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Abstract

We consider the bifurcation phenomenon of solutions to a class of
nonlinear Dirac equations µDψ = ψ+h(ψ) on compact spin manifolds.
There are two main results. The first is bifurcation from zero, which
asserts that the equations allow a sequence of bifurcation points (µk, θ),
and for each µ ∈ R near µk the corresponding equation has at least
two nontrivial solutions near θ. The second result is bifurcation from
infinity. The point (µk,∞) is also proved to be a bifurcation point and
we give a characterization of the bifurcation behavior.

1 Introduction and main results
Since M.F. Atiyah introduced the Dirac operator for spin manifolds in 1962,
it has become one of the basic elliptic differential operators in analysis and
geometry. Various forms of Dirac equations have come to play important
role in modern development of both mathematics and mathematical physics.
In this paper, we are concerned with a class of nonlinear Dirac equations
on compact spin manifolds. We study the distributions of solutions from a
bifurcation point of view.

Let M be an m-dimensional compact spin manifold. We denote S(M) =
Spin(TM) ×δm S as the spinor bundle on M and D : C∞(M,S(M)) →
C∞(M,S(M)) the Atiyah-Singer Dirac operator. Section 2 will introduce
the spin structure and the definition of the Dirac operator on M . For a fiber
preserving map h : S(M)→ S(M), which is in general nonlinear, we consider
the following equation:

(1.1) µDψ(x) = ψ(x) + h(ψ(x)) on M
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where ψ(x) ∈ C∞(M,S(M)) is a spinor. Eq(1.1) could be seen as a perturbed
eigenvalue problem of the Dirac operator D. We intent to prove bifurcation
occurs and analyze how it occurs both at zero and at infinity.

On general compact spin manifolds, Ammann studied the special form of
the equation Dψ = λ|ψ|p−2ψ for λ > 0 and 2 < p ≤ 2m

m−1 in [1]. This equa-
tion is known as the spinorial Yamabe equation. By solving an equivalent
dual variational problem, Ammann obtained a nontrivial solution for each
subcritical case 2 < p < 2m

m−1 and gave an existence criterion for the critical
case p = 2m

m−1 . After Ammann’s work, Takeshi Isobe considered equations
Dψ = h(x, ψ) for a general class of nonlinearities h in [9]. He treated both
superlinear and sublinear cases using the classical variational methods. Al-
most at the same time, Takeshi Isobe also studied another form of equation
Dψ = λψ+ |ψ|

2
m−1ψ. In [8], he considered this equation as spinorial analogue

of the Brezis-Nirenberg problem. The main theorem says that if λ /∈ Spec(D)
and λ > 0, then there exists a nontrivial solution.

As for the authors’ knowledge, the basic analytical problems for nonlin-
ear Dirac equations on compact spin manifolds always focus on the existence
or multiplicity results of solutions. They often be studied via classical varia-
tional methods such as linking and dual variational principle. As we all know,
bifurcation plays an important role in characterizing the solutions of equa-
tions. On abstract Hilbert spaces, the researches about bifurcation are due to
Rabinowitz([13],[12]), Chang and Wang([3]), K.Schmitt and Wang([14])and
so on. However, on spin manifolds, there has not any bifurcation results been
established up to now. For Eq(1.1) on M, assume E is the solution space
with norm ‖ · ‖, θ denotes the trivial solution in E. (µk, θ) is a bifurcation
point means any neighborhood of (µk, θ) in the space R×E contains at least
one nontrivial solution (µ, ψ) of (1.1). If for any ε > 0 and constant A > 0,
there exists at least one solution (µ, ψ) of (1.1) such that |µ − µk| < ε and
‖ψ‖ > A, then we say that (µk,∞) is a bifurcation point from infinity.

In this paper, we concentrate on the bifurcation phenomenon that occurs
both at zero and at infinity. A combined methods of variational and Morse
theory will be used. In the first case, we transform the original strongly
indefinite problem to an equivalent finite dimensional problem. Then with
the help of the Gromoll-Meyer pair , critical group and Morse relations, we
obtain a conclusion. In the other one, the problem is actually a spinoral ana-
logue of Landesman-Lazer type problem(see [11]), because of our assumption
(h2) on h. By combining some a priori estimates, we get a bifurcation result.

Assume h is a potential operator, i.e. ,there exists a real valued continu-
ously differentiable function H such that ∇ψH(ψ) = h(ψ). For the first case,
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we work on the following class of nonlinearities H:

(H1) H(θ) = 0 and H(ψ) ≥ 0 for any ψ ∈ C1(M, S(M)).

(H2) There exist positive numbers α, β satisfying 1 < β < α ≤ m
m−1 , and

constants C1, C2 > 0 such that

C1|ψ|β ≤ |∇ψH(ψ)| ≤ C2|ψ|α

Theorem 1.1. Let D be the Dirac operator with 0 /∈ Spec(D). Assume
h ∈ C1(S(M)), h(ψ) = o(‖ψ‖) as ‖ψ‖ → 0 and H satisfies (H1),(H2).
Then, for any k ∈ Z with 1/µk ∈ Spec(D), (µk, θ) is a bifurcation point for
(1.1). Precisely, the following occurs:

(i) when µk > 0, there exists a right-side neighborhood Λ of µk;
(ii) when µk < 0, there exists a left-side neighborhood Λ of µk,

such that for each µ ∈ Λ \ {µk}, (1.1) has at least 2 distinct nontrivial
solutions in W 1/2,2(M,S(M)).

