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Abstract Panel count data occur in many clinical and observational studies, and in
many situations, the observation process may be informative and also theremay exist a
terminal event such as deathwhich stops the follow-up. In this article,we propose a new
joint model for the analysis of panel count data in the presence of both an informative
observation process and a dependent terminal event via two latent variables. For the
inference on the proposed models, a class of estimating equations is developed and the
resulting estimators are shown to be consistent and asymptotically normal. In addition,
a lack-of-fit test is provided for assessing the adequacy of the models. Simulation
studies suggest that the proposed approach works well for practical situations. A real
example from a bladder cancer clinical trial is used to illustrate the proposed methods.

Keywords Estimating equation · Informative observation process · Joint modeling ·
Panel count data · Terminal event

1 Introduction

Panel count data usually occur in longitudinal follow-up studies that concern occur-
rence rates of certain recurrent events. This kind of data usually arise from event
history studies that concern some recurrent events and in which subjects are moni-

B Haixiang Zhang
zhx_math@163.com

1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

2 Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

3 Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, China

4 Department of Statistics, University of Missouri, Columbia, MO 65211, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10985-016-9375-y&domain=pdf


J. Zhou et al.

tored or observed only at discrete time points instead of continuously. The fields in
which one often sees such data include demographical and epidemiological studies,
medical researches, reliability experiments, tumorgenicity experiments and sociolog-
ical studies (Kalbfleisch and Lawless 1985; Thall and Lachin 1988; Sun 2006).

Many authors have investigated the analysis of panel count data. For example,
Sun and Kalbfleisch (1995) considered the estimation of the mean function of the
underlying point process that yields panel count data. Balakrishnan and Zhao (2009,
2010, 2011), Park et al. (2007), Sun and Fang (2003) and Zhao and Sun (2011) pre-
sented some nonparametric test procedures for the comparison of the mean functions
of counting processes based on panel count data. Hu et al. (2003) and Sun and Wei
(2000) developed some estimating equation-based methods for regression analysis
of panel count data. Wellner and Zhang (2007) and Zhang (2002) also discussed
regression analysis of panel count data and gave some likelihood-based approaches.
Furthermore, Huang et al. (2006) and Sun et al. (2007) considered regression analysis
of panel count data with dependent observation times. Li et al. (2010) proposed a
class of semiparametric transformation models for panel count data with a dependent
observation process. Zhang et al. (2013a) presented a robust joint model for multivari-
ate panel count data via latent variables. Tong et al. (2009) and Zhang et al. (2013b)
considered the variable selection issues on panel count data. A relatively complete
references on panel count data can be found in Sun and Zhao (2013).

Most of the existing methods for panel count data assume that there is no terminal
event and the observation process is independent of the underlying recurrent event
process unconditionally or conditional on the covariates. In many situations, however,
the follow-up of subjects could be stopped by a terminal event, such as death, which
precludes further recurrent events. For example, in a tumourigenicity study, tumours
would not develop after death. Furthermore, it is often the case that the terminal event
is strongly correlated with the recurrent events of interest as well as the observation
process. In the presence of a terminal event, there exists considerable work on the
analysis of recurrent event data and longitudinal data analysis, and two approaches
are commonly adopted. One is the marginal model approach (Cook and Lawless 1997;
Ghosh and Lin 2002; Zhao et al. 2011), and the other is the frailty model approach
(Huang and Wang 2004; Liu et al. 2004; Ye et al. 2007; Zeng and Cai 2010; Sun et al.
2012).

Although panel count data can be regarded as a special case of longitudinal data,
the methods developed for longitudinal data are usually less efficient than the methods
specifically developed for panel count data since the former does not take into account
the special data structures of panel count data. To deal with these problems, Sun and
Zhao (2013) and Zhao et al. (2013) described a marginal modeling approach that
leaves the correlation between the recurrent event and the terminal event unspecified.
They made use of the inverse probability weighting technique to take into account
the fact that the subjects who are terminated cannot experience further occurrences
of the events of interest. Sun et al. (2007) presented some shared frailty models to
analyze panel count data when the response process tends to be associated with the
observation process and the follow-up process. Their method requires the assumptions
that one random effect is normally distributed and the observation process is a nonho-
mogeneous Poisson process. In practice, it is impossible to know which distribution

123



Joint analysis of panel count data...

the random effects follow, and misspecifying the distribution of random effect often
leads to erroneous inference. Recently, Sun et al. (2012) considered an additive model
for the analysis of longitudinal data. In this article, we will extend Sun et al. (2012)’s
method to panel count data with a proportional means model. We propose a joint
modeling approach to model the panel count data in the presence of both informative
observation times and a dependent terminal event via two latent variables. This joint
model is flexible and robust in that the distributions of the two latent variables and the
dependence structures are left unspecified.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notation
and describe the proposed models that will be used throughout the paper. Specifi-
cally, we will describe the joint model connected through two latent variables for the
recurrent event process, the observation times, and the terminal event. In Sect. 3, an
estimating equation approach is developed for estimation of the regression parameters
of interest. Also we establish the asymptotic properties of the proposed estimates. In
Sect. 4, we develop a technique for checking the adequacy of the proposed models.
Section 5 reports some results from the simulation studies conducted for evaluating
the proposed methods. In Sect. 6, we apply the proposed methods to a bladder cancer
study and some concluding remarks are provided in Sect. 7. Details of the proof are
given in the Appendix.

2 Notation and models

Consider a recurrent event study and let N (t) denote the number of the occurrences of
the recurrent event of interest up to time t , 0 ≤ t ≤ τ , where τ is the longest follow-up
time. For each subject, suppose that a d × 1 vector of covariates X is observed. Let D
be the time of the terminal event such as death, and C be the censoring time. Define
T = C ∧ D and δ = I (D ≤ C), where a ∧ b = min(a, b) and I (·) is the indicator
function. Let u and v be two latent variables which are independent of X . For any time
t , suppose that given (u, v, X) and D ≥ t , the mean function of N (t) has the form,

E {N (t)|X, D ≥ t, u, v} = μN (t; u) exp(X ′β0), (1)

where μN (t; u) is an unknown baseline mean function and β0 is a vector of unknown
regression parameters.

Let H(t) denote the observation process that yields the observation time points
for N (t) and assume that H(t) is independent of N (t) conditional on (u, v, X) and
D ≥ t . Also assume that H(t) follows the rate model

E {d H(t)|X, D ≥ t, u, v} = exp(X ′γ0)dμH (t; v), (2)

where γ0 is a vector of unknown regression parameters, and μH (t; v) is an unknown
baseline mean function with μH (0; v) = 0. Note that in the two models above, the
recurrent event andobservationprocesses are relatedwith eachother and to the terminal
event through the latent variables u and v. The condition D ≥ t is used because it
is often of interest in many studies to make inference for subjects who are currently
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alive (Ye et al. 2007; Zeng and Cai 2010; Zhao et al. 2011). For the terminal event,
we assume that it follows the semiparametric Cox model

logΛ0(D) = −X ′η0 + ε, (3)

where η0 is a vector of unknown regression parameters, Λ0(t) is an unspecified
baseline cumulative hazard function, and ε is a random error with extreme-value
distribution.

Note that the three models above are constructed through random effects u, v and
random error ε, respectively. We use the joint distribution of the three variables to
describe the association among the threemodels. In the following, the joint distribution
of u, v and ε will be left unspecified. Hence the joint models (1), (2) and (3) are exten-
sive in the sense thatμN (t; u) andμH (t; v) are both nonparametric and depend on the
latent random variables in an arbitrary way. By letting u = v, μN (t; u) = μN (t)uα ,
and μH (t; v) = vμH (t) with α being an unknown parameter, the joint models above
reduce to the models proposed in Sun et al. (2007) assuming that their restrictions
are satisfied. In what follows, we will assume that given X , the censoring time C
is independent of {u, v, D, N (·), H(·)}. For a sample of n independent subjects, the
observed data consist of {Ni (t)d Hi (t), Ti , δi , Xi , Hi (t), 0 ≤ t ≤ Ti , i = 1, . . . , n}.

