⊥

i denote the curvature of ∇̃F⊥
i for i = 1, 2.

The following result holds without Condition (C).

Lemma 1.5. For X, Y ∈ Γ(F ) and i = 1, 2, the following identity holds,

R̃F⊥
i (X, Y ) = 0.(1.41)

Proof. We proceed as in [31, Proof of Lemma 1.14]. By (1.40) and the standard formula

for the curvature (cf. [31, (1.3)]), for any U ∈ Γ(F⊥
i ), i = 1, 2, one has,

(1.42) R̃F⊥
i (X, Y )U = ∇̃F⊥

i

X ∇̃F⊥
i

Y U − ∇̃F⊥
i

Y ∇̃F⊥
i

X U − ∇̃F⊥
i

[X,Y ]U

= p⊥i
(
[X, [Y, U ]] + [Y, [U,X ]] + [U, [X, Y ]]

)
− p⊥i

[
X,
(
Id− p⊥i

)
[Y, U ]

]

− p⊥i
[
Y,
(
Id− p⊥i

)
[U,X ]

]

= −p⊥i
[
X,
(
p⊥1 + p⊥2 − p⊥i

)
[Y, U ]

]
− p⊥i

[
Y,
(
p⊥1 + p⊥2 − p⊥i

)
[U,X ]

]
,

where the last equality follows from the Jacobi identity and the integrability of F .
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Now if i = 1, then by (1.7), one has U ∈ Γ(F⊥
1 ) and

p⊥1
[
X, p⊥2 [Y, U ]

]
= p⊥1

[
Y, p⊥2 [U,X ]

]
= 0.(1.43)

While if i = 2, still by (1.7), one has U ∈ Γ(F⊥
2 ) and

p⊥1 [Y, U ] = p⊥1 [U,X ] = 0.(1.44)

From (1.42)-(1.44), one gets (1.41). The proof of Lemma 1.5 is completed. �

Remark 1.6. For i = 1, 2, let RF⊥
i ,β,ε denote the curvature of ∇F⊥

i ,β,ε. From (1.39)-

(1.41), one finds that for any X, Y ∈ Γ(F ), when β > 0, ε > 0 are small, the following

identity holds:

RF⊥
i ,β,ε(X, Y ) = O

(
β2ε2

)
.(1.45)

On the other hand, for i = 1, 2, by using (1.7), (1.9), (1.10), (1.12) and (1.28), one

verifies directly that when β > 0, ε > 0 are small, the following identity holds,

RF⊥
i ,β,ε = O (1) .(1.46)

1.4. Sub-Dirac operators associated to spin integrable subbundles. We assume

for simplicity that TM , F , F⊥
i , i = 1, 2, are all oriented and of even rank, with the

orientation of TM being compatible with the orientations on F , F⊥
1 and F⊥

2 through

(1.6). We further assume that F is spin and carries a fixed spin structure.

Let S(F ) = S+(F )⊕ S−(F ) be the Hermitian bundle of spinors associated to (F, gF ).

For any X ∈ Γ(F ), the Clifford action c(X) exchanges S±(F ).

Let i = 1 or 2. Let Λ∗(F⊥
i ) denote the exterior algebra bundle of F⊥,∗

i . Then Λ∗(F⊥
i )

carries a canonically induced metric gΛ
∗(F⊥

i ) from gF
⊥
i . For any U ∈ F⊥

i , let U∗ ∈ F⊥,∗
i

correspond to U via gF
⊥
i . For any U ∈ Γ(F⊥

i ), set

c(U) = U∗ ∧ −iU , ĉ(U) = U∗ ∧+iU ,(1.47)

where U∗∧ and iU are the exterior and interior multiplications by U∗ and U on Λ∗(F⊥
i ).

Denote q = rk(F ), qi = rk(F⊥
i ).

Let h1, · · · , hqi be an oriented orthonormal basis of F⊥
i . Set

τ
(
F⊥
i , gF

⊥
i

)
=

(
1√
−1

) qi(qi+1)

2

c (h1) · · · c (hqi) .(1.48)

Then

τ
(
F⊥
i , gF

⊥
i

)2
= IdΛ∗(F⊥

i )
.(1.49)

Set

Λ∗
±

(
F⊥
i

)
=
{
h ∈ Λ∗

(
F⊥
i

)
: τ
(
F⊥
i , gF

⊥
i

)
h = ±h

}
.(1.50)

Since qi is even, for any h ∈ F⊥
i , c(h) anti-commutes with τ(F⊥

i , gF
⊥
i ), while ĉ(h)

commutes with τ(F⊥
i , gF

⊥
i ). In particular, c(h) exchanges Λ∗

±(F
⊥
i ).

Let τ̃ (F⊥
i ) denote the Z2-grading of Λ∗(F⊥

i ) defined by

τ̃
(
F⊥
i

)∣∣
Λ

even
odd (F⊥

i )
= ±Id|

Λ
even
odd (F⊥

i )
.(1.51)
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Now we have the following Z2-graded vector bundles over M :

S(F ) = S+(F )⊕ S−(F ),(1.52)

Λ∗
(
F⊥
i

)
= Λ∗

+

(
F⊥
i

)
⊕ Λ∗

−

(
F⊥
i

)
, i = 1, 2,(1.53)

and

Λ∗
(
F⊥
i

)
= Λeven

(
F⊥
i

)
⊕ Λodd

(
F⊥
i

)
, i = 1, 2.(1.54)

We form the following Z2-graded tensor product, which will play a role in Section 2:

W
(
F, F⊥

1 , F⊥
2

)
= S(F )⊗̂Λ∗

(
F⊥
1

)
⊗̂Λ∗

(
F⊥
2

)
,(1.55)

with the Z2-grading operator given by

τW = τS(F ) · τ
(
F⊥
1 , gF

⊥
1

)
· τ̃
(
F⊥
2

)
,(1.56)

where τS(F ) is the Z2-grading operator defining the splitting in (1.52). We denote by

W
(
F, F⊥

1 , F⊥
2

)
= W+

(
F, F⊥

1 , F⊥
2

)
⊕W−

(
F, F⊥

1 , F⊥
2

)
(1.57)

the Z2-graded decomposition with respect to τW .

Recall that the connections ∇F , ∇F⊥
1 and ∇F⊥

2 have been defined in (1.13). They

lift canonically to Hermitian connections ∇S(F ), ∇Λ∗(F⊥
1 ), ∇Λ∗(F⊥

2 ) on S(F ), Λ∗(F⊥
1 ),

Λ∗(F⊥
2 ) respectively, preserving the corresponding Z2-gradings. Let ∇W (F,F⊥

1 ,F⊥
2 ) be the

canonically induced connection on W (F, F⊥
1 , F⊥

2 ) which preserves the canonically in-

duced Hermitian metric on W (F, F⊥
1 , F⊥

2 ), and also the Z2-grading of W (F, F⊥
1 , F⊥

2 ).

For any vector bundle E over M , by an integral polynomial of E we will mean a

bundle φ(E) which is a polynomial in the exterior and symmetric powers of E with

integral coefficients.

For i = 1, 2, let φi(F
⊥
i ) be an integral polynomial of F⊥

i . We denote the complexifica-

tion of φi(F
⊥
i ) by the same notation. Then φi(F

⊥
i ) carries a naturally induced Hermitian

metric from gF
⊥
i and also a naturally induced Hermitian connection ∇φi(F⊥

i ) from ∇F⊥
i .