We next consider the case of bifurcation from infinity. In this case, the
following hypothesis are raised:

(h1) There exist 0 < α < 1, and constants a > 0, b > 0 such that

|h(ψ)| ≤ a|ψ|α + b

(h2) Assume µ ∈ R, and µ 6= 0, for all convergent sequences {ωn} ⊂
Ker(µD − I), ωn → ω, ‖ω‖ = 1, all bounded sequence {ϕn} ⊂
Ker(µD−I)⊥, all unbounded sequences of positive numbers {tn} ⊂ R,
the following holds:

lim inf
n→∞

∫
M

h(tnωn + ϕn)ωdx > 0

Theorem 1.2. Let D be the Dirac operator with 0 /∈ Spec(D). Assume
k ∈ Z. If 1/µk ∈ Spec(D), h is completely continuous with h(ψ) = o(‖ψ‖)
as ‖ψ‖ → ∞ in W 1/2,2(M,S(M)). Then (µk,∞) is a bifurcation point from
infinity for (1.1). Moreover, if h satisfies (h1) and (h2), then there exists a
right-side neighborhood Λ of µk such that for each µ ∈ Λ \ {µk}, (1.1) has at
least one nontrivial solution ψµ with ‖ψµ‖ → ∞ as µ→ µk.
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2 Preliminaries
2.1 Spin structure and the Dirac operator

To introduce a spin structure on an m dimensional oriented Riemannian
manifold (M, g), we should first have a look at the spin group. The spin
group in dimension m, denoted by Spin(m), is the nontrivial 2-fold covering
of the special orthogonal group SO(m). It is a compact Lie group. Denote
ξ : Spin(m)→ SO(m) as the covering map. If m = 2, Spin(m) is connected
and ξ(z) = z2 for any z ∈ Spin(2) ∼= S1 = {z ∈ C : |z| = 1}. And if
m ≥ 3, Spin(m) is simply connected and ξ is the universal covering map. In
particular, the following short exact sequence holds:

0 −−−→ Z2 −−−→ Spin(m)
ξ−−−→ SO(m) −−−→ 1

Given a trivialization {Uα, φα}α∈I , we denote the SO(m)-principle bundle of
(M, g) by SO(TM). Then the transition functions gαβ : Uα ∩ Uβ → SO(m)
satisfy:

gαα(x) = idSO(m) for x ∈ Uα;

gαβ(x)gβα(x) = idSO(m) for x ∈ Uα ∩ Uβ
gαβ(x)gβγ(x)gγα(x) = idSO(m) for x ∈ Uα ∩ Uβ ∩ Uγ

Let Spin(TM) is a fiber bundle on M such that

Spin(TM)
ξ //

Spin(m) %%

SO(TM)

SO(m)zz
M

By taking {Uα} nice we can lift gαβ to the function g̃αβ which satisfy:

g̃αβ(x) = idSpin(m) for x ∈ Uα

g̃αβ(x)g̃βα(x) = idSpin(m) for x ∈ Uα ∩ Uβ
The cocycle condition g̃αβ(x)g̃βγ(x)g̃γα(x) = idSpin(m), for x ∈ Uα ∩ Uβ ∩ Uγ,
can also be satisfied if the second Stiefel-Whitney class ω2(M) ∈ H2(M,Z2)
vanishes. Thus Spin(TM) is a principle bundle. We can lift the SO(m)-
principle bundle to a principle Spin(m)-bundle. Then we say (M, g) pos-
sesses a spin structure. A spin manifold is an oriented Riemannian manifold
admitting a spin structure.

Let Rm be the m-dimensional Euclidean space with inner product 〈·, ·〉.
The Clifford algebra Cm of the negative definite quadratic form (Rm,−x21 −

4



... − x2m) is multiplicatively generated by the elements v1, ..., vm ∈ Rm of a
normal basis with the relations v2i = −1, vivj + vjvi = 0, where 1 ≤ i, j ≤ m,
i 6= j. In fact, Cm is a vector space. The elements 1 and vi1vi2 ...vis form a
basis of Cm, where 1 ≤ i1 < i2 < ... < is ≤ m, 1 ≤ s ≤ m.

We denote Ccm as the complexification of Cm, i.e. Ccm = Cm⊗RC. Actually,
Ccm coincides with the clifford algebra of the quadratic form (Cm, z21 + z22 +
...+ z2m). Since Cc2 = M2(C) = End(C2) and Cc1 = C1⊗RC = C⊕C, we have:

Ccm = M2(C)⊗ ...⊗M2(C) = End(C2 ⊗ ...⊗ C2) = End(C2k)

when m = 2k is even, and

Ccm = Cc2k+1 = Cc2k ⊕ Cc2k = End(C2k)⊕ End(C2k)

when m = 2k + 1 is odd. Let S = C2k , we call the complex vector space
S as the spinor space. Now let us consider the representation κm of Ccm. If
m is even, κm : Ccm → End(S); If m is odd, κm consists of the isomorphism
Ccm = End(S)⊕End(S) followed by the projection onto the first component,
we also have κm : Ccm → End(S). Here, S is called the spinor module of Ccm.

Each element of Spin(m) is multiplicativly generated by even number
of unit vectors in Rm. So Spin(m) ⊂ Cm ⊂ Ccm. Let δm = κm|Spin(m).
Then δm : Spin(m) → Aut(S) is a representation of the group Spin(m).
When m is even, the representation permits some greater detail. Define
f = ikκm(v1 · ... · vm) : S → S is an endomorphism on S. The volume
form v1 · ... · vm of Rm belongs to the center of the even part of the Clifford
algebra. Moreover, (v1 · ... · vm)2 = (−1)m/2. Then f can be proved to be an
involution. Thus the spinor space S decomposes into two parts, S = S+⊕S−,
where S± = {x ∈ S | f(x) = ±x}. Therefore, we have two inequivalent but
equal dimensional representation δ±m : Spin(m)→ Aut(S±).

The spinor bundle of (M, g) is the complex vector bundle S associated to
the principal bundle Spin(TM) via the spinor representation δm. We have a
unified expression:

S(M) := Spin(TM)×δm S.

Here δm = δ+m ⊕ δ−m, S = S+ ⊕ S− for m even.
The real Hermitian inner product on S is induced from a Hermitian inner

product on the spinor space. We denote it by (·, ·). The sections of the spinor
bundle S are usually called the spinors. The compatible covariant derivative
on Sm, denoted by ∇, can be locally expressed as:

∇ϕi =
1

4

m∑
j,k=1

g(∇ej, ek)ej · ek · ϕi
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where {ej}1≤j≤m is a local positively-oriented orthonormal basis of TM and
{ϕi}1≤i≤2[m2 ] is a local spinorial frame. The symbol ∇ on the right side is
Levi-Civita covariant connection on (M, g). With all these preliminaries, we
now give a definition of the Dirac operator. It is a map D : C∞(M, S(M))→
C∞(M,S(M)) defined by:

Dψ =
m∑
j=1

ej · ∇ejψ

where ψ ∈ C∞(M,S(M)).

Remark 1. When m is even, the Dirac operator D splits into D =
D+ ⊕D−, where D± : C∞(M, S±(M)→ C∞(M,S∓(M)).

Remark 2. If the reader want to know more details about spin manifold
and Dirac operator, they could refer to [6],[5],[10].