3 Inference procedure

Now we discuss the estimation of the parameters β0 and γ0 as well as others. For this,
note that D may be censored and the latent variables u and v are unobservable and thus
it is impossible to make inference for the parameters of interest directly. To overcome
this problem, we will first consider the observed mean function given the observed
endpoint T , in which the resulting nonparametric component depends on the latent
variables. Then we will derive an expression of the nonparametric component which
can be estimated using the observed data for given β and γ . The latent variables
will disappear from the resulting estimator. To be more specific, let A0(t; u, v) =∫ t
0 μN (z; u)dμH (z; v) and define d R(t, s) = E{dA0(t; u, v)|ε ≥ s}. Following the
assumption that (u, v, ε) is independent of (X, C), we obtain that

E {N (t)d H(t)|X, T ≥ t} = exp
{

X ′(β0 + γ0)
}

d R(t, logΛ0(t) + X ′η0), (4)

and

d R(t, s) = E
[
N (t)d H(t)I

{
logΛ0(T ) + X ′η0 ≥ s ≥ logΛ0(t) + X ′η0

}]

E
[
exp {X ′(β0 + γ0)} I {logΛ0(T ) + X ′η0 ≥ s ≥ logΛ0(t) + X ′η0}

] .

(5)

Here logΛ0(T ) + X ′η0 ≥ s ≥ logΛ0(t) + X ′η0 implies T ≥ t . The derivation
of (4) and (5) is given in the Appendix, where the key point is that A0(t; u, v) is
independent of X .

To obtain an estimate of d R(t, s), we need to obtain the estimates of η0 and Λ0(t)
from model (3). For this, according to Fleming and Harrington (1991), we can use the
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maximum partial likelihood estimator η̂ and the Breslow estimator Λ̂0(t). Hence for
given β and γ , we have

d R̂(t, s;β, γ )=

n∑

i=1
Ni (t)d Hi (t)I

{
log Λ̂0(Ti )+X ′

i η̂≥s ≥ log Λ̂0(t)+X ′
i η̂

}

n∑

j=1
exp

{
X ′

j (β+γ )
}

I
{
log Λ̂0(Tj )+X ′

j η̂≥s ≥ log Λ̂0(t)+X ′
j η̂

} .

For givenγ , to estimateβ0,motivated by (4) and the generalized estimating equation
approach (Liang andZeger 1986),wepropose the following estimating function forβ0,

U (β; γ )=
n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i (t;β, γ )

}

i (t)

[
Ni (t)d Hi (t) − exp

{
X ′

i (β + γ )
}

×

n∑

j=1
N j (t)d Hj (t)Φ̂ j (t, Xi )

n∑

j=1
exp

{
X ′

j (β + γ )
}

Φ̂ j (t, Xi )

]
, (6)

where 
i (t) = I (Ti ≥ t) and W (t) is a possibly data-dependent weight function,

Φ̂ j (t, Xi ) = I
{
log Λ̂0(Tj ) + X ′

j η̂ ≥ log Λ̂0(t) + X ′
i η̂ ≥ log Λ̂0(t) + X ′

j η̂
}

,

X̄i (t;β, γ ) =

n∑

j=1
X j exp

{
X ′

j (β + γ )
}

Φ̂ j (t, Xi )

n∑

j=1
exp

{
X ′

j (β + γ )
}

Φ̂ j (t, Xi )

.

Of course in reality, γ0 is unknown. We can employ the estimation equation-based
method which was also studied in Zeng and Cai (2010) to estimate γ0,

Ũ (γ )=
n∑

i=1

∫ τ

0
Q(t)

{
Xi − X̄∗

i (t; γ )
}

i (t)

{
d Hi (t) − exp(X ′

iγ )d H̄i (t; γ )
}=0,

(7)

where Q(t) is a possibly data-dependent weight function, and

X̄∗
i (t; γ ) =

n∑

j=1
X j exp(X ′

jγ )Φ̂ j (t, Xi )

n∑

j=1
exp(X ′

jγ )Φ̂ j (t, Xi )

, d H̄i (t; γ ) =

n∑

j=1
d Hj (t)Φ̂ j (t, Xi )

n∑

j=1
exp(X ′

jγ )Φ̂ j (t, Xi )

.

Denote γ̂ as the solution to the estimatingEq. (7), and β̂ as the solution toU (β; γ̂ ) =
0. By the law of large numbers and the consistency of η̂ and Λ̂0(t), we can show that
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β̂ and γ̂ are consistent. The following theorem gives the asymptotic normality of β̂

and γ̂ with the proof sketched in the Appendix.

Theorem 1 Assume that the regularity conditions C.1–C.3 stated in the Appendix
hold. Then n1/2(β̂ − β0) and n1/2(γ̂ − γ0) have an asymptotic multivariate normal
distribution with mean zero and covariance matrix A−1Σ(A−1)′, where A and Σ are
defined in the Appendix.

To apply the results above, it is apparent that we need to estimate the asymptotic
covariance matrix or A and Σ . For A, a simple consistent estimate is given by

Â = −n−1
(

∂U (β̂; γ̂ )/∂β ∂U (β̂; γ̂ )/∂γ

0 ∂Ũ (γ̂ )/∂γ

)

.

However, it would be very difficult to estimate Σ as it is complicated and involves
the Hadamard derivatives of d M̄0(t, X; η,Λ) and d H̄0(t, X; η,Λ), defined in the
Appendix, with respect to Λ. Corresponding to this, we propose to use the follow-
ing Monte Carlo method. Specifically, based on the proof of Theorem 1, we know
that the variation of U (β0; γ0) comes from three sources, d Mi (t) − exp{X ′

i (β0 +
γ0)}d M̄(t, Xi ; η̂, Λ̂0), the empirical summation in the numerator and denominator of
M̄(t, Xi ; η̂, Λ̂0), and the plug-in estimator (η̂, Λ̂0), where d Mi (t) and d M̄(t, X; η,Λ)

are defined in the Appendix. To describe the resampling approach to capture all these
variations, let Z1, . . . ,Zn denote the independent and identically distributed sample
of size n from the standard normal distribution. Then the first two sources of variations
can be estimated by

Ω∗
1 =

n∑

i=1

Zi

∫ τ

0
W (t)

{
Xi − X̄i (t; β̂, γ̂ )

}

i (t)

⎡

⎢
⎢
⎢
⎣

Ni (t) d Hi (t) − exp
{

X ′
i

(
β̂ + γ̂

)}

×

n∑

j=1
N j (t)d Hj (t)Φ̂ j (t, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (t, Xi )

⎤

⎥
⎥
⎥
⎦

,

and

Ω∗
2 =

n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i (t; β̂, γ̂ )

}

i (t) exp

{
X ′

i

(
β̂ + γ̂

)}

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−
∑n

j=1Z j N j (t)d Hj (t)Φ̂ j (t, Xi )

∑n
j=1 exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (t, Xi )
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+
∑n

j=1 N j (t)d Hj (t)Φ̂ j (t, Xi )
[

n∑

j=1
exp

{
X ′

j (β̂ + γ̂ )
}

Φ̂ j (t, Xi )

]2

n∑

j=1

Z j exp
{

X ′
j

(
β̂+γ̂

)}
Φ̂ j (t, Xi )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

For estimation of the third part, define

η̂∗ = η̂ + Ω̂−1n−1
n∑

i=1

Zi

∫ τ

0

{
Xi − X̄ D(t, η̂)

}
d M̂ D

i (t),

and

Λ̂∗
0(t) = Λ̂0(t) + n−1

n∑

i=1

Zi

∫ t

0

d M̂ D
i (z)