Let W (F, F⊥
1 , F⊥

2 )⊗ φ1(F
⊥
1 )⊗ φ2(F

⊥
2 ) be the Z2-graded vector bundle over M ,

(1.58) W
(
F, F⊥

1 , F⊥
2

)
⊗ φ1

(
F⊥
1

)
⊗ φ2

(
F⊥
2

)
= W+

(
F, F⊥

1 , F⊥
2

)
⊗ φ1

(
F⊥
1

)
⊗ φ2

(
F⊥
2

)

⊕W−

(
F, F⊥

1 , F⊥
2

)
⊗ φ1

(
F⊥
1

)
⊗ φ2

(
F⊥
2

)
.

Let ∇W⊗φ1⊗φ2 denote the naturally induced Hermitian connection on W (F, F⊥
1 , F⊥

2 ) ⊗
φ1(F

⊥
1 )⊗ φ2(F

⊥
2 ) with respect to the naturally induced Hermitian metric on it. Clearly,

∇W⊗φ1⊗φ2 preserves the Z2-graded decomposition in (1.58).

Let S be the End(TM)-valued one form on M defined by

∇TM = ∇F +∇F⊥
1 +∇F⊥

2 + S.(1.59)

Let e1, · · · , edimM be an orthonormal basis of TM . Let ∇F,φ1(F⊥
1 )⊗φ2(F⊥

2 ) be the Hermit-

ian connection on W (F, F⊥
1 , F⊥

2 )⊗φ1(F
⊥
1 )⊗φ2(F

⊥
2 ) defined by that for any X ∈ Γ(TM),

∇F,φ1(F⊥
1 )⊗φ2(F⊥

2 )
X = ∇W⊗φ1⊗φ2

X +
1

4

dimM∑

i, j=1

〈S(X)ei, ej〉 c (ei) c (ej) .(1.60)
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Let the linear operator DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) : Γ(W (F, F⊥
1 , F⊥

2 ) ⊗ φ1(F
⊥
1 ) ⊗ φ2(F

⊥
2 )) →

Γ(W (F, F⊥
1 , F⊥

2 )⊗ φ1(F
⊥
1 )⊗ φ2(F

⊥
2 )) be defined by

DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) =
dimM∑

i=1

c (ei)∇F,φ1(F⊥
1 )⊗φ2(F⊥

2 )
ei

.(1.61)

We call DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) a sub-Dirac operator with respect to the spin vector bundle F .

One verifies that DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) is a first order formally self-adjoint elliptic differen-

tial operator. Moreover, it exchanges Γ(W±(F, F
⊥
1 , F⊥

2 )⊗φ1(F
⊥
1 )⊗φ2(F

⊥
2 )). We denote

by D
F,φ1(F⊥

1 )⊗φ2(F⊥
2 )

± the restrictions of DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) to Γ(W±(F, F
⊥
1 , F⊥

2 )⊗ φ1(F
⊥
1 )⊗

φ2(F
⊥
2 )). Then one has

(
D

F,φ1(F⊥
1 )⊗φ2(F⊥

2 )
+

)∗
= D

F,φ1(F⊥
1 )⊗φ2(F⊥

2 )
− .(1.62)

Remark 1.7. In the special case of F = {0}, the above sub-Dirac operator is simply

the sub-Signature operator constructed in [30] (cf. [32]). On the other hand, in the case

of F⊥
2 = {0}, the above sub-Dirac operator is constructed in [22, Section 2], which is

sufficient for the proof of Theorem 0.1. The sub-Dirac operator constructed above will

be used in Section 2.5 to prove the Connes vanishing theorem, i.e., Theorem 0.6.

Remark 1.8. When F⊥
1 , F⊥

2 are also spin and carry fixed spin structures, then TM =

F ⊕F⊥
1 ⊕F⊥

2 is spin and carries an induced spin structure from the spin structures on F ,

F⊥
1 and F⊥

2 . Moreover, one has the following identifications of Z2-graded vector bundles

(cf. [18]) for i = 1, 2,

Λ∗
+

(
F⊥
i

)
⊕ Λ∗

−

(
F⊥
i

)
= S+

(
F⊥
i

)
⊗ S

(
F⊥
i

)∗ ⊕ S−

(
F⊥
i

)
⊗ S

(
F⊥
i

)∗
,(1.63)

(1.64) Λeven
(
F⊥
i

)
⊕ Λodd

(
F⊥
i

)
=
(
S+

(
F⊥
i

)
⊗ S+

(
F⊥
i

)∗ ⊕ S−

(
F⊥
i

)
⊗ S−

(
F⊥
i

)∗)

⊕
(
S+

(
F⊥
i

)
⊗ S−

(
F⊥
i

)∗ ⊕ S−

(
F⊥
i

)
⊗ S+

(
F⊥
i

)∗)
.

By (1.48)-(1.61), (1.63) and (1.64), DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) is simply the twisted Dirac operator

(1.65) DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ) : Γ
(
S(TM)⊗̂S

(
F⊥
2

)∗ ⊗ S
(
F⊥
1

)∗ ⊗ φ1

(
F⊥
1

)
⊗ φ2

(
F⊥
2

))

−→ Γ
(
S(TM)⊗̂S

(
F⊥
2

)∗ ⊗ S
(
F⊥
1

)∗ ⊗ φ1

(
F⊥
1

)
⊗ φ2

(
F⊥
2

))
,

where for i = 1, 2, the Hermitian (dual) bundle of spinors S(F⊥
i )∗ associated to (F⊥

i , gF
⊥
i )

carries the Hermitian connection induced from ∇F⊥
i . The point of (1.61) is that it only

requires F being spin. While on the other hand, (1.65) allows us to take the advantage

of applying the calculations already done for usual (twisted) Dirac operators when doing

local computations.

Remark 1.9. It is clear that the definition in (1.61) does not require that F ⊆ TM

being integrable.
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Let ∆F,φ1(F⊥
1 )⊗φ2(F⊥

2 ) denote the Bochner Laplacian defined by

∆F,φ1(F⊥
1 )⊗φ2(F⊥

2 ) =

dimM∑

i=1

(
∇F,φ1(F⊥

1 )⊗φ2(F⊥
2 )

ei

)2
−∇F,φ1(F⊥

1 )⊗φ2(F⊥
2 )

∑dimM
i=1 ∇TM

ei
ei

.(1.66)

Let kTM be the scalar curvature of gTM , RF⊥
i (i = 1, 2) be the curvature of ∇F⊥

i . Let

Rφ1(F⊥
1 )⊗φ2(F⊥

2 ) be the curvature of the tensor product connection on φ1(F
⊥
1 ) ⊗ φ2(F

⊥
2 )

induced from ∇φ1(F⊥
1 ) and ∇φ2(F⊥

2 ).

In view of Remark 1.8, the following Lichnerowicz type formula holds:

(1.67)
(
DF,φ1(F⊥

1 )⊗φ2(F⊥
2 )
)2

= −∆F,φ1(F⊥
1 )⊗φ2(F⊥

2 )+
kTM

4
+
1

2

dimM∑

i, j=1

c (ei) c (ej)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ) (ei, ej)

+
1

8

2∑

k=1

dimM∑

i, j, s, t=1

〈
RF⊥

k (ei, ej) et, es

〉
c (ei) c (ej) ĉ (es) ĉ (et) .