2.2 The Dirac Spectrum

Let Spec(D) denote the spectrum of Dirac operator D on compact spin
manifold M . It is a closed subset of R consisting of a two-sided unbounded
discrete sequence of eigenvalues. Moreover, Spec(D) is symmetric about the
origin ifm 6= 3(or 4). For every j ∈ Z, λj ∈ Spec(D) is an isolated eigenvalue
of finite multiplicity, ranged by −∞ < · · · ≤ λ−2 ≤ λ−1 < 0 < λ1 ≤ λ2 ≤
· · · < +∞(counted in multiplicity). The eigenspaces of D form a complete
orthonormal decomposition of L2(M,S(M)), i.e.,

L2(M, S(M)) =
⊕

λj∈Spec(D)

Ker(D − λjI).

We always assume there are no harmonic spinors on M in this paper. A
harmonic spinor is a spinor field which lies in the kernel of D. The existence
of it depends on various factors, such as spin structure. Take an example of
manifold Tn with flat metric. The set of harmonic spinor is empty when we
choose any spin structure on Tn except for the trivial spin structure. In fact,
there exist many manifolds which contain no harmonic spinors.

2.3 H1/2 spinors

Since we will prove Theorem 1.1 by a variational method, it is necessary to
give a suitable function space.

Recall that the Dirac operator on a compact spin manifoldM is essentially
self-adjoint in L2(M,S(M)). There exists a complete orthonormal basis {ψj},
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j ∈ Z \ {0}, of L2(M, S(M)) consisting of the eigenspinors of the Dirac
operatorD : Dψj = λjψj, where |λj| → ∞ as j →∞. Suppose λk ∈ Spec(D)
is any fixed eigenvalue. Let us consider the self-adjoint operator D−λk. It is
not difficult to see that each ψj is also an eigenspinor of D− λk with respect
to the eigenvalue λj − λk. Moreover, the complete orthonormal basis {ψj}
of L2(M,S(M)) can be decomposed into three parts:{ψj} = {ψ−j }λj<λk ∪
{ψ0

j}λj=λk ∪ {ψ+
j }λj>λk . We choose ψ−j , ψ0

j , ψ
+
j as follows: (D − λk)ψ

−
j =

(λj − λk)ψ−j with λj − λk < 0; (D − λk)ψ0
j = 0; (D − λk)ψ+

j = (λj − λk)ψ+
j

with λj − λk > 0.
Now we define an unbounded operator |D − λk|1/2 : L2(M,S(M)) →

L2(M, S(M)) by

|D − λk|1/2ψ =
∑

j∈Z\{0}

|λj − λk|1/2ajψj

where ψ =
∑
ajψj ∈ L2(M, S(M)). We denote H1/2(M, S(M)) as the do-

main of the operator |D− λk|1/2. Thus ψ =
∑
ajψj ∈ H1/2(M, S(M)) if and

only if
∑
|λj − λk| · |aj|2 < ∞. We define inner product on H1/2(M, S(M))

as follows:

(ψ, ϕ)1/2,2 :=
(
|D − λk|1/2ψ, |D − λk|1/2ϕ

)
2

+ (ψ, ϕ)2

where (ψ, ϕ)2 =
∫
M

(ψ, ϕ)dx is the L2-inner product on spinors. In order to
unify the notations with solution space E, which has mentioned in the intro-
duction, we use the ‖ · ‖ to denote the norm of elements in H1/2(M,S(M)).
The norm in Lp(M,S(M)) is denoted by ‖ · ‖p in our paper. H1/2(M, S(M))
coincides with the Sobolev space W 1/2,2(M, S(M)). We have continuous em-
bedding H1/2(M, S(M)) ↪→ Lp(M, S(M)) for 1 ≤ p ≤ 2m

m−1 . It is compact
when 1 ≤ p < 2m

m−1 (details refer to [6]). Remark that, for ψ− =
∑

λj<λk
ajψ

−
j ,

‖ψ−‖2 =
∑
λj<λk

(
λk − λj + 1

)
|aj|2,

and for ψ+ =
∑

λj>λk
ajψ

+
j ,

‖ψ+‖2 =
∑
λj>λk

(
λj − λk + 1

)
|aj|2,

hence,

(2.1) ck‖ϕ‖2 ≥ ‖ϕ‖22 for all ϕ 6∈ ker(D − λk)
where

ck = max
{ 1

1 + |λj − λk|
; λj 6= λk

}
.

It is clear that 0 < ck < 1.
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3 Bifurcation from zero
In this section we aim to prove Theorem1.1. Variational methods will be
used to prove this bifurcation theorem. There are 2 main steps consist the
whole proof. The first one is the so-called Lyapunov-Schmidt reduction. This
method reduce Eq(1.1) to an equivalent finite-dimensional problem. In the
second step, we treat the new problem as variational problem and use the
Morse theory. Gromoll-Meyer pair will play an important role.

3.1 The Lyapunov-Schimidt reduction

Let λ = 1/µ, then the original equation (1.1) is equivalent to the following:

(3.1) Dψ = λψ + λh(ψ)

Assume X = Ker(D− λkI). Since λk ∈ Spec(D) is of finite multiplicity, we
could suppose dimX = n and identify X with Rn. Let X⊥ denote the orthog-
onal complement of X in H1/2(M, S(M)), P , P⊥ the orthogonal projectors
of H1/2 onto X, X⊥, respectively.

Then (3.1) is equivalent to the following pair of equations:

(3.2) Dω1 = λω1 + λPh(ω1 + ω2)

(3.3) Dω2 = λω2 + λP⊥h(ω1 + ω2)

where ψ = ω1 + ω2, ω1 ∈ X, ω2 ∈ X⊥. Now, we define:

F (λ, ω1, ω2) = (D − λI)ω2 − λP⊥h(ω1 + ω2).

Here F is a continuously differentiable functional in a neighborhood of the
point (λk, 0, 0) ∈ R × X × X⊥. Moreover, F (λk, 0, 0) = 0 and the Fréchet
derivative of F with respect to ω2, Fω2(λk, 0, 0) = D−λkI is an isomorphism
of X⊥ to X⊥. According to the implicit function theorem, there exists a
neighborhood O of (λk, 0) ∈ R × X and a functional ϕ ∈ C1(O, X⊥) such
that the solutions of the equation F (λ, ω1, ω2) = 0 near the point (λk, 0, 0)
are given by (λ, ω1, ϕ(λ, ω1)) for (λ, ω1) ∈ O. Now we replace ω1 with ω.
With the previous argument, we conclude that solving the equation (1.1) is
equivalent to solving the finite-dimensional problem (3.2) with ω2 = ϕ(λ, ω).