S(0)(z, η̂)
−

∫ t

0
X̄ D(z, η̂)′dΛ̂0(z)

(
η̂∗ − η̂

)
,

where H D
i (t) = I (Ti ≤ t, δi = 1), M̂ D

i (t) = H D
i (t) − ∫ t

0 
i (z) exp(X ′
i η̂)dΛ̂0(z),

S(0)(t, η) = n−1 ∑n
i=1 
i (t) exp(X ′

iη), S(1)(t, η) = n−1 ∑n
i=1 
i (t)Xi exp(X ′

iη),
X̄ D(t, η̂) = S(1)(t, η̂)/S(0)(t, η̂), S(2)(t, η) = n−1 ∑n

i=1 
i (t)X⊗2
i exp(X ′

iη),

Ω̂ = n−1
n∑

i=1

∫ τ

0

[
S(2)(t, η̂)

S(0)(t, η̂)
−

{ S(1)(t, η̂)

S(0)(t, η̂)

}⊗2
]

d H D
i (t),

and for a vector a, a⊗2 = aa′. Then the variation due to (η̂, Λ̂0) can be estimated by

Ω∗
3 =

n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i

(
t; β̂, γ̂

)}

i (t) exp

{
X ′

i

(
β̂ + γ̂

)}

×

⎡

⎢
⎢
⎢
⎣

n∑

j=1
N j (t)d Hj (t)Φ̂ j (t, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (t, Xi )

−

n∑

j=1
N j (t)d Hj (t)Φ̂∗

j (t, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂∗

j (t, Xi )

⎤

⎥
⎥
⎥
⎦

,

where Φ̂∗
j (t, Xi ) is defined the same way as Φ̂ j (t, Xi ) except that (η̂, Λ̂0) is replaced

with (η̂∗, Λ̂∗
0). Similarly, we can estimate the variation of Ũ (γ0) by the following three

quantities

Ω∗
4 =

n∑

i=1

Zi

∫ τ

0
Q(t)

{
Xi − X̄∗

i (t; γ̂ )
}

i (t) × {

d Hi (t) − exp(X ′
i γ̂ )d H̄i (t; γ̂ )

}
,
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Ω∗
5 =

n∑

i=1

∫ τ

0
Q(t)

{
Xi − X̄∗

i (t; γ̂ )
}

i (t) exp(X ′

i γ̂ )

⎡

⎢
⎢
⎢
⎣

−

n∑

j=1
Z j d Hj (t)Φ̂ j (t, Xi )

n∑

j=1
exp(X ′

j γ̂ )Φ̂ j (t, Xi )

+

n∑

j=1
d Hj (t)Φ̂ j (t, Xi )

[
n∑

j=1
exp(X ′

j γ̂ )Φ̂ j (t, Xi )

]2

n∑

j=1

Z j exp(X ′
j γ̂ )Φ̂ j (t, Xi )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and

Ω∗
6 =

n∑

i=1

∫ τ

0
Q(t)

{
Xi − X̄∗

i (t; γ̂ )
}

i (t) exp(X ′

i γ̂ )
[
d H̄i (t; γ̂ ) − d H̄∗

i (t; γ̂ )
]
,

where H̄∗
i (t; γ̂ ) is defined the same way as H̄i (t; γ̂ ) except that (η̂, Λ̂0) is replaced

with (η̂∗, Λ̂∗
0). Define Υ̂ = (Υ̂ ′

1, Υ̂
′
2)

′, where Υ̂1 = n−1/2(Ω∗
1 + Ω∗

2 + Ω∗
3 ) and

Υ̂2 = n−1/2(Ω∗
4 + Ω∗

5 + Ω∗
6 ). Given the observed data, we can estimate Σ by the

empirical covariance matrix of Υ̂ with repeatedly generating the random samples
(Z1, . . . ,Zn). The following theorem justifies the above Monte Carlo method with
the proof given in the Appendix.

Theorem 2 Let EZ denotes the conditional expectation with respect to (Z1, . . . ,Zn)

given the observed data. Then EZ (Υ̂ ⊗2)
P−→ Σ , where

P−→ denotes convergence in
probability.

4 Model diagnostics

In this section, wewill propose some graphical and numerical procedures for checking
the adequacy of the proposed models with focus on model (1) as some procedures can
be found in the literature for assessing models (2) and (3), respectively. Following Lin
et al. (2000), we propose the following cumulative sums of residual,

F(t, x) = n−1/2
n∑

i=1

∫ t

0
I (Xi ≤ x)d M̂∗

i (z), (8)

where I (Xi ≤ x) means that each of the components of Xi is no larger than the
corresponding component of x , and

d M̂∗
i (t)=
i (t)

⎡

⎢
⎢
⎢
⎣

Ni (t)d Hi (t)−exp
{

X ′
i

(
β̂+γ̂

)}
×

n∑

j=1
N j (t)d Hj (t)Φ̂ j (t, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂+γ̂

)}
Φ̂ j (t, Xi )

⎤

⎥
⎥
⎥
⎦

.
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Here the null hypothesis H0 is defined as the correct specification of model (1). Simi-
larly to U (β0; γ0), the variation ofF(t, x) can be characterized by the following three
terms:

Ω∗
7 (t, x) =

n∑

i=1

Zi

∫ t

0
I (Xi ≤ x)
i (z)

[
Ni (z)d Hi (z) − exp

{
X ′

i

(
β̂ + γ̂

)}

×

n∑

j=1
N j (z)d Hj (z)Φ̂ j (z, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (z, Xi )

⎤

⎥
⎥
⎥
⎦

,

Ω∗
8 (t, x) =

n∑

i=1

∫ t

0
I (Xi ≤ x)
i (z) exp

{
X ′

i

(
β̂ + γ̂

)}

×

⎡

⎢
⎢
⎢
⎣

−

n∑

j=1
Z j N j (z)d H j (z)Φ̂ j (z, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (z, Xi )

+

n∑

j=1
N j (z)d H j (z)Φ̂ j (z, Xi )

[
n∑

j=1
exp

{
X ′

j

(
β̂+γ̂

)}
Φ̂ j (z, Xi )

]2

n∑

j=1

Z j exp
{

X ′
j

(
β̂ + γ̂

)}
Φ̂ j (z, Xi )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and

Ω∗
9 (t, x) =

n∑

i=1

∫ t

0
I (Xi ≤ x)
i (z) exp

{
X ′

i

(
β̂ + γ̂

)}

×

⎡

⎢
⎢
⎢
⎣

n∑

j=1
N j (z)d Hj (z)Φ̂ j (z, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (z, Xi )

−

n∑

j=1
N j (z)d Hj (z)Φ̂∗

j (z, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂∗

j (z, Xi )

⎤

⎥
⎥
⎥
⎦

.

Define

Γ̂1(t, x) = n−1
n∑

i=1

∫ t

0
I (Xi ≤ x) 	i (z)

{
Xi − X̄i

(
z; β̂, γ̂

)}
exp

{
X ′

i

(
β̂ + γ̂

)}

×

n∑

j=1
N j (z)d Hj (z)Φ̂ j (z, Xi )

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ̂ j (z, Xi )

,
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and Γ̂ (t, x) = (Γ̂1(t, x)′, Γ̂1(t, x)′)′. Then the null distribution of F(t, x) can be
obtained from the following theorem with the proof presented in the Appendix.

Theorem 3 Suppose that the conditions in Theorem 1 hold. Then under H0, the null
distribution of F(t, x) can be approximated by the following zero-mean Gaussian
process,

F̂(t, x) = n−1/2
{
Ω∗

7 (t, x) + Ω∗
8 (t, x) + Ω∗

9 (t, x) − Γ̂ (t, x)′ Â−1Υ̂
}

. (9)

BasedonTheorem3, it is easy to see thatwecanobtain a largenumber of realizations
ofF(t, x) by repeatedly generating the standard normal random sample (Z1, . . . ,Zn)

while fixing the observed data. To assess the adequacy of model (1), a simple and
graphicalmethod is to plot these realizations of F̂(t, x) alongwith the observedF(t, x)

and examine any unusual pattern ofF(t, x)with respect to F̂(t, x). In particular, if the
model is correct, the observedF(t, x) is expected to be surrounded by the realizations
and some illustrations can be found in Lin et al. (2000) among others. More formally,
we can apply the supremum test statistic supt,x |F(t, x)| to conduct the lack-of-fit test
and obtain the p-value by comparing the observed value of supt,x |F(t, x)| to a large
number of realizations from supt,x |F̂(t, x)|.