When M is compact, by the Atiyah-Singer index theorem [2] (cf. [18]), one has

(1.68) ind
(
D

F,φ1(F⊥
1 )⊗φ2(F⊥

2 )
+

)

= 2
q1
2

〈
Â(F )L̂

(
F⊥
1

)
e
(
F⊥
2

)
ch
(
φ1

(
F⊥
1

))
ch
(
φ2

(
F⊥
2

))
, [M ]

〉
,

where Â(F ) is the Hirzebruch Â-class (cf. [31, §1.6.3]) of F , L̂(F⊥
1 ) is the Hirzebruch

L̂-class (cf. [18, (11.18’) of Chap. III]) of F⊥
1 , e(F⊥

2 ) is the Euler class (cf. [31, §3.4]) of
F⊥
2 , and “ch” is the notation for the Chern character (cf. [31, §1.6.4]).

1.5. A vanishing theorem for almost isometric foliations. In this subsection, we

assume M is compact and prove a vanishing theorem. Some of the computations in this

subsection will be used in the next section where we will deal with the case where M is

non-compact.

Let f1, · · · , fq be an oriented orthonormal basis of F . Let h1, · · · , hq1 (resp. e1, · · · , eq2)
be an oriented orthonormal basis of F⊥

1 (resp. F⊥
2 ).

Let β > 0, ε > 0 and consider the construction in Section 1.4 with respect to the metric

gTM
β,ε defined in (1.11). We still use the superscripts “β, ε” to decorate the geometric data

associated to gTM
β,ε . For example, DF,φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε now denotes the sub-Dirac operator

constructed in (1.61) associated to gTM
β,ε . Moreover, it can be written as

(1.69)

DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε = β−1

q∑

i=1

c (fi)∇F,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε
fi

+ε

q1∑

j=1

c (hj)∇F,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε
hj

+

q2∑

s=1

c (es)∇F,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε
es .
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By (1.69), the Lichnerowicz type formula (1.67) for (DF,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε)2 takes the

following form (compare with [22, Theorem 2.3]),

(1.70)
(
DF,φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε

)2
= −∆F,φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε +

kTM,β,ε

4

+
1

2β2

q∑

i, j=1

c (fi) c (fj)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε (fi, fj)+

ε2

2

q1∑

i, j=1

c (hi) c (hj)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε (hi, hj)

+
1

2

q2∑

i, j=1

c (ei) c (ej)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε (ei, ej)+

ε

β

q∑

i=1

q1∑

j=1

c (fi) c (hj)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε (fi, hj)

+
1

β

q∑

i=1

q2∑

j=1

c (fi) c (ej)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε (fi, ej)+ε

q1∑

i=1

q2∑

j=1

c (hi) c (ej)R
φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε (hi, ej)

+
1

8β2

q∑

i, j=1

q1∑

s, t=1

〈
RF⊥

1 ,β,ε (fi, fj) ht, hs

〉
c (fi) c (fj) ĉ (hs) ĉ (ht)

+
ε2

8

q1∑

i, j=1

q1∑

s, t=1

〈
RF⊥

1 ,β,ε (hi, hj) ht, hs

〉
c (hi) c (hj) ĉ (hs) ĉ (ht)

+
1

8

q2∑

i, j=1

q1∑

s, t=1

〈
RF⊥

1 ,β,ε (ei, ej) ht, hs

〉
c (ei) c (ej) ĉ (hs) ĉ (ht)

+
ε

4β

q∑

i=1

q1∑

j=1

q1∑

s, t=1

〈
RF⊥

1 ,β,ε (fi, hj)ht, hs

〉
c (fi) c (hj) ĉ (hs) ĉ (ht)

+
1

4β

q∑

i=1

q2∑

j=1

q1∑

s, t=1

〈
RF⊥

1 ,β,ε (fi, ej)ht, hs

〉
c (fi) c (ej) ĉ (hs) ĉ (ht)

+
ε

4

q1∑

i=1

q2∑

j=1

q1∑

s, t=1

〈
RF⊥

1 ,β,ε (hi, ej) ht, hs

〉
c (hi) c (ej) ĉ (hs) ĉ (ht)

+
1

8β2

q∑

i, j=1

q2∑

s, t=1

〈
RF⊥

2 ,β,ε (fi, fj) et, es

〉
c (fi) c (fj) ĉ (es) ĉ (et)

+
ε2

8

q1∑

i, j=1

q2∑

s, t=1

〈
RF⊥

2 ,β,ε (hi, hj) et, es

〉
c (hi) c (hj) ĉ (es) ĉ (et)

+
1

8

q2∑

i, j=1

q2∑

s, t=1

〈
RF⊥

2 ,β,ε (ei, ej) et, es

〉
c (ei) c (ej) ĉ (es) ĉ (et)

+
ε

4β

q∑

i=1

q1∑

j=1

q2∑

s, t=1

〈
RF⊥

2 ,β,ε (fi, hj) et, es

〉
c (fi) c (hj) ĉ (es) ĉ (et)

+
1

4β

q∑

i=1

q2∑

j=1

q2∑

s, t=1

〈
RF⊥

2 ,β,ε (fi, ej) et, es

〉
c (fi) c (ej) ĉ (es) ĉ (et)
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+
ε

4

q1∑

i=1

q2∑

j=1

q2∑

s, t=1

〈
RF⊥

2 ,β,ε (hi, ej) et, es

〉
c (hi) c (ej) ĉ (es) ĉ (et) .

By (1.30), (1.45), (1.46) and (1.70), we get that when β > 0, ε > 0 are small,

(
DF,φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε

)2
= −∆F,φ1(F⊥

1 )⊗φ2(F⊥
2 ),β,ε +

kF

4β2
+O

(
1

β
+

ε2

β2

)
.(1.71)

Proposition 1.10. If kF > 0 over M , then for any Pontrjagin classes p(F⊥
1 ), p′(F⊥

2 )

of F⊥
1 , F⊥

2 respectively, the following identity holds,
〈
Â(F )p

(
F⊥
1

)
e
(
F⊥
2

)
p′
(
F⊥
2

)
, [M ]

〉
= 0.(1.72)

Proof. Since kF > 0 over M , one can take β > 0, ε > 0 small enough so that the

corresponding terms in the right hand side of (1.71) verifies that

kF

4β2
+O

(
1

β
+

ε2

β2

)
> 0(1.73)

over M . Since −∆F,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε is nonnegative, by (1.62), (1.71) and (1.73), one gets

ind
(
D

F,φ1(F⊥
1 )⊗φ2(F⊥

2 ),β,ε
+

)
= 0.(1.74)

From (1.68) and (1.74), we get
〈
Â(F )L̂

(
F⊥
1

)
ch
(
φ1

(
F⊥
1

))
e
(
F⊥
2

)
ch
(
φ2

(
F⊥
2

))
, [M ]

〉
= 0.(1.75)

Now as it is standard that any rational Pontrjagin class of F⊥
1 (resp. F⊥

2 ) can be

expressed as a rational linear combination of classes of the form L̂(F⊥
1 )ch(φ1(F

⊥
1 )) (resp.

ch(φ2(F
⊥
2 ))), one gets (1.72) from (1.75). �

Remark 1.11. If one changes the Z2-grading in the definition of the sub-Dirac operator

by replacing τ̃(F⊥
2 ) in (1.56) by τ(F⊥

2 , gF
⊥
2 ), then one can prove that under the same

condition as in Proposition 1.10,
〈
Â(F )p

(
F⊥
1

)
p′
(
F⊥
2

)
, [M ]

〉
= 0(1.76)

for any Pontrjagin classes p(F⊥
1 ), p′(F⊥

2 ) of F⊥
1 , F⊥

2 .