Since D − λkI is an isomorphism of X⊥ onto X⊥, for (λ, ω) in a small
neighborhood of (λk, θ), we have the following expression:

ϕ(λ, ω) = λ(D − λI)−1P⊥h(ω + ϕ).
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Since h(ω + ϕ) = o(‖ω + ϕ‖) as ‖ω + ϕ‖ → 0. It is not difficult to see that:

ϕ(λ, ω) = o(‖ω + ϕ‖) as ‖ω + ϕ‖ → 0

Then we can conclude:

ϕ(λ, ω) = o(‖ω‖) as ‖ω‖ → 0

From a variational point of view, for fixed λ ∈ R the solutions of Eq(1.1)
can be obtained as critical points of the Euler-Lagrange functional:

(3.4) Lλ(ψ) =
1

2

∫
M

(Dψ,ψ)dx− λ

2

∫
M

(ψ, ψ)dx− λ
∫
M

H(ψ)dx

where H denote the primitive of h with H(θ) = 0. If ψ is a critical point of
Lλ, by applying the Lyapunov-Schmidt reduction we can write ψ = ω + ϕ,
where ω ∈ X and ϕ ∈ X⊥. Substitute ψ = ω + ϕ for ψ in (3.4), we obtain
the following functional:

Jλ(ω) =
(λk − λ)

2
‖ω‖2 +

1

2

∫
M

(ϕ, (D − λI)ϕ)dx− λ
∫
M

H(ω + ϕ)dx

Jλ ∈ C2(X,R). The form of Jλ implies that the critical points of Jλ(·) near
ω = θ are solutions of (3.2). Moreover ω = θ is a critical point of Jλ(·) for
all λ ∈ R and λ 6= 0. Choose Ω ⊂ X to be a compact neighborhood of θ.
Jλ ∈ C2(Ω,R). In order to prove (µk, θ) is a bifurcation point, we need only
analyze the critical points of Jλ(·) in Ω for λ near λk = 1/µk ∈ Spec(D).

3.2 Gromoll-Meyer Pairs

As we mentioned above, Gromoll-Meyer pair plays an important role
to solve our finite-dimensional problem. We first give a definition of the
Gromoll-Meyer pair for the functional Jλ with λ ∈ R and λ 6= 0.

Definition 3.1. Let Kλ be the whole critical point set of Jλ and Sλ be a
subset of Kλ. A pair of topological sets (W,W−) is called a Gromoll-Meyer
pair for Sλ with respect to a pseudo-gradient vector filed V of Jλ, if

(1) W is a closed neighborhood of Sλ possessing the mean value property,
i.e., for any t1 < t2, η(ti) ∈ W , i = 1, 2, implies η(t) ∈ W for all t ∈
[t1, t2], where η(t) is the decreasing flow with respect to V . W

⋂
Kλ =

Sλ and W
⋂

(Jλ)c = ∅ for some c;

(2) W− := {x ∈ W | η(t, x) /∈ W,∀t > 0} is closed in W ;
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(3) W− is a piecewise submanifold, and the flow η is transversal to W−.

A subset Sλ ⊂ Kλ is said to be a dynamically isolated critical set if there
exist a closed neighborhood Oλ of Sλ and regular values a1, a2 of Jλ such
that Oλ ⊂ J −1λ ([a1, a2]) and ∪t∈Rη(Oλ, t)

⋂
Kλ

⋂
J −1λ ([a1, a2]) = Sλ, where

η is the flow with respect to a pseudo-gradient vector field V of Jλ. More
details about the dynamically isolated critical set can refer to [4].

Before constructing a Gromoll-Meyer pair, let us choose a suitable dy-
namically isolated critical set. If c is an isolated critical level, i.e., there is
no critical points on the levels [c − ε, c + ε] \ {0} for some ε > 0, then the
set Sλ = Kλ

⋂
J −1λ (c) is a dynamically isolated critical set. In the following,

we will consider the trivial critical point of Jλk , ω = θ, where λk ∈ Spec(D)
and prove Sλk = {θ} is a dynamically isolated critical set of Jλk .

When λk > 0, according to the space decompositionH1/2 = X−⊕X⊕X+,
write ϕ(λk, ω) = ϕ−(λk, ω) + ϕ+(λk, ω), where ϕ−(λk, ω) ∈ X−, ϕ+(λk, ω) ∈
X+. For simplicity, let us write these notations as ϕ, ϕ+ and ϕ−. Then:

Jλk(ω) =
1

2

∫
M

(
ϕ, (D − λkI)ϕ

)
dx− λk

∫
M

H(ω + ϕ)dx

≤1

2

(
‖ϕ+‖2 − ‖ϕ+‖22 + ‖ϕ−‖22 − ‖ϕ−‖2

)
− λkC1

∫
M

|ω + ϕ|β+1dx

≤1

2
‖ϕ+‖2 +

1

2
‖ϕ−‖22 − λkC1

∫
M

|ω + ϕ|β+1dx

≤C‖ϕ‖2 − λkC1

∫
M

|ω + ϕ|β+1dx .

Next let us give some more estimates to ‖ϕ‖2 and
∫
M
|ω + ϕ|β+1dx.

We have known that ϕ satisfies the equation (D−λkI)ϕ = λkP
⊥h(ω+ϕ),

then on one hand,∫
M

(
(D − λkI)ϕ, ϕ+ − ϕ−

)
dx = λk

∫
M

P⊥h(ω + ϕ)(ϕ+ − ϕ−)dx

≤ λk

(∫
M

∣∣P⊥h(ω + ϕ)
∣∣2dx)1/2 · (∫

M

|ϕ+ − ϕ−|2dx
)1/2

≤ λk‖P⊥h(ω + ϕ)‖2 · ‖ϕ+ − ϕ−‖2 ≤ λk‖h(ω + ϕ)‖2 · ‖ϕ+ − ϕ−‖2

and

‖h(ω+ϕ)‖2 =
(∫

M

|h(ω+ϕ)|2
)1/2
≤ C2

(∫
M

|ω+ϕ|2αdx
) 1

2α
·α

= C2‖ω+ϕ‖α2α
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We have:∫
M

(
(D − λkI)ϕ, ϕ+ − ϕ−

)
dx ≤ λkC2‖ω + ϕ‖α2α · ‖ϕ+ − ϕ−‖2

≤ C
(
‖ω‖α2α + ‖ϕ‖α2α

)
·
(
‖ϕ+‖2 + ‖ϕ−‖2

)
≤ C‖ω‖α · ‖ϕ‖+ C‖ϕ‖α+1

On the other hand,∫
M

(
(D − λkI)ϕ, ϕ+ − ϕ−

)
dx = ‖ϕ‖2 − ‖ϕ‖22 ≥ (1− ck)‖ϕ‖2

since ‖ϕ‖22 ≤ ck‖ϕ‖2 by (2.1) with ck < 1. From the two sides above, we
have:

(3.5) (1− ck)‖ϕ‖ ≤ C‖ω‖α + C‖ϕ‖α

where ϕ = ϕ(λk, ω) ∈ X⊥ and ϕ(λk, ω) 6= θ. When ω → θ in H1/2, it occurs
that ϕ = ϕ(λk, ω) = o(‖ω‖). If ϕ is small enough, inequality (3.5) implies
‖ϕ‖ ≤ C‖ω‖α. Then we have:

Jλk(ω) ≤ C‖ϕ‖2 − λkC1

∫
M

|ω + ϕ|β+1dx

≤ C‖ω‖2α − λkC1‖ω + ϕ‖β+1
β+1

Since ϕ = ϕ(λk, ω) = o(‖ω‖), given ε > 0, there exists δ > 0 such that if
‖ω‖ < δ in X, ‖ϕ‖ < ε‖ω‖. Note that H1/2 ↪→ Lβ+1 continuously, then
‖ϕ‖β+1 ≤ γ‖ϕ‖ ≤ ε · γ‖ω‖. The kernel space X is finite dimensional, so the
norms ‖ · ‖β+1 and ‖ · ‖ are equivalent. Assume ‖ω‖β+1 ≤ C3‖ω‖ and let ε
small enough. We have:

‖ω + ϕ‖β+1 ≥ ‖ω‖β+1 − ‖ϕ‖β+1 ≥ C3‖ω‖ − εγ‖ω‖ ≥
1

4
C3‖ω‖

Then
Jλk(ω) ≤ C‖ω‖2α − C4‖ω‖β+1

where C4 is a proper constant depend on C1, C3 and λk. Since α > β > 1, it
is easy to see Jλk(ω) < 0 when ω 6= θ and ω is sufficiently close to θ. Thus
we obtain that θ is an isolated local maximum of the functional Jλk .

When λk < 0, replace Jλk with −Jλk . A similar procedure will induce
that θ is an isolated local minimum.

Since θ is an isolated maximum or minimum point for the functional Jλk
on the set Ω ⊂ X, then 0 is an isolated critical level of Jλk when we choose
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Ω nicely. Under this situation, Sλk = {θ} is a dynamically isolated critical
point set.

We now turn our attention to constructing a Gromoll-Meyer pair for
Sλk = {θ}, the dynamically isolated critical set of Jλk(·). The previous
assumption that Ω is compact in X ∼= Rn shows Jλ(·) trivially satisfies the
Palais-Smale condition on Ω for all λ 6= 0. According to the existence result
of Gromoll-Meyer pair in [2] and [4], we give the following lemma.

Lemma 3.2. For the dynamically isolated critical set Sλk = {θ}, there is
a Gromoll-Meyer pair of the functional Jλk(·) with respect to the pseudo-
gradient vector field dJλk .

Proof. Choose r > 0 small such that θ is the unique critical point in Br(θ) =
{ω ∈ Ω | ‖ω‖ ≤ r}. Since Jλk satisfies the (PS) condition, we define
κ = infω∈Br\Br/2 ‖dJk(ω)‖, then κ > 0; Take ξ such that 0 < ξ < κ

2r
. Let

f(ω) = Jλk(ω) + ξ‖ω‖2, ω ∈ Br. Define:

W = J −1λk
[−γ, γ] ∩ fσ, W− = J −1k (−γ) ∩W

where γ, σ satisfy the following conditions. Assume ε > 0 such that 0 is the
unique critical value of Jλk |Br in [−ε, ε].

0 < γ < min
{
ε,

3ξr

8

}
, and

ξr2

4
+ γ < σ < ξr2 − γ

(3.6) Br/2 ∩ J −1λk
[−γ, γ] ⊂ W ⊂ Br ∩ J −1λk

[−ε, ε]

(3.7) J −1λk
[−γ, γ] ∩ f−1(σ) ⊂ Br \Br/2

(3.8) (df(ω), dJλk(ω)) > 0, for all ω ∈ Br \ intBr/2

We first claim W satisfies the mean value property. Let η ∈ C([0, 1]×Ω,Ω)
be the negative gradient flow for Jλk with respect to dJλk . Without loss of
generality, let us assume η(0), η(t) ∈ W . Then we wish to prove η(s) ∈ W
for every s ∈ [0, t]. Define:

T = sup
{
s ∈ [0, t] | η(τ) ∈ W, 0 < τ ≤ s

}
Suppose T < t on the contrary. Since Jλk ◦ η(·) is decreasing on [0, t], we
have

(3.9) −γ ≤ Jλk(η(t)) ≤ Jλk(η(T )) ≤ Jλk(η(0)) ≤ γ

12



By the (3.6) and the definition of T , we have η(T ) does not belong to
int(Br/2), and η(T ) ∈ Br \ int(Br/2). Then by condition (3.8), we have:

(3.10) (f ◦ η)′ = −(dJλk(η(T )), df(η(T ))) < 0

From (3.9), (3.10) and the fact f(η(T )) ≤ σ, we know there exists a small
right-side neighborhood Λ of T such that

η(τ) ∈ J −1λk
[−γ, γ], and η(τ) ∈ fσ

for any τ ∈ Λ and τ < t. This contradicts with the definition of T .
Next we show W− = {ω ∈ W | η(t, ω) /∈ W, for all t > 0} is closed in

W . Let us denote W− = {ω ∈ W | η(t, ω) /∈ W, for all t > 0}. It is easy
to see W− ⊂ ∂W . And we give the components of ∂W as below:

(3.11) ∂W = W− ∪ (J −1λk
(γ) ∩ int(fσ)) ∪ (f−1(σ) ∩ (W \W−))

For every ω ∈ J −1λk
(γ) ∩ int(fσ), and ω does not belong to W−. Thus ω ∈

J −1λk
(γ) ∩ int(fσ) ∩ W− = ∅. Given ω ∈ (f−1(σ) ∩ (W \ W−)), we have

ω ∈ Br \ int(Br/2) by the condition (3.7). Due to (3.8) and the fact ω does
not belong to W−, we have:

(f ◦ η)′(0, ω) = −(dJλk(ω), df(ω)) < 0,

f(η(0, ω)) = f(ω) = σ.