5 A simulation study

In this section we will present some results from an extensive simulation study. In
the study, the covariate Xi was generated from a Bernoulli distribution with success
probability 0.5. The terminal event timewas generated through log(Di/4) = −η0Xi +
εi , where εi was generated from the extreme-value distribution. The censoring timeCi

was taken as min(C∗
i , τ ) with C∗

i following the uniform distribution over (2,10) and
τ = 6, which yielded 23 % censoring for the terminal event. Let ui = exp(φ1εi/5)
and vi = ρi exp(−φ2εi/5), where φ1 = −1, 0 or 1, φ2=−1, 0 or 1, and ρi followed
the uniform distribution over (0.5, 1.5). Given Xi , ui , vi and Ti = min(Ci , Di ), we
generated the observation process from the nonhomogeneous Poisson process with
intensity function

λi (t) = vi exp(γ0Xi )I (Ti ≥ t).

The average number of observations per subject is about 3.
Also in the study, the recurrent event process Ni (t) was assumed to be the Poisson

process with the intensity function

λ∗
i (t |Xi , ui , vi , ωi ) = ωi ui exp(β0Xi ),

where ωi was an independent gamma random variable with mean 1 and variance
σ 2. Specifically, let (ti,1, . . . , ti,Ki ) be the observation times for the i th subject, then
Ni (ti, j ), j = 1, . . . , Ki were generated piecewisely bygenerating Ni (ti, j )−Ni (ti, j−1)

from a Poisson distribution with the mean functions ωi (ti, j − ti, j−1)ui exp(β0Xi ),
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Table 1 Simulation results for the estimation of β0 = −0.5 and γ0 = 0.5

n (φ1, φ2) β0 γ0

BIAS SSE ESE CP BIAS SSE ESE CP

100 (−1, −1) −0.0102 0.3433 0.3265 0.928 0.0480 0.1708 0.1714 0.943

(−1, 0) −0.0145 0.3419 0.3235 0.929 0.0537 0.1668 0.1718 0.944

(−1, 1) −0.0182 0.3202 0.3250 0.947 0.0478 0.1723 0.1755 0.950

( 0, −1) −0.0080 0.3544 0.3305 0.921 0.0475 0.1741 0.1729 0.947

( 0, 0) 0.0122 0.3437 0.3263 0.937 0.0383 0.1724 0.1702 0.947

( 0, 1) 0.0146 0.3426 0.3227 0.942 0.0380 0.1727 0.1741 0.947

( 1, −1) 0.0085 0.3589 0.3314 0.928 0.0554 0.1697 0.1714 0.945

( 1, 0) 0.0103 0.3448 0.3293 0.938 0.0430 0.1662 0.1694 0.952

( 1, 1) 0.0112 0.3470 0.3297 0.928 0.0320 0.1694 0.1732 0.955

200 (−1, −1) −0.0099 0.2311 0.2310 0.946 0.0290 0.1146 0.1166 0.950

(−1, 0) 0.0136 0.2378 0.2299 0.950 0.0212 0.1147 0.1134 0.938

(−1, 1) −0.0083 0.2346 0.2295 0.936 0.0185 0.1175 0.1181 0.946

(0, −1) −0.0126 0.2414 0.2317 0.936 0.0234 0.1177 0.1161 0.948

( 0, 0) 0.0120 0.2389 0.2307 0.941 0.0193 0.1046 0.1142 0.964

( 0, 1) −0.0025 0.2402 0.2294 0.937 0.0206 0.1199 0.1177 0.946

( 1, −1) 0.0271 0.2466 0.2357 0.936 0.0320 0.1139 0.1163 0.939

( 1, 0) 0.0079 0.2411 0.2348 0.938 0.0259 0.1095 0.1142 0.959

( 1, 1) 0.0198 0.2457 0.2349 0.938 0.0265 0.1202 0.1181 0.948

where ti,0 was set to be 0. It is easy to verify that Ni (t) = Ni (t ∧ D) and Ni (t)
satisfies (1). Note that φ1 and φ2 reflected the dependence among the recurrent event
process, the observation times and the terminal event. For example, φ1 = 0 andφ2 = 0
implied that the recurrent event process, the observation times and the terminal event
were independent, while φ1 
= 0 and φ2 
= 0 reflected that the three processes were
related with each other. In the simulation study, we set η0 = 0.5, β0 = 0.5 and
−0.5, γ0 = 0.5, W (t) = Q(t) = 1. We found that 100 resamplings work well for
the variance estimation. All the results reported below were computed based on 1000
replications with sample sizes n = 100 and 200.

Tables 1 and 2 report the simulation results on the estimates for β0 and γ0. The
tables include the bias (BIAS) given by the difference of sample means of estimate
and the true value, the sampling standard errors (SSE), the sampling means of the
estimated standard errors (SEE), and the 95 % empirical coverage probabilities (CP).
It can be seen from the tables that the estimators seem to be unbiased and the proposed
variance estimation seems toworkwell. Also the coverage probabilities are reasonable
and consistent with the normal levels.

For comparison, we also considered two other methods. One is given by Sun and
Wei (2000), denoted by SW below, which assumed that given covariates, N (·), H(·)
and D are independent, and the other is based on the generalized estimating equa-
tion method similar to (6) but ignoring the informative observation process and the
terminal event, denoted by Naive below. Here we generated the data in the same way
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Table 2 Simulation results for the estimation of β0 = 0.5 and γ0 = 0.5

n (φ1, φ2) β0 γ0

BIAS SSE ESE CP BIAS SSE ESE CP

100 (−1, −1) 0.0720 0.3372 0.3381 0.947 0.0419 0.1682 0.1690 0.944

(−1, 0) 0.0755 0.3484 0.3366 0.954 0.0336 0.1602 0.1684 0.951

(−1, 1) 0.0803 0.3346 0.3398 0.955 0.0435 0.1736 0.1736 0.940

( 0, −1) 0.0729 0.3426 0.3335 0.944 0.0497 0.1640 0.1699 0.949

( 0, 0) 0.0825 0.3481 0.3357 0.945 0.0447 0.1581 0.1687 0.947

( 0, 1) 0.0714 0.3423 0.3400 0.962 0.0504 0.1737 0.1756 0.945

( 1, −1) 0.0871 0.3557 0.3502 0.952 0.0480 0.1721 0.1700 0.937

( 1, 0) 0.1074 0.3465 0.3473 0.947 0.0469 0.1637 0.1685 0.948

( 1, 1) 0.0803 0.3530 0.3406 0.942 0.0446 0.1708 0.1735 0.952

200 (−1, −1) 0.0487 0.2248 0.2263 0.943 0.0227 0.1176 0.1158 0.937

(−1, 0) 0.0426 0.2164 0.2230 0.953 0.0206 0.1151 0.1141 0.945

(−1, 1) 0.0373 0.2178 0.2232 0.951 0.0213 0.1163 0.1177 0.950

( 0, −1) 0.0342 0.2220 0.2243 0.947 0.0312 0.1141 0.1154 0.943

( 0, 0) 0.0289 0.2296 0.2250 0.928 0.0188 0.1097 0.1133 0.958

( 0, 1) 0.0311 0.2311 0.2217 0.937 0.0118 0.1138 0.1183 0.965

( 1, −1) 0.0390 0.2376 0.2325 0.936 0.0232 0.1121 0.1151 0.947

( 1, 0) 0.0427 0.2354 0.2283 0.944 0.0114 0.1090 0.1131 0.959

( 1, 1) 0.0424 0.2266 0.2285 0.951 0.0193 0.1189 0.1172 0.935

as before except taking the parameter η = 0 and 0.5. Note that with η = 0 and
(φ1, φ2) = (0, 0), the model of Sun and Wei (2000) is satisfied. Table 3 gives the
comparison results for estimation of β0. As expected, the SW’s method and the Naive
method yielded consistent estimators when η = 0 with smaller biases. However,
when η = 0.5, the SW’s method and the Naive method resulted in biased estimates.
In addition, the SW’s method always gave the largest variance, which may be caused
by the use of inefficient estimating equations. The variance of the proposed estima-
tor is always comparable and seems to be more efficient and reliable than the other
methods.