2. Connes fibration and vanishing theorems

This section is organized as follows. In Section 2.1, we recall the definition of the

Connes fibration and prove some basic properties of it. In Section 2.2, we introduce a

specific deformation of the sub-Dirac operator on the Connes fibration and prove a key

vanishing result for the deformed sub-Dirac operator on certain compact subsets of the

Connes fibration. This motivates the proof of Theorem 0.1 for the case of dimM = 4k

given in Section 2.3. In Section 2.4, we present the proof of the dimM = 8k+i (i = 1, 2)

cases of Theorem 0.1. Finally, in Section 2.5 we present the proof of Theorem 0.6, and

state some new vanishing results.



POSITIVE SCALAR CURVATURE ON FOLIATIONS 17

2.1. The Connes fibration. Let (M,F ) be a compact foliation, i.e., F is an integrable

subbundle of the tangent vector bundle TM of a closed manifold M . For any vector

space E of rank n, let E be the set of all Euclidean metrics on E. It is well known

that E is the noncompact homogeneous space GL(n,R)+/SO(n) (with dim E = n(n+1)
2

),

which carries a natural Riemannian metric of nonpositive sectional curvature (cf. [15]).

In particular, any two points of E can be joined by a unique geodesic.

Following [10, §5], let π : M → M be the fibration over M such that for any x ∈ M ,

Mx = π−1(x) is the space of Euclidean metrics on the linear space TxM/Fx.

Let T VM denote the vertical tangent bundle of the fibration π : M → M . Then it

carries a natural metric gT
V M such that any two points p, q ∈ Mx, with x ∈ M , can be

joined by a unique geodesic in Mx. Let d
Mx(p, q) denote the length of this geodesic.

By using the Bott connection on TM/F (cf. (1.2)), which is leafwise flat, one lifts F

to an integrable subbundle F of TM.4 Let gF be a Euclidean metric on F , which lifts

to a Euclidean metric gF = π∗gF on F .

For any v ∈ M, TvM/(Fv⊕T V
v M) is identified with Tπ(v)M/Fπ(v) under the projection

π : M → M . By definition, v determines a metric on Tπ(v)M/Fπ(v), which in turn

determines a metric on TvM/(Fv ⊕ T V
v M). In this way, TM/(F ⊕ T VM) carries a

canonically induced metric.

Let F⊥
1 ⊆ TM be a subbundle, which is transversal to F ⊕ T VM, such that we have

a splitting TM = (F ⊕T VM)⊕F⊥
1 . Then F⊥

1 can be identified with TM/(F ⊕T VM)

and carries a canonically induced metric gF
⊥
1 . We denote from now on that F⊥

2 = T VM.

Let gTM be the Riemannian metric onM defined by the following orthogonal splitting,

TM = F ⊕F⊥
1 ⊕ F⊥

2 , gTM = gF ⊕ gF
⊥
1 ⊕ gF

⊥
2 .(2.1)

Let p⊥2 be the orthogonal projection from TM to F⊥
2 . Let ∇TM be the Levi-Civita

connection of gTM. Then ∇F⊥
2 = p⊥2 ∇TMp⊥2 is a Euclidean connection on F⊥

2 not

depending on gF and gF
⊥
1 .

By [10, Lemma 5.2], (M,F) admits an almost isometric structure with respect to the

metrics given by (2.1). In particular, for any X ∈ Γ(F), Ui, Vi ∈ Γ(F⊥
i ) with i = 1, 2,

one has by (1.7) that

〈[X,Ui], Vi〉+ 〈Ui, [X, Vi]〉 = X〈Ui, Vi〉,
〈[X,U2], U1〉 = 0.

(2.2)

Take a metric on TM/F . This is equivalent to taking an embedded section s : M →֒
M of the Connes fibration π : M → M . Then we have a canonical inclusion s(M) ⊂ M.

For any p ∈ M \ s(M), we connect p and s(π(p)) ∈ s(M) by the unique geodesic in

Mπ(p). Let σ(p) ∈ F⊥
2 |p denote the unit vector tangent to this geodesic. Let ρ(p) =

dMπ(p)(p, s(π(p))) denote the length of this geodesic.

The following simple result will play a key role in what follows.

4Indeed, the Bott connection on TM/F determines an integrable lift F̃ of F in TM̃, where M̃ =

GL(TM/F )+ is the GL(q1,R)+ (with q1 = rk(TM/F )) principal bundle of oriented frames over M .

Now as M̃ is a principal SO(q1) bundle over M, F̃ determines an integrable subbundle F of TM.
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Lemma 2.1. There exists A1 > 0, depending only on the embedding s : M →֒ M,

such that for any X ∈ Γ(F) with |X| ≤ 1, the following pointwise inequalities hold on

M\ s(M),

|X(ρ)| ≤ A1,(2.3)

∣∣∣∇F⊥
2

X σ
∣∣∣ ≤ A1

ρ
.(2.4)

In particular, the following inequality holds on M,
∣∣∣∇F⊥

2
X (ρσ)

∣∣∣ ≤ 2A1.(2.5)

Proof. Since the estimates to be proved are local, we may well assume that there is

Y ∈ Γ(F ) over M , with |Y | ≤ 1, such that X = π∗Y . Let φt (resp. φ̃t), t ∈ R, be

the one-parameter group of diffeomorphisms on M (resp. M) generated by Y (resp.

X = π∗Y ). Then φ̃t is the lift of φt.

Take any p ∈ M\s(M). By [10, Lemma 5.2] and (2.2), one sees that each φ̃t maps the

fiber Mπ(p) isometrically to the fiber Mφt(π(p)). Thus, it maps the geodesic connecting p

and s(π(p)) in Mπ(p) to the geodesic connecting φ̃t(p) and φ̃t(s(π(p))) in Mφt(π(p)), such

that ρ(p) = dMφt(π(p))(φ̃t(p), φ̃t(s(π(p)))). Thus, one has

(2.6)∣∣∣ρ
(
φ̃t(p)

)
− ρ(p)

∣∣∣ =
∣∣∣dMφt(π(p))

(
φ̃t(p), s(φt(π(p)))

)
− dMφt(π(p))

(
φ̃t(p), φ̃t(s(π(p)))

)∣∣∣

≤ dMφt(π(p))

(
s(φt(π(p))), φ̃t(s(π(p)))

)
= ρ

(
φ̃t(s(π(p)))

)
.

Since at p one hasX(ρ) = limt→0+
ρ(φ̃t(p))−ρ(p)

t
, (2.3) follows from (2.6) and the following

lemma.