Then ω /∈ W− and (f−1(σ) ∩ (W \W−)) ∩W− = ∅. By (3.11), we know
W− ⊂ W−. On the orther hand, it is obviouslyW− ⊂ W−. ThusW− = W−.

Therefore (W,W−) is a Gromoll-Meyer pair for θ with respect to dJλk .

For later use, we also need to introduce the critical groups of a function
J at its isolated critical point p. Let c = J(p). Then the q-th critical group
is defined as:

Cq(J, p;F ) = Hq(Jc ∩ Op, (Jc\{p}) ∩ Op;F ).

Here Hq(A,B) is the q-th relative singular homology group of the topological
pair (A,B) with coefficients in a field F . Op is a neighborhood of p which
contains no other critical points.

When λk > 0, θ is an isolated local maximum of Jλk . We have:

Cq(Jλk , θ;F ) =

{
F, q = n
0, q 6= n.

13



Simplify the above expression as C∗(Jλk , θ;F ) = δ∗,nF . When λk < 0, θ is
an isolated local minimum and C∗(Jλk , θ;F ) = δ∗,0F .

Take advantage of the relationships between the Gromoll-Meyer pair for
θ and the critical groups of θ. We obtain:

H∗(W,W−;F ) = C∗(Jλk , θ;F ) =

{
δ∗,nF λk > 0
δ∗,0F λk < 0.

To proceed further, we need to prove the following Lemma:

Lemma 3.3. Let Kλ be the critical point set of Jλ and Sλ = W
⋂
Kλ. Then

there exists a neighborhood Ik ⊂ R of λk such that for every λ ∈ Ik \ {λk},
(W,W−) is also a Gromoll-Meyer pair for Sλ with respect to a certain pseudo-
gradient vector field of Jλ.

Proof. Given ε > 0 small, there exists δ > 0 such that for every λ ∈ R
satisfying |λ − λk| ≤ δ, ‖Jλ − Jλk‖C1(W ) ≤ ε. For ε small there exist r2 >
r1 > 0 depending on λ such that we have B(θ, r1) ⊂ B(θ, r2) ⊂ int(W ) and

$ = inf
{
‖dJλ(ω)‖ | ω ∈ W \B(θ, r1)

}
> 0

Since for ω ∈ W \ B(θ, r1), ‖dJλ(ω)‖ > 0. It is not difficult to see that
Sλ = W

⋂
Kλ ⊂ B(θ, r1). Define ρ ∈ C1(Ω,R) satisfying 0 ≤ ρ ≤ 1 and

ρ(w) =


1, ω ∈ B(θ, r1)

0 ≤ ρ ≤ 1, ω ∈ B(θ, r2) \B(θ, r1)

0, others.

Then set a vector field of Jλ on Ω as V (ω) = 4
3
[ρ(ω)dJλ+(1−ρ(ω))dJλk ]

Let 0 < ε < 1
4
$. For ω ∈ W \B(θ, r1), we have:

‖V (ω)‖ ≤4

3
ρ(ω)‖dJλ(ω)‖+

4

3
(1− ρ(ω))‖dJλk(ω)‖

≤4

3
‖ dJλ(ω) ‖ +ε ≤ 2‖dJλ(ω)‖

and

(V (ω), dJλ(ω)) ≥ 4

3
‖dJλ(ω)‖2 − 4

3
ε‖dJλ(ω)‖ ≥ ‖dJλ(ω)‖2

If ω ∈ B(θ, r1), V (ω) = 4
3
dJλ(ω). Therefore V (ω) is a pseudo-gradient vector

field of Jλ.
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Since V (ω) = 4
3
dJλk(ω) on W \ B(θ, r2), (W,W−) is a Gromoll-Meyer

pair of Jλk , the negative gradient flow ηλ remain the same as ηλk outside
B(θ, r2). It is clearly that W satisfies the mean value property with respect
to the flow ηλ. Moreover, W− keeps invariant when λ changes. So (W,W−)
is a Gromoll-Meyer pair of Jλ with respect to V (ω). Thus we verify the
conclusion.

We now complete the proof of Theorem1.1.

Proof of Theorem 1.1. We first consider the case λk = 1/µk ∈ Spec(D)
and λk > 0. Recall the functional expression of Jλ(ω). Since ϕ(λ, ω) =
o(‖ω‖) for λ near λk and ω near θ, we can see that the dominating term in
Jλ(ω) near ω = θ is 1

2
(λk − λ)‖ω‖2.

For µ > µk > 0, λ = 1/µ < 1/µk = λk, θ is an isolated minimum of Jλ
and the Morse index ind(Jλ) = 0. Then C∗(Jλ, θ) = δ∗,0F .

For 0 < µ < µk, λ = 1
µ
> 1

µk
= λk, θ is an isolated maximum of Jλ, and

ind(Jλ) = n. Then C∗(Jλ, θ) = δ∗,nF .
Because (W,W−) is a Gromoll-Meyer pair of Jλk at θ, we have known

that H∗(W,W−;F ) = δ∗,nF . By Lemma 3.3, (W,W−) is also a Gromoll-
Meyer pair of Jλ for the critical set Sλ when λ close to λk. Then we find if
λ < λk, H∗(W,W−;F ) 6= C∗(Jλ, θ). This means that there exists a nontrivial
critical point ωλ of Jλ in W (actually in Sλ).

Since Jλk(θ) = 0 and θ is an isolated local maximum, there exists ε > 0
such that Jλk(ω) ≤ −2ε on ∂Br̂(θ), where r̂ > 0 and small enough such that
Br̂(θ) ⊂ W . The functionals Jλ is continuous with respect to λ. Therefore
for λ near λk, Jλ(ω) ≤ −ε on ∂Br̂(θ). However, Jλ(ω) = λk−λ

2
‖ω‖2+o(‖ω‖2)

as ω → θ. Hence, Jλ(ω) > 0 if λ < λk and ω 6= θ is sufficiently small. In
particular, there exists a ρ ∈ (0, r̂) such that

Jλ(ω) ≥ λk − λ
4

ρ2 > 0 for ω ∈ ∂Bρ(θ)

With all these facts, we can choose ωλ to be an isolated maximizer of Jλ in
Br̂(θ) ⊂ W . The critical groups C∗(Jλ, ωλ) = δ∗,nF . If ωλ is not isolated, it
means W contains infinitely many critical points. There is nothing to say.