Furthermore, we conducted some simulation studies to investigate the performance
of the model checking procedure described in Sect. 4. In the studies, the covariate Xi

was taken as 0, 1, 2, 3 and 4 with equal probabilities, and we replaced η0Xi , γ0Xi and
β0Xi with η0Xi +0.01K1X2

i , γ0Xi +0.02K2X2
i and β0Xi +0.05K3X2

i , respectively.
The other setups were the same as before with η0 = γ0 = 0.2, β0 = −0.2. We
considered the null hypothesis H0 as (K1, K2, K3) = (0, 0, 0). Table 4 reports the
empirical sizes and powers of the proposed test at the significance level of 0.05 with
(φ1, φ2) = (−1, 1) and n = 200. Simulation results show that the proposed test is
useful, but a little conservative. Specifically, when model (1) is correct, it will tend
to accept the null hypothesis even though models (2) and (3) are misspecified. When
model (1) is misspecified, the test has a reasonable power to detect deviations from
the null hypothesis, especially as the value of K3 increases. In addition, the simulation
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Table 3 Comparison results on estimation of β0 with n = 200

η0 (φ1, φ2) Proposed SW Naive

BIAS SSE BIAS SSE BIAS SSE

0 (−1, −1) −0.0029 0.2106 0.0050 0.2916 0.0019 0.2051

(−1, 0) −0.0090 0.2143 0.0005 0.2920 −0.0009 0.2062

(−1, 1) −0.0068 0.2065 −0.0052 0.2844 −0.0003 0.1984

( 0, −1) −0.0006 0.2140 0.0176 0.2866 0.0065 0.2117

( 0, 0) −0.0031 0.2083 0.0097 0.2875 0.0058 0.2008

( 0, 1) −0.0151 0.2113 −0.0102 0.2960 −0.0073 0.2021

( 1, −1) −0.0098 0.2247 0.0045 0.3110 −0.0004 0.2180

( 1, 0) −0.0164 0.2123 −0.0033 0.2973 −0.0091 0.2069

( 1, 1) −0.0088 0.2086 −0.0087 0.2844 −0.0012 0.1996

0.5 (−1, −1) −0.0067 0.2333 −0.5461 0.3075 −0.0568 0.2214

(−1, 0) 0.0012 0.2267 −0.5453 0.2944 −0.0591 0.2161

(−1, 1) −0.0046 0.2354 −0.5466 0.3023 −0.0818 0.2121

( 0, −1) 0.0068 0.2368 −0.4889 0.3296 0.0165 0.2285

( 0, 0) 0.0040 0.2302 −0.4761 0.3155 −0.0011 0.2287

( 0, 1) −0.0080 0.2221 −0.4831 0.3050 −0.0194 0.2106

( 1, −1) −0.0148 0.2452 −0.4818 0.3443 0.0452 0.2416

( 1, 0) 0.0054 0.2319 −0.4459 0.3278 0.0538 0.2315

( 1, 1) 0.0042 0.2406 −0.4405 0.3221 0.0460 0.2310

results on the estimates for β0 are also reported in Table 4. The results indicate that
the biases are mainly affected by K3, and the biases are relatively small when K3 = 0.
However, additional simulation studies show that the biases could be large when the
values of K1 and K2 increase (not reported here).

6 An application

In this section, we applied the proposed methods to the bladder cancer data discussed
by Sun andWei (2000) among others. The data arose from the study conducted by the
Veterans Administration Cooperative Urological Research Group and in the study, the
patientswere randomly assigned to three treatment groups at the beginning of the study.
The tumorswere removed at the patients’ clinical visits, andmay occur recurrently. For
each patient, the number of initial tumors before entering the study and the size of the
largest initial tumor were measured as baseline covariates. In addition, the observed
informations include the clinical visit times (in month) and the number of bladder
tumors that occurred between clinical visits. As in Sun and Wei (2000), we will focus
on 85 bladder cancer patients in the placebo (47) and the thiotepa (38) groups. Among
them, 22 patients were terminated by death with 12 in the thiotepa group and 10 in
the placebo group. In the analysis below, we will focus on the effects of the thiotepa
treatment and the number of initial tumors on the tumor occurrence rate by taking into
account both informative observation times and a dependent terminal event.
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Table 4 Simulation results on the model test and estimation of β0

K3 K2 K1 Size/power BIAS SSE ESE CP

0 0 0 0.030 −0.0029 0.0866 0.0815 0.934

0 1 0.033 0.0010 0.0929 0.0852 0.931

0 3 0.036 0.0018 0.0978 0.0937 0.933

1 0 0.017 −0.0108 0.0844 0.0825 0.943

1 1 0.024 −0.0098 0.0922 0.0859 0.930

1 3 0.039 −0.0044 0.0948 0.0924 0.945

3 0 0.051 −0.0277 0.0926 0.0900 0.911

3 1 0.036 −0.0222 0.0902 0.0909 0.929

3 3 0.025 −0.0312 0.0962 0.0970 0.931

1 0 0 0.036 0.2097 0.0843 0.0816 0.282

0 1 0.034 0.2109 0.0874 0.0836 0.273

0 3 0.031 0.2038 0.0968 0.0920 0.397

1 0 0.048 0.2134 0.0831 0.0843 0.273

1 1 0.049 0.2122 0.0931 0.0865 0.316

1 3 0.045 0.2061 0.1006 0.0937 0.405

3 0 0.152 0.2251 0.0951 0.0918 0.307

3 1 0.142 0.2204 0.1019 0.0930 0.330

3 3 0.079 0.2133 0.1005 0.0989 0.415

3 0 0 0.303 0.7241 0.1101 0.1037 0

0 1 0.264 0.7110 0.1126 0.1032 0

0 3 0.200 0.6995 0.1197 0.1106 0

1 0 0.352 0.7521 0.1174 0.1065 0

1 1 0.349 0.7483 0.1189 0.1091 0

1 3 0.289 0.7253 0.1213 0.1122 0

3 0 0.514 0.8256 0.1346 0.1196 0

3 1 0.505 0.8215 0.1432 0.1228 0

3 3 0.445 0.7966 0.1449 0.1267 0

For the analysis, define Ni (t) to be the cumulative number of observed tumors at
time t , i = 1, . . . , 85.Let Xi1 = 1 if patient i was in the thiotepa group and0otherwise,
and Xi2 to be the logarithm of the number of the initial tumors plus 1. Let τ be the
longest observation time being 53 months. The application of the proposed methods
in Sect. 3 with W (t) = Q(t) = 1 yielded β̂1 = −1.5594 and β̂2 = 1.2991 with the
estimated standard errors 0.3817 and 0.3456, respectively. These results imply that
both the thiotepa treatment and the initial number of tumors have significant effects
on the tumor occurrence process. Specifically, the thiotepa treatment significantly
reduces the bladder tumor occurrence rate, and the patients with higher number of
initial tumors tend to have a higher tumor occurrence rate. These results are consistent
with Sun and Wei (2000).

To assess the adequacy of the proposed models for the bladder cancer data,
we applied the model checking techniques presented in Sect. 4 and obtained
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supx,t |F(x, t)| = 19.3408. This gives a p value of 0.842 based on 1000 realiza-

tions of the corresponding statistic supx,t |F̂(x, t)| and indicates that model (1) seems
to fit the bladder cancer data well.

7 Concluding remarks

This paper discussed the analysis of panel count data in thepresenceof both informative
observation times and a terminal event. Some joint models were proposed to describe
the recurrent event process, the observation times and the terminal event together via
two latent variables. An estimating equation-based inference procedure was proposed
for the estimation of parameters. Also a goodness-of-fit procedure was presented
for assessing the appropriateness of the proposed models, and the simulation results
indicated that the estimation procedure works well in practical situations. In addition,
an illustrative example was also provided.