Lemma 2.2. There exist c0, A0 > 0, depending only on the embedding s : M →֒ M,

such that for any x ∈ s(M) and 0 ≤ t ≤ c0, one has

ρ
(
φ̃t(x)

)
≤ A0t.(2.7)

Proof. Take any x ∈ s(M). If t = 0, then (2.7) clearly holds. Recall that φ̃t maps Mπ(p)

isometrically to Mφt(π(p)). Thus one has

ρ
(
φ̃t(x)

)
= ρ

(
φ̃−1
t (s(φt(π(x))))

)
.(2.8)

Since φ̃−1
t (s(φt(π(x)))) depends smoothly on t, one sees from (2.8) that (2.7) holds at

x ∈ s(M). By the compactness of s(M), it holds for all x ∈ s(M). �

To prove (2.4), we first observe that by (2.2) one has that for any U ∈ Γ(F⊥
2 ), the

following identity holds (cf. (1.25)),

p⊥2 ∇TM
U X = 0.(2.9)
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From (2.9) and the fact that [X, σ] = [π∗Y, σ] ∈ Γ(F⊥
2 ) (cf. [4, Lemma 10.7]), one sees

that in order to prove (2.4), one need only to prove that

|[X, σ]| ≤ A1

ρ
.(2.10)

To prove (2.10), recall that (cf. [9, Theorem 2.3 of Chapter 6])

[X, σ] = lim
t→0+

σ −
(
φ̃t

)
∗
σ

t
.(2.11)

Since φ̃t maps geodesics in Mφ−t(π(p)) to geodesics in Mπ(p), one sees as in [10, §5]
that at p ∈ M \ s(M), (φ̃t)∗σ is the unit vector tangent to the geodesic connecting p

and φ̃t(s(φ−t(π(p)))).

Consider the geodesic triangle in Mπ(p) with vertices p, s(π(p)) and φ̃t(s(φ−t(π(p)))).

Let αp be the angle at p. Then one has
∣∣∣σ −

(
φ̃t

)
∗
σ
∣∣∣
2

= 2 (1− cos (αp)) .(2.12)

Since Mπ(p) is of nonpositive curvature, one has (cf. [15, Corollary I.13.2]),

(
ρ
(
φ̃t (s (φ−t(π(p))))

))2
≥ 2 (1− cos (αp)) ρ(p) d

Mπ(p)

(
p, φ̃t (s (φ−t(π(p))))

)
.(2.13)

From (2.12) and (2.13), one gets

∣∣∣σ −
(
φ̃t

)
∗
σ
∣∣∣ ≤

ρ
(
φ̃t (s (φ−t(π(p))))

)

√
ρ(p) dMπ(p)

(
p, φ̃t (s (φ−t(π(p))))

) .(2.14)

From (2.11), (2.14) and proceed as in Lemma 2.2, one gets (2.10). �

2.2. Sub-Dirac operators and the vanishing on compact subsets. From now on

we assume that there is δ > 0 such that kF ≥ δ over M . We also assume that M is spin

and carries a fixed spin structure, then F ⊕F⊥
1 = π∗(TM) is spin and carries an induced

spin structure. For simplicity, we also assume first that F⊥
2 is oriented and both TM

and F⊥
2 are of even rank.

For any β, ε > 0, following (1.11), let gTM
β,ε be the deformed metric of (2.1) on M

defined by the orthogonal splitting,

TM = F ⊕ F⊥
1 ⊕F⊥

2 , gTM
β,ε = β2gF ⊕ gF

⊥
1

ε2
⊕ gF

⊥
2 .(2.15)

In what follows, we will use the subscripts (or superscripts) β, ε to decorate the

geometric objects with respect to the deformed metric gTM
β,ε . It is clear that for any

X ∈ F ⊕ F⊥
1 and U ∈ F⊥

2 , cβ,ε(X), c(U) and ĉ(U) act on Sβ,ε(F ⊕ F⊥
1 )⊗̂Λ∗(F⊥

2 ) and

exchange (Sβ,ε(F ⊕F⊥
1 )⊗̂Λ∗(F⊥

2 ))±.

Let f1, · · · , fq (resp. h1, · · · , hq1 ; resp. e1, · · · , eq2) be an orthonormal basis of

(F , gF) (resp. (F⊥
1 , g

F⊥
1 ); resp. (F⊥

2 , g
F⊥

2 )). By proceeding as in [22, Section 2] and
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Sections 1.4, 1.5, we construct the sub-Dirac operator (cf. (1.61) and (1.69), where we

take F in (1.61) to be F ⊕ F⊥
1 , F

⊥
1 in (1.61) to be zero and F⊥

2 in (1.61) to be F⊥
2 )

DF⊕F⊥
1 ,β,ε : Γ

(
Sβ,ε(F ⊕ F⊥

1 )⊗̂Λ∗
(
F⊥

2

))
−→ Γ

(
Sβ,ε(F ⊕ F⊥

1 )⊗̂Λ∗
(
F⊥

2

))
(2.16)

given by

DF⊕F⊥
1 ,β,ε =

q∑

i=1

β−1cβ,ε
(
β−1fi

)
∇β,ε

fi
+

q1∑

s=1

ε cβ,ε (εhs)∇β,ε
hs

+

q2∑

j=1

c (ej)∇β,ε
ej
,(2.17)

where as in (1.69), ∇β,ε is the canonical connection on Sβ,ε(F⊕F⊥
1 )⊗̂Λ∗(F⊥

2 ) determined

by (1.60) with respect to gTM
β,ε . In particular, in view of Remark 1.8, one has

[
∇β,ε, ĉ(σ)

]
= ĉ

(
∇F⊥

2 σ
)
.(2.18)

Let DF⊕F⊥
1 ,β,ε,± be the restrictions of DF⊕F⊥

1 ,β,ε on (Sβ,ε(F ⊕F⊥
1 )⊗̂Λ∗(F⊥

2 ))±, then
(
DF⊕F⊥

1 ,β,ε,+

)∗
= DF⊕F⊥

1 ,β,ε,−.(2.19)

For any R > 0, denote

MR = {p ∈ M : ρ(p) ≤ R}.(2.20)

Then MR is a smooth manifold with boundary ∂MR.

Let f : [0, 1] → [0, 1] be a smooth function such that f(t) = 0 for 0 ≤ t ≤ 1
4
, while

f(t) = 1 for 1
2
≤ t ≤ 1. Let h : [0, 1] → [0, 1] be a smooth function such that h(t) = 1

for 0 ≤ t ≤ 3
4
, while h(t) = 0 for 7

8
≤ t ≤ 1.

Inspired by [5] and [10], we make the following deformation of DF⊕F⊥
1 ,β,ε on MR,

which will play a key role in what follows,

DF⊕F⊥
1 ,β,ε +

f
(
ρ
R

)
ĉ(σ)

β
.(2.21)

Remark 2.3. The usual deformation from the analytic localization point of view (such

as in [5]) deforms DF⊕F⊥
1 ,β,ε by T ĉ(ρσ), with T > 0 being independent of β and ε. On

the other hand, fc(σ) has occured in [10], where it is viewed as the symbol of a fiberwise

Dirac operator. Here we use f ĉ(σ)/β to deform DF⊕F⊥
1 ,β,ε, while Lemma 2.1 allows us

to get the needed estimates given in the following Lemma.