Let deg(dJλ,W, θ) denote the Leray-Schauder degree of dJλ on W , and
index(dJλ, ωλ) the index of the isolated zero point ωλ of dJλ. Then by the
relations between Leray-Schauder degree with Morse theory, we have the
following:

deg(dJλ,W, θ) =
∞∑
q=0

(−1)qrankHq(W,W−)
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index(dJλ, ωλ) =
∞∑
q=0

(−1)qrankCq(Jλ, ωλ).

Then we have
deg(dJλ,W, θ) = (−1)n;

index(dJλ, ωλ) = (−1)n, index(dJλ, θ) = (−1)0

Obviously, deg(dJλ,W, θ) 6= index(dJλ, θ) + index(dJλ, ωλ). By the topo-
logical degree theory, we obtain a second critical point for Jλ in W . Then
Eq(1.1) has at least 2 nontrivial solutions.

As for the case when λk = 1/µk ∈ Spec(D) and λk < 0, H∗(W,W−;F ) 6=
C∗(Jλ, θ) if λ > λk and there exists a nontrivial critical point ωλ of Jλ in
W . By using the similar analysis method as before, we can choose ωλ to
be a minimizer. Moreover, C∗(Jλ, ωλ) = δ∗,0F . A simple calculation induce
deg(dJλ,W, θ) 6= index(dJλ, θ) + index(dJλ, ωλ). Hence there must be a
second solution. The proof is completed.

4 Bifurcation from infinity
In this section, we prove Theorem 1.2. Under the assumption (h2), equation
(1.1) is of Landesman-Lazer type. We will give some a priori estimates by
using a method in [11]. Then apply a bifurcation theorem from infinity to
obtain our results. As in the previous section, assume X = Ker(µkD − I),
thenH1/2 = X ⊕X⊥. Denote P , P⊥ the orthogonal projectors of H1/2 onto
X, X⊥, respectively.

4.1 Existing theory

Let E be a Hilbert space and Ω be a neighborhood of infinity. Consider
the following operator eaquation with a parameter λ ∈ R:

Lu+ g(u) = λu (∗)

where L is a bounded linear selfadjoint operator on E and g ∈ C(Ω, E), with
g(u) = o(‖u‖) as ‖u‖ → ∞. Furthermore, we assume that g is of potential
type, i.e., there existsG ∈ C1(Ω,R) such that dG = g. The following theorem
can be found in [14].

Theorem 4.1. Let L and g be as above. Suppose that Iλ ∈ C1(Ω,R), with

dIλ(u) = Lu+ g(u)− λu

If µ is an isolated eigenvalue of L of finite multiplicity, and there are only
finitely many eigenvalues of L larger than (or less than) µ with all of them are
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of finite multiplicity. Then (µ,∞) is a bifurcation point for (∗). Moreover, if
Iµ satisfies the (PS) condition, then at least one of the following alternatives
occurs:

(a) There are infinitely many solutions for equation (∗) with λ = µ, say
(µ, un), with ‖un‖ → ∞ as n→∞;

(b) There is a one-sided neighborhood Λ of µ such that for all λ ∈ Λ \ µ,
equation (∗) possesses at least one solution uλ with ‖uλ‖ → ∞ as λ→ µ.

4.2 Proof of Theorem1.2

We shall apply Theorem4.1 to prove the result we want. However, there
are some difficulties to Eq(1.1). So we must make some adjustments. SinceM
is a compact Riemannian manifold which has no harmonic spinors, the Dirac
operator D has an inverse operator T on the spinor space H1/2(M, S(M)).
Let g(ψ) = T ◦ h(ψ). Then Eq(1.1) is equivalent with the following form of
equation:

(4.1) µψ = Tψ + g(ψ)

Let us assume µ is an eigenvalue of T , that is in the context: µDψ = ψ
This also means 1/µ is an eigenvalue of the Dirac operator D. Spec(T ) =
{µ ∈ R | 1/µ ∈ Spec(D)} ∪ {0} ⊂ R is a bounded set. It implies T is a
bounded linear operator. Now we choose a finite number k ∈ Z such that
1/µk is the k-th eigenvalue of the Dirac operator D. Then µk ∈ Spec(T ).
Moreover, if µk > 0, there are only finitely many eigenvalues of T lager than
µk. If µk < 0, there are only finitely many eigenvalues less than µk. And all
these eigenvalues are of finite multiplicity. Thus we could conclude (µ,∞) is
a bifurcation point for equation(1.1).

Next in order to prove a further result, we need some a priori estimates.
Let us consider the following equation:

(4.2) Tψ + g(ψ)− µψ = ε

where ε is a H1/2-spinor with sufficiently small norm. µ ∈ R and µ 6= 0.
First let us give a priori estimate of (4.2).

If ψ ∈ H1/2(M,S(M)) is a solution of (4.2) and X = ker(µkD− I), then
according to the space decomposition H1/2 = X ⊕X⊥, ψ = ψ1 + ψ2, where
ψ1 ∈ X and ψ2 ∈ X⊥. Project H1/2 onto X⊥, we have:

(T − µI)ψ2 + P⊥g(ψ) = P⊥(ε).