The proposed joint modeling approach offers a good choice for modeling panel
count data in the presence of both informative observation times and a terminal event.
Note that for the situation considered here, themodeling of the observation process and
the terminal event could not be of interest, and themisspecification of these twomodels
may lead to biased estimation for the recurrent event process. Simulation studies show
that when the model for the recurrent event process is correct, small misspecifications
of the models for the observation process and the terminal event lead to small biases
for the estimation of the recurrent event process. However, when the misspecifications
of these two models are severe, the biases could be large.

There remain several topics to study in the future. First, note that we only considered
the time-independent covariates. In practice, they may be varying with time and thus
it is desirable to extend the proposed procedure to the situation with time-dependent
covariates. However, this is clearly not straightforward. Second, it would be useful to
develop some variable selection procedures for the proposed joint model. For this, one
possible way is to use the non-concave penalized estimating function approach (Tong
et al. 2009) based on (7) and it is apparent that a lot of research efforts are needed for it.
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Appendix: Derivations of Eqs. (4) and (5) and the proofs of Theorems 1, 2
and 3

To obtain the asymptotic distributions of β̂ and γ̂ , we need the following regularity
conditions:

C.1. {Ni (·), Hi (·), Ti , δi , Xi }, i = 1, . . . , n are independent and identically distrib-
uted.

C.2. H(τ ) and X are bounded almost surely, N (t) is of bounded variation and P(T ≥
τ) > 0.

C.3. A is nonsingular, where

A =
(

A11 A12
0 A22

)

,

A11 = E

[∫ τ

0
W (t) {Xi − x̄(t, Xi )}⊗2 
i (t)

× exp

{

X ′
i (β0 + γ0)

}

d R(t, logΛ0(t) + X ′
iη0)

]

,

A22 = E

[∫ τ

0
Q(t)

{
Xi − x̄∗

i (t, Xi )
}⊗2


i (t) exp(X ′
iγ0)d H̄i (t; γ )

]

,

A12 = A11,

and x̄(t, Xi ) and x̄∗(t, Xi ) are the limits of X̄i (t;β0, γ0) and X̄∗
i (t; γ0) condi-

tional on Xi , respectively.

Derivations of Eqs. (4) and (5) Given (u, v, X) and D ≥ t , we suppose that the mean
function of the recurrent process and the rate of the observation process are indepen-
dent of D. Note that A0(t; u, v) = ∫ t

0 μN (z; u)dμH (z; v). Then by the independent
censoring assumption and models (1) and (2), we obtain

E {N (t)d H(t)|X, T ≥ t}
= E {N (t)d H(t)|X, D ≥ t}
= E [E {N (t)d H(t)|X, D ≥ t, u, v} |X, D ≥ t]

= exp
{

X ′(β0 + γ0)
}

E {dA0(t; u, v)|X, D ≥ t}
= exp

{
X ′(β0 + γ0)

}
E

{
dA0(t; u, v)|X, ε ≥ logΛ0(t) + X ′η0

}
,

where the last equality is from (3). Define d R(t, s) = E {dA0(t; u, v)|ε ≥ s}. It can
be checked that

E {N (t)d H(t)|X, T ≥ t} = exp
{

X ′(β0 + γ0)
}

d R(t, logΛ0(t) + X ′η0). (10)

For any integrable function g(X, t, s), by the assumption that (u, v, ε) is independent
of (X, C), we have

d R(t, s) = E {dA0(t; u, v)|ε ≥ s}
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= E {dA0(t; u, v)I (ε ≥ s)}
E {I (ε ≥ s)}

= E
[
dA0(t; u, v)I (ε ≥ s)I

{
logΛ0(C) + X ′η0 ≥ s

}
g(X, t, s)

]

E
[
I (ε ≥ s)I {logΛ0(C) + X ′η0 ≥ s} g(X, t, s)

]

= E
[
dA0(t; u, v)I

{
logΛ0(T ) + X ′η0 ≥ s

}
g(X, t, s)

]

E
[
I {logΛ0(T ) + X ′η0 ≥ s} g(X, t, s)

] . (11)

In particular, we choose g(X, t, s) = exp{X ′(β0 +γ0)}I
{
logΛ0(t) + X ′η0 ≤ s

}
, the

denominator of (11) becomes E[exp {
X ′(β0 + γ0)

}
Φ(T, X, t, s)], where Φ(T, X,

t, s) = I
{
logΛ0(T ) + X ′η0 ≥ s ≥ logΛ0(t) + X ′η0

}
. Note that Φ(T, X, t, s) = 1

implies T ≥ t . similarly to (10), we get

E {N (t)d H(t)Φ(T, X, t, s)} = E [E {N (t)d H(t)Φ(T, X, t, s)|X, Φ(T, X, t, s), u, v}]
= E(E

[
exp

{
X ′(β0 + γ0)

}
dA0(t; u, v)Φ(T, X, t, s)|X, Φ(T, X, t, s), u, v

]
)

= E
[
exp

{
X ′(β0 + γ0)

}
dA0(t; u, v)Φ(T, X, t, s)

]
,

which is the numerator of (11). Thus

d R(t, s) = E
[
N (t)d H(t)I

{
logΛ0(T ) + X ′η0 ≥ s ≥ logΛ0(t) + X ′η0

}]

E
[
exp {X ′(β0 + γ0)} I {logΛ0(T ) + X ′η0 ≥ s ≥ logΛ0(t) + X ′η0}

] .

This completes the derivation. ��

Proof of Theorem 1 Define

Φi (t, X; η,Λ) = I
{
logΛ(Ti ) + X ′

iη ≥ logΛ(t) + X ′η ≥ logΛ(t) + X ′
iη

}
,

d Mi (t) = Ni (t)d Hi (t),

d M̄(t, X; η,Λ) =

n∑

j=1
Φ j (t, X; η,Λ)d M j (t)

n∑

j=1
exp

{
X ′

j (β0 + γ0)
}

Φ j (t, X; η,Λ)

,

d M̄0(t, X; η,Λ) = E
{
Φ j (t, X; η,Λ)d M j (t)|X

}

E
[
exp

{
X ′

j (β0 + γ0)
}

Φ j (t, X; η,Λ)|X
] ,

and

x̄(t, X; η,Λ) =
E

[
X j exp

{
X ′

j (β0 + γ0)
}

Φ j (t, X; η,Λ)|X
]

E
[
exp

{
X ′

j (β0 + γ0)
}

Φ j (t, X; η,Λ)|X
] .
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Denote x̄(t, X) = x̄(t, X; η0,Λ0) and Φi (t, X) = Φi (t, X; η0,Λ0). Then we have

n−1/2
n∑

i=1

∫ τ

0
W (t) {Xi − x̄(t, Xi )} 
i (t) exp

{
X ′

i (β0 + γ0)
}

×
{

d M̄(t, Xi ; η̂, Λ̂0) − d M̄0(t, Xi ; η̂, Λ̂0)
}

= n−1/2
n∑

i=1

∫ τ

0
W (t)

×
[∫

{x − x̄(t, x)} I (c ≥ t)
exp

{
x ′(β0 + γ0)

}
Φi (t, x)

E
[
exp

{
X ′

i (β0 + γ0)
}
Φi (t, x)

]d F(x, c)

]

d Mi (t)

−n−1/2
n∑

i=1

∫ [∫ τ

0
W (t) {x − x̄(t, x)} I (c ≥ t) exp

{
x ′(β0 + γ0)

}
Φi (t, x)

× E {Φi (t, x)d Mi (t)}
(
E

[
exp

{
X ′

i (β0 + γ0)
}
Φi (t, x)

])2

]

exp
{

X ′
i (β0 + γ0)

}
d F(x, c) + op(1),

(12)

where F(x, c) is the joint probability measure of (Xi , Ti ). According to Fleming and
Harrington (1991, Page 299), we obtain

η̂ − η0 = Ω−1n−1
n∑

i=1

∫ τ

0

{
Xi − x̄ D(t)