Lemma 2.4. There exists R0 > 0 such that for any (fixed) R ≥ R0, when β, ε > 0

(which may depend on R) are small enough,

(i) for any s ∈ Γ(Sβ,ε(F ⊕ F⊥
1 )⊗̂Λ∗(F⊥

2 )) supported in MR, one has5

∥∥∥∥∥

(
DF⊕F⊥

1 ,β,ε +
f
(
ρ
R

)
ĉ(σ)

β

)
s

∥∥∥∥∥ ≥
√
δ

4β
‖s‖;(2.22)

(ii) for any s ∈ Γ(Sβ,ε(F ⊕ F⊥
1 )⊗̂Λ∗(F⊥

2 )) supported in MR \MR
2
, one has

∥∥∥∥
(
h
( ρ
R

)
DF⊕F⊥

1 ,β,εh
( ρ

R

)
+

ĉ(σ)

β

)
s

∥∥∥∥ ≥ 1

2β
‖s‖.(2.23)

5The norms below denpend on β and ε. In case of no confusion, we omit the subscripts for simplicity.
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Proof. In view of Remark 1.8 and (2.17), one has

(2.24)

(
DF⊕F⊥

1 ,β,ε +
f
(
ρ
R

)
ĉ(σ)

β

)2

= D2
F⊕F⊥

1 ,β,ε +
f ′
(
ρ
R

)

βR
cβ,ε(dρ)ĉ(σ)

+
f
(
ρ
R

)

β

[
DF⊕F⊥

1 ,β,ε, ĉ(σ)
]
+

f
(
ρ
R

)2

β2
,

where we identify dρ with the gradient of ρ.

By definition, one has on M\ s(M) that

cβ,ε(dρ) =

q∑

i=1

β−1cβ,ε
(
β−1fi

)
fi(ρ) +

q1∑

s=1

ε cβ,ε (εhs) hs(ρ) +

q2∑

j=1

c (ej) ej(ρ).(2.25)

By (2.17) and (2.18), one has on M\ s(M) that

(2.26)
[
DF⊕F⊥

1 ,β,ε, ĉ(σ)
]
=

q∑

i=1

β−1cβ,ε
(
β−1fi

)
ĉ
(
∇F⊥

2
fi

σ
)
+

q1∑

s=1

ε cβ,ε (εhs) ĉ
(
∇F⊥

2
hs

σ
)

+

q2∑

j=1

c (ej) ĉ
(
∇F⊥

2
ej

σ
)
.

By Lemma 2.1, (2.25) and (2.26), we find that there exists a constant C > 0, not

depending on R, β, ε > 0, such that the following inequality holds on MR \ s(M),

|cβ,ε(dρ)|
R

+ f
( ρ

R

) ∣∣∣
[
DF⊕F⊥

1 ,β,ε, ĉ(σ)
]∣∣∣ ≤ C

βR
+OR (1) ,(2.27)

where by OR(·) we mean that the estimating constant might depend on R > 0.

On the other hand, by (1.71), the following formula holds on MR,

D2
F⊕F⊥

1 ,β,ε = −∆β,ε +
kF

4β2
+OR

(
1

β
+

ε2

β2

)
,(2.28)

where −∆β,ε ≥ 0 is the corresponding Bochner Laplacian, and kF = π∗kF ≥ δ.

From (2.24), (2.27) and (2.28), one sees that if one first fixes a sufficiently large R > 0

and then makes β > 0, ε > 0 sufficiently small, one deduces (2.22) easily.

Now by (2.17) one has on MR \ s(M) that

(2.29)

(
h
( ρ
R

)
DF⊕F⊥

1 ,β,εh
( ρ

R

)
+

ĉ(σ)

β

)2

=
(
h
( ρ

R

)
DF⊕F⊥

1 ,β,εh
( ρ
R

))2

+
h
(
ρ
R

)2

β

[
DF⊕F⊥

1 ,β,ε, ĉ(σ)
]
+

1

β2
.

From (2.27) and (2.29), one gets (2.23), where Supp(s) ⊆ MR \MR
2
, similarly. �

Lemma 2.4 motivates the proof of Theorem 0.1 (for the case of dimM = 4k) given in

Section 2.3, where we make use of a trick of Braverman [8, §14] (See also [24, §3]). This
approach reflects the topological nature of the Â-genus and the involved indices.
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2.3. Proof of Theorem 0.1 for the case of dimM = 4k. Let ∂MR bound another

oriented manifold NR so that ÑR = MR ∪ NR is a closed manifold (for example, one

can take the double of MR). Let E be a Hermitian vector bundle over MR such that

(Sβ,ε(F ⊕ F⊥
1 )⊗̂Λ∗(F⊥

2 ))− ⊕ E is a trivial vector bundle over MR. Then (Sβ,ε(F ⊕
F⊥

1 )⊗̂Λ∗(F⊥
2 ))+⊕E is a trivial vector bundle near ∂MR, under the identification ĉ(σ)+

IdE .

By extending obviously the above trivial vector bundles to NR, we get a Z2-graded

Hermitian vector bundle ξ = ξ+ ⊕ ξ− over ÑR and an odd self-adjoint endomorphism

V = v + v∗ ∈ Γ(End(ξ)) (with v : Γ(ξ+) → Γ(ξ−), v
∗ being the adjoint of v) such that

ξ± =
(
Sβ,ε

(
F ⊕F⊥

1

)
⊗̂Λ∗

(
F⊥

2

))
±
⊕ E(2.30)

over MR, V is invertible on NR and

V = f
( ρ

R

)
ĉ(σ) + IdE(2.31)

on MR, which is invertible on MR \MR
2
.

Recall that h( ρ
R
) vanishes near ∂MR. We extend it to a function on ÑR which equals

to zero on NR, and denote the resulting function on ÑR by h̃R. Let π
ÑR

: T ÑR → ÑR

be the projection of the tangent bundle of ÑR. Let γÑR ∈ Hom(π∗

ÑR
ξ+, π

∗

ÑR
ξ−) be the

symbol defined by

γÑR(p, w) = π∗

ÑR

(√
−1 h̃2

R cβ,ε(w) + v(p)
)
, for p ∈ ÑR, w ∈ TpÑR.(2.32)

By (2.31) and (2.32), γÑR is singular only if w = 0 and p ∈ MR
2
. Thus γÑR is an elliptic

symbol.

On the other hand, it is clear that h̃RDF⊕F⊥
1 ,β,εh̃R is well-defined on ÑR if we define

it to equal to zero on ÑR \MR.

Let A : L2(ξ) → L2(ξ) be a second order positive elliptic differential operator on

ÑR preserving the Z2-grading of ξ = ξ+ ⊕ ξ−, such that its symbol equals to |η|2 at

η ∈ T ÑR (to be more precise, here A also depends on the defining metric. We omit the

corresponding subscript/superscript only for convenience). Let PR,β,ε : L2(ξ) → L2(ξ)

be the zeroth order pseudodifferential operator on ÑR defined by

PR,β,ε = A− 1
4 h̃RDF⊕F⊥

1 ,β,εh̃RA
− 1

4 +
V

β
.(2.33)

Let PR,β,ε,+ : L2(ξ+) → L2(ξ−) be the obvious restriction. Then the principal symbol of

PR,β,ε,+, which we denote by γ(PR,β,ε,+), is homotopic through elliptic symbols to γÑR.

Thus PR,β,ε,+ is a Fredholm operator. Moreover, by the Atiyah-Singer index theorem [2]

(cf. [18, Theorem 13.8 of Chap. III]), one finds

ind (PR,β,ε,+) = Â(M).(2.34)

Inspired by [8, §14] (See also [24, §3]), for any 0 ≤ t ≤ 1, set

PR,β,ε,+(t) = A− 1
4 h̃RDF⊕F⊥

1 ,β,εh̃RA
− 1

4 +
tv

β
+ A− 1

4
(1− t)v

β
A− 1

4 .(2.35)
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Then PR,β,ε,+(t) is a smooth family of zeroth order pseudodifferential operators such that

the corresponding symbol γ(PR,β,ε,+(t)) is elliptic for 0 < t ≤ 1. Thus PR,β,ε,+(t) is a

continuous family of Fredholm operators for 0 < t ≤ 1 with PR,β,ε,+(1) = PR,β,ε,+.