Since T −µI is an isomorphism of X⊥ onto X⊥ for µ closely near µk, we also
have:

ψ2 = (T − µI)−1(P⊥(ε)− P⊥g(ψ)).
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Assume ‖ψ1‖ 6= 0, R = ‖(T − µI)−1‖, then

(4.3)

‖ψ2‖ ≤‖(T − µI)−1‖ · ‖P⊥‖ · (‖g(ψ)‖+ ‖ε‖)
≤R(‖T‖ · ‖h(ψ1 + ψ2)‖+ ‖ε‖)
≤R(c(‖ψ1‖α + ‖ψ2‖α) + d+ ‖ε‖)

≤R(c‖ψ1‖α(1 +
‖ψ2‖
‖ψ1‖

)α + d
′
)

≤R(c‖ψ1‖α(1 + α
‖ψ2‖
‖ψ1‖

) + d
′
)

≤Rc‖ψ1‖α +Rc‖ψ1‖α ·
α‖ψ2‖
‖ψ1‖

+ d
′
R.

where we have used (h1) and the fact that T is a bounded linear operator.
Dividing (4.3) by ‖ψ1‖α, we obtain:

‖ψ2‖
‖ψ1‖α

≤ c1 +
c1α

‖ψ1‖1−α
· ‖ψ2‖
‖ψ1‖α

+
c2
‖ψ1‖α

,

where c1, c2 are constants. Consequently, if

‖ψ1‖ ≥ (2c1α)
1

1−α = c3,

we have
‖ψ2‖
‖ψ1‖α

≤ c1 +
1

2

( ‖ψ2‖
‖ψ1‖α

)
+
c2
cα3

or
‖ψ2‖ ≤ 2

(
c1 +

c2
cα3

)
‖ψ1‖α = c4‖ψ1‖α.

On the other hand,

‖ψ‖ ≤‖ψ1‖+ ‖ψ2‖
≤‖ψ1‖+R‖T‖ · (a‖ψ1 + ψ2‖α + d

′
)

≤c‖ψ‖α + ‖ψ1‖+ c.

Since 0 < α < 1, if ‖ψ1‖ ≤ c3, we have:

(4.4) ‖ψ‖ ≤ c5

Now we shall prove:

Lemma 4.2. Suppose Lµk ∈ C1(H1/2,R), with

dLµk(ψ) = Tψ + g(ψ)− µkψ.

Under the assumption (h2), Lµk satisfies the Palais-Smale condition.
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Proof. Let ψn ⊂ H1/2 be a (PS)c-sequence of Lµk , i.e.,

Lµk(ψn)→ c as n→∞

and
‖dLµk(ψn)‖ → 0 as n→∞

Then there exists a sequence εn ⊂ H1/2 which converges to θ in H1/2 and
such that

Tψn − µkψn + g(ψn) = εn.

We first show that ψn ⊂ H is bounded.
Suppose on the contrary ‖ψn‖ → ∞ as n→∞. Let us write ψn = ψ1

n+ψ2
n,

where ψ1
n ∈ X = Ker(µkD − I), and ψ2

n ∈ X⊥. Then ψn satisfies the
equivalent equation:

(4.5) µkDψn = ψn + h(ψn) + δn

with δn → θ in H−1/2. By using the a priori estimates (4.4), we immediately
obtain ‖ψ1

n‖ → ∞, as n → ∞. Let tn = ‖ψ1
n‖ and ωn = 1

tn
ψ1
n. Since X is

finite dimensional, we may assume that ωn → ω ∈ X. Then we have:

(4.6) ψn = tnωn + ψ2
n

Substitute (4.6) into the equation (4.5), we obtain:

(4.7) µkDψ
2
n = ψ2

n + h(tnωn + ψ2
n) + δn.

Product (4.7) with ω on S(M) and then integrating the result over the man-
ifold M , we have:∫

M

(h(tnωn + ψ2
n), ω)dx+

∫
M

(δn, ω)dx = 0.

Since δn → 0, it follows that the second term will tend to zero. Hence
we obtain a contradiction to the assumption of (h2). Then ψn ⊂ H1/2 is
bounded.

By the compactness of D−1 and the completely continuousness of h, from
(4.7) it is not difficult to see that ψ2

n is a convergent sequence in X⊥. Since
X is finite dimensional, ψ1

n has a convergent subsequence in X because of
the boundedness of ψn. Assume ψ1

n → ω and ψ2
n → ϕ as n → ∞, then

ψn = ψ1
n+ψ2

n → ω+ϕ as n→∞. Thus Lµk satisfies the (PS) condition.

Next we wish to prove:
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Lemma 4.3. Suppose (µ, ψ) solves (1.1), σ > 0 is a constant, h is completely
continuous with h(ψ) = o(‖ψ‖) as ‖ψ‖ → ∞, then for fixed µ ∈ (µk − σ, µk],
where (µk − δ, µk] contains no other eigenvalues except for µk, there exists a
constant M(µ) > 0 such that ‖ψ‖ ≤M(µ).

Proof. Since (µ, ψ) solves equation (1.1), ψ also satisfies the equation

(4.8) Tψ + g(ψ)− µψ = 0.

Write ψ = ψ1 + ψ2, where ψ1 ∈ X and ψ2 ∈ X⊥. By a similar procedure
with a priori estimates ahead, we obtain similarly:

(4.9) ‖ψ2‖ ≤ b2‖ψ1‖α if ‖ψ1‖ ≥ b1

(4.10) ‖ψ‖ ≤ b3 if ‖ψ1‖ ≤ b1

where b1, b2, b3 are constants.
For fixed µ ∈ (µk − δ, µk], suppose on the contrary that there exists a

sequence of solutions ψn and ‖ψn‖ → ∞ as n → ∞. Write ψn = ψ1
n + ψ2

n,
where ψ1

n ∈ X and ψ2
n ∈ X⊥. On one hand, (µ, ψn) solves (1.1), we have:

(4.11) µDψ2
n =

(
1− µ

µk

)
ψ1
n + ψ2

n + h(ψ1
n + ψ2

n).

On the other hand, (µ, ψn) satisfies (4.8) and then has the estimates (4.9)
and (4.10). Therefore we may write:

ψ1
n = tnωn,

where tn ⊂ R is an unbounded sequence of positive numbers, and ωn ⊂ X
with ‖ ωn ‖= 1. Assume ωn → ω ∈ X. Producting (4.11) with ω and then
integrating the result over M . We have:∫

M

(
1− µ

µk
tnωn, ω

)
dx+

∫
M

(h(tnωn + ψ2
n), ω)dx = 0.

The first term in the above sum on the left-side is nonnegative and we then
get a contradiction since (h2). Therefore there exists M(µ) > 0 such that
‖ψ‖ ≤M(µ).

We now complete the proof of Theorem1.2.

Proof of Theorem 1.2. We have know that (µk,∞) is a bifurcation point
for equation(1.1). By Lemma 4.2 and Lemma 4.3 and applying Theorem 4.1,
we can easily obtain a right-neighborhood Λ of µk such that for all µ ∈ Λ\µk,
equation (1.1) posesses at least one solution ψµ with ‖ ψµ ‖→ ∞ as µ→ µk.
The proof is completed.
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