}
d M D

i (t) + op(n
−1/2),

and

Λ̂0(t) − Λ0(t) = n−1
n∑

i=1

∫ t

0

d M D
i (z)

s(0)(z; η0)
−

∫ t

0
x̄ D(z)′dΛ0(z)(η̂ − η0) + op(n

−1/2),

where M D
i (t) = H D

i (t) − ∫ t
0 
i (z) exp(X ′

iη0)dΛ0(z), and Ω , s(0)(t; η0) and x̄ D(t)

are the limits of Ω̂ , S(0)(t; η0) and X̄ D(t; η0), respectively. Denote d Rη(t, X) and
d RΛ(t, X) as the derivative and the Hadamard derivative of d M̄0(t, X; η0,Λ0) with
respect to η and Λ, respectively. Then by the functional delta method, we get

n−1/2
n∑

i=1

∫ τ

0
W (t) {Xi − x̄(t, Xi )} 
i (t) exp

{
X ′

i (β0 + γ0)
}

×
{

d M̄0(t, Xi ; η̂, Λ̂0) − d M̄0(t, Xi ; η0,Λ0)
}

= n−1/2
n∑

i=1

∫ τ

0

[

P1Ω
−1

{
Xi − x̄ D(t)

}
+ B1(t)

s(0)(t; η0)

]

d M D
i (t) + op(1), (13)
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where

P1 = E

[∫ τ

0
W (t) {Xi − x̄(t, Xi )} 
i (t) exp

{
X ′

i (β0 + γ0)
} {

d Rη(t, Xi )

−
(∫ t

0
x̄ D(z)′dΛ0(z)

)

d RΛ(t, Xi )
}]

,

and

B1(t) = E

[∫ τ

t
W (z) {Xi − x̄(z, Xi )}
i (z) exp

{
X ′

i (β0 + γ0)
}

d RΛ(z, Xi )

]

.

It follows from (12) and (13) that

n−1/2U (β0; γ0)

= n−1/2
n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i (t;β0, γ0)

}

i (t)

[
d Mi (t)

− exp
{

X ′
i (β0 + γ0)

}
d M̄0(t, Xi ; η0,Λ0)

− exp
{

X ′
i (β0 + γ0)

} {
d M̄(t, Xi ; η̂, Λ̂0) − d M̄0(t, Xi ; η̂, Λ̂0)

}

− exp
{

X ′
i (β0 + γ0)

} {
d M̄0(t, Xi ; η̂, Λ̂0) − d M̄0(t, Xi ; η0,Λ0)

} ]

= n−1/2
n∑

i=1

ξi + op(1), (14)

where

ξi =
∫ τ

0
W (t) {Xi − x̄(t, Xi )} 
i (t)[d Mi (t) − exp

{
X ′

i (β0 + γ0)
}

d M̄0(t, Xi ; η0, Λ0)]

−
∫ τ

0
W (t)

[∫
{x − x̄(t, x)} I (c≥ t)

exp
{

x ′(β0+γ0)
}
Φi (t, x)

E
[
exp

{
X ′

i (β0+γ0)
}
Φi (t, x)

]d F(x, c)

]

d Mi (t)

+
∫ [ ∫ τ

0
W (t) {x − x̄(t, x)} I (c ≥ t) exp

{
x ′(β0 + γ0)

}
Φi (t, x)

× E {Φi (t, x)d Mi (t)}
(E

[
exp

{
X ′

i (β0 + γ0)
}
Φi (t, x)

]
)2

]

exp
{

X ′
i (β0 + γ0)

}
d F(x, c)

−
∫ τ

0

[

P1Ω
−1

{
Xi − x̄ D(t)

}
+ B1(t)

s(0)(t; η0)

]

d M D
i (t).

Moreover, we define the following notations:

d H̄(t, X; η,Λ) =

n∑

j=1
d Hj (t)Φ j (t, X; η,Λ)

n∑

j=1
exp(X ′

jγ0)Φ j (t, X; η,Λ)

,
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d H̄0(t, X; η,Λ) = E
[
d Hj (t)Φ j (t, X; η,Λ)|X]

E
[
exp(X ′

jγ0)Φ j (t, X; η,Λ)|X
] ,

x̄∗(t, X; η,Λ) =
E

[
X j exp(X ′

jγ0)Φ j (t, X; η,Λ)|X
]

E
[
exp(X ′

jγ0)Φ j (t, X; η,Λ)|X
] .

Denote x̄∗(t, X) = x̄∗(t, X; η0,Λ0). In a similar manner, we can get

n−1/2
n∑

i=1

∫ τ

0
Q(t)

{
Xi − x̄∗(t, Xi )

}

i (t) exp(X ′

i γ0)

×
{

d H̄(t, X; η̂, Λ̂0) − d H̄0(t, X; η̂, Λ̂0)
}

= n−1/2
n∑

i=1

∫ τ

0
Q(t)

[∫
{

x− x̄∗(t, x)
}

I (c≥ t)
exp(x ′γ0)Φi (t, x)

E
[
exp(X ′

i γ0)Φi (t, x)
]dF(x, c)

]

d Hi (t)

−n−1/2
n∑

i=1

∫ [∫ τ

0
Q(t)

{
x − x̄∗(t, x)

}
I (c ≥ t) exp(x ′γ0)Φi (t, x)

× E {Φi (t, x)d Hi (t)}
(E

[
exp(X ′

i γ0)Φi (t, x)
]
)2

]

exp(X ′
i γ0)d F(x, c) + op(1), (15)

and

n−1/2
n∑

i=1

∫ τ

0
Q(t)

{
Xi − x̄∗(t, Xi )

}

i (t) exp(X ′

iγ0)

×
{

d H̄0(t, Xi ; η̂, Λ̂0) − d H̄0(t, Xi ; η0,Λ0)
}

= n−1/2
n∑

i=1

∫ τ

0

[

P2Ω
−1

{
Xi − x̄ D(t)

}
+ B2(t)

s(0)(t; η0)

]

d M D
i (t) + op(1), (16)

where

P2 = E

[∫ τ

0
Q(t)

{
Xi − x̄∗(t, Xi )

}

i (t) exp(X ′

iγ0)
{

d R∗
η(t, Xi )

−
(∫ t

0
x̄ D(z)′dΛ0(z)

)

d R∗
Λ(t, Xi )

}]

,

B2(t) = E

[∫ τ

t
Q(z)

{
Xi − x̄∗(z, Xi )

}

i (z) exp(X ′

iγ0)d R∗
Λ(z, Xi )

]

,

and d R∗
η(t, X) and d R∗

Λ(t, X) as the derivative and the Hadamard derivative of
d H̄0(t, X; η0,Λ0) with respectively to η and Λ, respectively. It follows from (15)
and (16) that

123



Joint analysis of panel count data...

n−1/2Ũ (γ0) = n−1/2
n∑

i=1

ζi + op(1), (17)

where

ζi =
∫ τ

0
Q(t)

{
Xi − x̄∗(t, Xi )

}

i (t) exp(X ′

iγ0)

× [
d Hi (t) − exp(X ′

iγ0)d H̄0(t, Xi ; η0,Λ0)
]

−
∫ τ

0
Q(t)

[∫
{x− x̄∗(t, x)}I (c≥ t)

exp(x ′γ0)Φi (t, x)

E
[
exp(X ′

iγ0)Φi (t, x)
]d F(x, c)

]

d Hi (t)

+
∫ [ ∫ τ

0
Q(t){x − x̄∗(t, x)}I (c ≥ t) exp(x ′γ0)Φi (t, x)

× E {Φi (t, x)d Hi (t)}
(E

[
exp(X ′

iγ0)Φi (t, x)
]
)2

]
exp(X ′

iγ0)d F(x, c)

−
∫ τ

0

[

P2Ω
−1{Xi − x̄ D(t)} + B2(t)

s(0)(t; η0)

]

d M D
i (t).

Notice that −n−1∂U (β0; γ0)/∂β, −n−1∂U (β0; γ0)/∂γ and −n−1∂Ũ (γ0)/∂γ con-
vergence in probability to A11, A12 and A22, respectively. Then using (14), (17) and
the Taylor expansion, we obtain

n1/2
(

β̂ − β0
γ̂ − γ0

)

= A−1n−1/2
(

U (β0; γ0)

Ũ (γ0)

)

+ op(1)

= A−1n−1/2
n∑

i=1

(
ξi

ζi

)

+ op(1).