Now since PR,β,ε,+(t) is continuous on the whole [0, 1], in view of (2.34), if PR,β,ε,+(0)

is Fredholm and has vanishing index, then Theorem 0.1 follows from (2.34).

Thus we need only to prove the following result.

Proposition 2.5. There exist R, β, ε > 0 such that the following identity holds,

dim (ker (PR,β,ε,+(0))) = dim (ker (PR,β,ε,+(0)
∗)) = 0.(2.36)

Proof. By definition, PR,β,ε(0) : L
2(ξ) → L2(ξ) is given by

PR,β,ε(0) = A− 1
4 h̃RDF⊕F⊥

1 ,β,εh̃RA
− 1

4 + A− 1
4
V

β
A− 1

4 .(2.37)

By (2.19), PR,β,ε(0) is formally self-adjoint. Thus we need to show that

dim (ker (PR,β,ε(0))) = 0(2.38)

for certain R, β, ε > 0. Let s ∈ ker(PR,β,ε(0)). By (2.37) one has
(
h̃RDF⊕F⊥

1 ,β,εh̃R +
V

β

)
A− 1

4 s = 0.(2.39)

Since h̃R = 0 on ÑR \MR, while V is invertible on ÑR \MR, one has by (2.39)

A− 1
4s = 0 on ÑR \MR.(2.40)

Write on MR that

A− 1
4s = s1 + s2,(2.41)

with s1 ∈ L2(Sβ,ε(F ⊕F⊥
1 )⊗̂Λ∗(F⊥

2 )) and s2 ∈ L2(E).

By (2.31), (2.39) and (2.41), one has

s2 = 0,(2.42)

while
(
h̃RDF⊕F⊥

1 ,β,εh̃R +
f
(
ρ
R

)
ĉ(σ)

β

)
s1 = 0.(2.43)

We need to show that (2.43) implies s1 = 0.

Let α : [0, 1] → [0, 1] be a smooth function such that α(t) = 0 for 0 ≤ t ≤ 1
2
, while

α(t) = 1 for 2
3
≤ t ≤ 1.

Following [5, pp. 115], let α1, α2 be the smooth functions on MR defined by

α1 =
1− α

(
ρ
R

)
(
α
(
ρ
R

)2
+
(
1− α

(
ρ
R

))2) 1
2

, α2 =
α
(
ρ
R

)
(
α
(
ρ
R

)2
+
(
1− α

(
ρ
R

))2) 1
2

.(2.44)
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Then α2
1 + α2

2 = 1 on MR. Clearly, α1h̃R = α1, α2f(
ρ
R
) = α2. Thus, one has

(2.45)

∥∥∥∥∥

(
h̃RDF⊕F⊥

1 ,β,εh̃R +
f
(
ρ
R

)
ĉ(σ)

β

)
s1

∥∥∥∥∥

2

=

∥∥∥∥∥α1

(
DF⊕F⊥

1 ,β,ε +
f
(
ρ
R

)
ĉ(σ)

β

)
s1

∥∥∥∥∥

2

+

∥∥∥∥α2

(
h̃RDF⊕F⊥

1 ,β,εh̃R +
ĉ(σ)

β

)
s1

∥∥∥∥
2

,

from which one gets

(2.46)
√
2

∥∥∥∥∥

(
h̃RDF⊕F⊥

1 ,β,εh̃R +
f
(
ρ
R

)
ĉ(σ)

β

)
s1

∥∥∥∥∥ ≥
∥∥∥∥∥α1

(
DF⊕F⊥

1 ,β,ε +
f
(
ρ
R

)
ĉ(σ)

β

)
s1

∥∥∥∥∥

+

∥∥∥∥α2

(
h̃RDF⊕F⊥

1 ,β,εh̃R +
ĉ(σ)

β

)
s1

∥∥∥∥ ≥
∥∥∥∥∥

(
DF⊕F⊥

1 ,β,ε +
f
(
ρ
R

)
ĉ(σ)

β

)
(α1s1)

∥∥∥∥∥

+

∥∥∥∥
(
h̃RDF⊕F⊥

1 ,β,εh̃R +
ĉ(σ)

β

)
(α2s1)

∥∥∥∥− ‖cβ,ε (dα1) s1‖ − ‖cβ,ε (dα2) s1‖ ,

where for each i ∈ {1, 2}, we identify dαi with the gradient of αi.

By Lemma 2.1, (2.25) and (2.44), there is C1 > 0, not depending on R, β, ε > 0, such

that

|cβ,ε (dα1)|+ |cβ,ε (dα2)| ≤
C1

βR
+OR(1).(2.47)

From Lemma 2.4, (2.46) and (2.47), one finds that there exist R, β, ε > 0 such that
∥∥∥∥∥

(
h̃RDF⊕F⊥

1 ,β,εh̃R +
f
(
ρ
R

)
ĉ(σ)

β

)
s1

∥∥∥∥∥ ≥ ‖s1‖√
β
.(2.48)

From (2.39)-(2.43), (2.48) and the invertibility of A− 1
4 , one sees that for suitable

R, β, ε > 0, (2.38) holds. This completes the proof of Proposition 2.5, which implies

Theorem 0.1 for the case of dimM = 4k, when F⊥
2 is orientable and of even rank. �

If rk(F⊥
2 ) is not even, we can consider M × M ×M ×M to make it even. If F⊥

2 is

not orientable, then we can consider the double covering of M with respect to w1(F⊥
2 ),

the first Stiefel-Whitney class of F⊥
2 , and consider the pull-back of F⊥

2 on the double

covering. The proof of Theorem 0.1 for the case of dimM = 4k is thus completed.

Remark 2.6. One may also use ρ
R
instead of f( ρ

R
) in the above proof.

2.4. The case of the mod 2 index. In this subsection, we consider the cases of

dimM = 8k + i, i = 1, 2. Here we deal with the case of dimM = 8k + 1, where

one considers real operators as in [3], in detail. By multiplying M by a Bott manifold

of dimension 8, which is a compact spin manifold B8 such that Â(B8) = 1, we may well

assume that q1 > 1. Then ∂MR is connected.

Let f1, · · · , fq+q1 be an oriented orthonormal basis of (F ⊕F⊥
1 , β

2gF ⊕ gF
⊥
1

ε2
). Set

τβ,ε = cβ,ε (f1) · · · cβ,ε (fq+q1) .(2.49)

Let τ̂ be the Z2-grading operator for Λ∗(F⊥
2 ) = Λeven(F⊥

2 )⊕ Λodd(F⊥
2 ).
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Inspired by [3, §3] and [6, (3.1)] (compare with [29] which deals with the case of

dimM = 8k + 2), we modify the sub-Dirac operator in (2.16) by

τ̂ τβ,εDF⊕F⊥
1 ,β,ε : Γ

(
Sβ,ε(F ⊕ F⊥

1 )⊗ Λ∗
(
F⊥

2

))
−→ Γ

(
Sβ,ε(F ⊕F⊥

1 )⊗ Λ∗
(
F⊥

2

))
,

(2.50)

which is formally skew-adjoint (here by dimension reason there is no Z2-grading of the

real spinor bundle Sβ,ε(F ⊕ F⊥
1 )). We also modify V = v + v∗ in (2.31) by

V̂ = v̂ − v̂∗(2.51)

such that one has, onMR, the following formula for v̂ acting between real vector bundles,

(2.52) v̂ = f
( ρ

R

)
τ̂ ĉ(σ) + IdE : Γ

(
Sβ,ε(F ⊕ F⊥

1 )⊗ Λeven
(
F⊥

2

)
⊕ E

)

−→ Γ
(
Sβ,ε(F ⊕F⊥

1 )⊗ Λodd
(
F⊥

2

)
⊕E

)
.