Thus,

n1/2
(

β̂ − β0
γ̂ − γ0

)
L−→ N (0, A−1Σ(A−1)′),

where
L−→ denotes convergence in distribution, Σ = E{(ξ ′

i , ζ
′
i )

′⊗2}. This completes
the proof. ��

Proof of Theorem 2 Since β̂, γ̂ , η̂ and Λ̂0(t) are consistent, we can obtain that con-
ditional on the observed data,

n−1/2Ω∗
1 =

n∑

i=1

Zi

∫ τ

0
W (t){Xi − x̄(t, Xi )}
i (t)[d Mi (t)

− exp
{

X ′
i (β0 + γ0)

}
d M̄0(t, Xi ; η0,Λ0)] + op(1). (18)
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Similarly,

n−1/2Ω∗
2 = −n−1/2

n∑

i=1

Zi

∫ τ

0
W (t)

[∫
{x − x̄(t, x)}I (c ≥ t)

× exp
{

x ′(β0 + γ0)
}
Φi (t, x)

E
[
exp

{
X ′

i (β0 + γ0)
}
Φi (t, x)

]d F(x, c)

]

d Mi (t)

+n−1/2
n∑

i=1

Zi

∫ [ ∫ τ

0
W (t){x − x̄(t, x)}I (c ≥ t)

× exp
{

x ′(β0 + γ0)
}
Φi (t, x)

E {Φi (t, x)d Mi (t)}
(
E

[
exp

{
X ′

i (β0 + γ0)
}
Φi (t, x)

])2

]

× exp
{

X ′
i (β0 + γ0)

}
d F(x, c) + op(1). (19)

Define

d M̂(t, X; η,Λ) =

n∑

j=1
Φ j (t, X; η,Λ)d M j (t)

n∑

j=1
exp

{
X ′

j

(
β̂ + γ̂

)}
Φ j (t, X; η,Λ)

.

Thus,

Ω∗
3 =

n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i

(
t; β̂, γ̂

)}

i (t) exp

{
X ′

i

(
β̂ + γ̂

)}

×
{

d M̂
(

t, X; η̂, Λ̂0

)
− d M̂

(
t, X; η̂∗, Λ̂∗

0

)}
.

Moreover, we notice that

d M̂
(

t, X; η̂, Λ̂0

)
− d M̂

(
t, X; η̂∗, Λ̂∗

0

)

=
{

d M̂
(

t, X; η̂, Λ̂0

)
− d M̄0

(
t, X; η̂, Λ̂0

)}

−
{

d M̂
(

t, X; η̂∗, Λ̂∗
0

)
− d M̄0

(
t, X; η̂∗, Λ̂∗

0

)}

+
{

d M̄0

(
t, X; η̂, Λ̂0

)
− d M̄0

(
t, X; η̂∗, Λ̂∗

0

)}
.

Using a similar method to the proof of (12), we get

n−1/2
n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i

(
t; β̂, γ̂

)}

i (t)

123



Joint analysis of panel count data...

exp
{

X ′
i

(
β̂ + γ̂

)} [ {
d M̂

(
t, X; η̂, Λ̂0

)
− d M̄0

(
t, X; η̂, Λ̂0

)}

−
{

d M̂
(

t, X; η̂∗, Λ̂∗
0

)
− d M̄0

(
t, X; η̂∗, Λ̂∗

0

)} ]
= op(1)

Similarly to (13), we obtain that conditional on the observed data,

n−1/2
n∑

i=1

∫ τ

0
W (t)

{
Xi − X̄i

(
t; β̂, γ̂

)}

i (t) exp

{
X ′

i

(
β̂ + γ̂

)}

×
{

d M̄0

(
t, X; η̂∗, Λ̂∗

0

)
− d M̄0

(
t, X; η̂, Λ̂0

)}

= n−1/2
n∑

i=1

Zi

∫ τ

0

[

P1Ω
−1{Xi − x̄ D(t)} + B1(t)

s(0)(t; η0)

]

d M D
i (t)

+op(1). (20)

It follows from (18), (19) and (20) that

Υ̂1 = n−1/2(Ω∗
1 + Ω∗

2 + Ω∗
3 ) = n−1/2

n∑

i=1

Ziξi + op(1).

In a similar way, we obtain

Υ̂2 = n−1/2(Ω∗
4 + Ω∗

5 + Ω∗
6 ) = n−1/2

n∑

i=1

Ziζi + op(1).

Thus, by the Theorem 3.6.13 of van der Vaart and Wellner (1996), EZ (Υ̂ ⊗2)
P−→ Σ .

This completes the proof of this theorem. ��
Proof of Theorem 3 We notice that

F(t, x) = n−1/2
n∑

i=1

∫ t

0
I (Xi ≤ x)
i (z)

[
Ni (z)d Hi (z) − exp

{
X ′

i (β0 + γ̂ )
}

×

n∑

j=1
N j (z)d Hj (z)Φ̂ j (z, Xi )

n∑

j=1
exp

{
X ′

j (β0 + γ̂ )
}

Φ̂ j (z, Xi )

]
− n1/2Γ̂1(t, x)′(β̂ − β0). (21)

Following similar arguments as in the proof of Theorem 1, we can show that the first
term on the right-hand side of (21) is

n−1/2
n∑

i=1

Ψi (t, x) − n1/2Γ1(t, x)′(γ̂ − γ0) + op(1), (22)
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where

Ψi (t, x) =
∫ t

0
I (Xi ≤ x)
i (z)

[
d Mi (z) − exp

{
X ′

i (β0 + γ0)
}

d M̄0(t, Xi ; η0,Λ0)
]

−
∫ t

0

[∫
I (s ≤ x)I (c≥ z)

exp
{
s′(β0+γ0)

}
Φi (z, s)

E
[
exp

{
X ′

i (β0+γ0)
}
Φi (z, s)

]d F(s, c)

]

dMi (z)

+
∫ [ ∫ t

0
I (s ≤ x)I (c ≥ z) exp

{
s′(β0 + γ0)

}
Φi (z, s)

× E{Φi (z, s)d Mi (z)}
(
E

[
exp

{
X ′

i (β0 + γ0)
}
Φi (z, s)

])2

]
exp

{
X ′

i (β0 + γ0)
}

d F(s, c)

−P∗
1 (t, x)Ω−1

∫ τ

0

[

{Xi − x̄ D(z)} + B∗
1 (t, z, x)

s(0)(z; η0)

]

d M D
i (z),

P∗
1 (t, x) = E

[ ∫ t

0
I (Xi ≤ x)
i (s) exp

{
X ′

i (β0 + γ0)
} {

d Rη(s, Xi )

−
(∫ s

0
x̄ D(z)′dΛ0(z)

)

d RΛ(s, Xi )
}]

,

B∗
1 (t, z, x) = E

[∫ t

z
I (Xi ≤ x)
i (s) exp

{
X ′

i (β0 + γ0)
}

d RΛ(s, Xi )

]

,

and Γ1(t, x) is the limit of Γ̂1(t, x). Furthermore, it can be shown that the second term
on the right-hand side of (21) is equivalent to

− n1/2Γ1(t, x)(β̂ − β0) + op(1). (23)

Thus, using (21), (22), (23) and Theorem 1, we obtain

F(t, x) = n−1/2
n∑

i=1

{
Ψi (t, x) − Γ (t, x)′ A−1(ξ ′

i , ζ
′
i )

′} + op(1), (24)

where Γ (t, x) = (Γ1(t, x)′, Γ1(t, x)′)′. By the multivariate central limit theorem,
F(t, x) converges in finite-dimensional distribution to a zero-mean Gaussian process.
It is easy to see that F(t, x) is tight. Then using a similar method as the proof of
Theorem 2, we obtain thatF(t, x) converges weakly to a zero-mean Gaussian process
and the null distribution can be approximated by (9). This completes the proof. ��
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