We then modify the operator PR,β,ε in (2.33) by

P̂R,β,ε = A− 1
4 h̃Rτβ,ετ̂ DF⊕F⊥

1 ,β,εh̃RA
− 1

4 +
V̂

β
,(2.53)

which is clearly formally skew-adjoint. By direct computation, one has

(τ̂ ĉ(σ))∗ = ĉ(σ)τ̂ = −τ̂ ĉ(σ)(2.54)

and that for any X ∈ TM,

τ̂ τc(X)τ̂ ĉ(σ) + τ̂ ĉ(σ)τ̂ τc(X) = τc(X)ĉ(σ)− ĉ(σ)τc(X) = 0.(2.55)

From (2.53)-(2.55), one sees that (P̂R,β,ε)
2 has an elliptic symbol. Thus P̂R,β,ε is a

zeroth order real skew-adjoint elliptic pseudodifferential operator, and thus admits a

mod 2 index in the sense of [3]. Moreover, by the mod 2 index theorem in [3] (cf. [18]),

one has

α(M) = dim
(
ker
(
P̂R,β,ε

))
mod 2.(2.56)

Now by proceeding as in Section 2.3, one sees that there are R, β, ε > 0 such that

dim
(
ker
(
P̂R,β,ε

))
= 0.(2.57)

From (2.56) and (2.57), one gets α(M) = 0.

2.5. Proof of the Connes vanishing theorem and more. Without loss of generality,

we may and we will assume that all F = π∗F , F⊥
1 and F⊥

2 are oriented and of even rank.

The main concern here is that we only assume F is spin, not TM . Thus, here F = π∗F

is spin and carries a fixed spin structure.

Instead of the sub-Dirac operator considered in (2.16), we now consider the sub-Dirac

operator constructed as in (1.61),

(2.58) D
F ,φ(F⊥

1 )
β,ε : Γ

(
S(F)⊗̂Λ∗

(
F⊥

1

)
⊗̂Λ∗

(
F⊥

2

)
⊗ φ

(
F⊥

1

))

−→ Γ
(
S(F)⊗̂Λ∗

(
F⊥

1

)
⊗̂Λ∗

(
F⊥

2

)
⊗ φ

(
F⊥

1

))
.
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Now we can proceed as in Sections 2.2 and 2.3, by replacing the sub-Dirac operator

in (2.16) by D
F ,φ(F⊥

1 )
β,ε above.

In particular, by the Atiyah-Singer index theorem [2], the right hand side of the formula

corresponding to (2.34) is now

2
q1
2

〈
Â(F )L̂(TM/F )ch(φ(TM/F )), [M ]

〉
.(2.59)

In summary, if kF is positive over M , then we get
〈
Â(F )L̂(TM/F )ch(φ(TM/F )), [M ]

〉
= 0.(2.60)

Now as any rational Pontrjagin class of TM/F can be expressed as a rational linear

combination of classes of form L̂(TM/F )ch(φ(TM/F )), one gets from (2.60) that for

any Pontrjagin class p(TM/F ) of TM/F , one has
〈
Â(F )p(TM/F ), [M ]

〉
= 0,(2.61)

which has been proved in [10, Corollary 8.3]. In particular, one has

Â(M) =
〈
Â(TM), [M ]

〉
=
〈
Â(F )Â(TM/F ), [M ]

〉
= 0,(2.62)

which completes the proof of Theorem 0.6.

Remark 2.7. If one modifies the sub-Dirac operator in (2.16) by twisting an integral

power of F⊥
1 , then one sees that (2.61) also holds under the condition of Theorem 0.1.

This generalizes [22, Theorem 3.1].

By further modifying the sub-Dirac operators involved above, one gets the following

generalization of Theorems 0.1 and 0.6 (compare with [22, Theorem 3.2]).

Theorem 2.8. Under the assumptions of either Theorem 0.1 or 0.6, if TM/F is also

oriented, then for any Pontrjagin class p(TM/F ) of TM/F , one has for any integer

k ≥ 0 that
〈
Â(F )p(TM/F )e(TM/F )k, [M ]

〉
= 0.(2.63)

In particular,
〈
Â(F )e(TM/F ), [M ]

〉
= 0.(2.64)

Under the assumption of Theorem 2.8, if one assumes that dimM = 6 and rk(F ) = 4,

then by (2.63) one gets
〈
e(TM/F )3, [M ]

〉
= 0.(2.65)

From (2.65), one obtains the following partial complement to a classical result of Bott

[7, Corollary 1.7] which states that there is no smooth codimension two foliation on the

complex projective space CP 2n+1 with n ≥ 2.

Corollary 2.9. There is no smooth codimension two foliation of positive leafwise scalar

curvature on CP 3.
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[25] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature. Manuscripta

Math. 28 (1979), 159-183.

[26] S. Stolz, Simply connected manifolds of positive scalar curvature. Ann. of Math. 136 (1992), 511-540.

[27] W. P. Thurston, Existence of codimension-one foliations. Ann. of Math. 104 (1976), 249-268.

[28] E. Winkelnkemper, The graph of a foliation. Ann. Global Anal. Geom. 1 (1983), 51-75.

[29] W. Zhang, A proof of the mod 2 index theorem of Atiyah and Singer. C. R. Acad. Sci. Paris, Série

I, 316 (1993), 277-280.

[30] W. Zhang, Sub-signature operator and its local index theorem. Chinese Sci. Bull. 41 (1996), 294-295.

(in Chinese)

[31] W. Zhang, Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathemat-

ics vol. 4. World Scientific, Singapore, 2001.

[32] W. Zhang, Sub-signature operators, η-invariants and a Riemann-Roch theorem for flat vector bun-

dles. Chin. Ann. Math. 25B (2004), 7-36.

[33] R. J. Zimmer, Positive scalar curvature along the leaves. Appendix C in Global Analysis on Foliated

Spaces. By C. C. Moore and C. Schochet. MSRI Publ. Vol. 9. Springer-Verlag, 1988.

Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P.R.

China, and, Center for Applied Mathematics, Tianjin University, Tianjin 300072, P. R.

China

E-mail address : weiping@nankai.edu.cn


	0. Introduction
	1. Adiabatic limit and almost isometric foliations
	1.1. Almost isometric foliations 
	1.2. Adiabatic limit and the scalar curvature 
	1.3. Bott connections on F1 and F2 
	1.4. Sub-Dirac operators associated to spin integrable subbundles 
	1.5. A vanishing theorem for almost isometric foliations

	2. Connes fibration and vanishing theorems
	2.1. The Connes fibration 
	2.2. Sub-Dirac operators and the vanishing on compact subsets
	2.3. Proof of Theorem 0.1 for the case of dimM=4k
	2.4. The case of the mod 2 index
	2.5. Proof of the Connes vanishing theorem and more

	References

