The Log-Behavior of $\sqrt[n]{p(n)}$ and $\sqrt[n]{p(n) / n}$

William Y.C. Chen ${ }^{1}$ and Ken Y. Zheng ${ }^{2}$
${ }^{1}$ Center for Applied Mathematics
Tianjin University
Tianjin 300072, P. R. China
${ }^{2}$ Center for Combinatorics, LPMC
Nankai Univercity
Tianjin 300071, P. R. China
Email: ${ }^{1}$ chenyc@tju.edu.cn, ${ }^{2}$ kenzheng@aliyun.com

Abstract

Let $p(n)$ denote the partition function and let Δ be the difference operator respect to n. In this paper, we obtain a lower bound for $\Delta^{2} \log \sqrt[n-1]{p(n-1) /(n-1)}$, leading to a proof of the conjecture of Sun on the log-convexity of $\{\sqrt[n]{p(n) / n}\}_{n \geq 60}$. From the log-convexity of both $\{\sqrt[n]{p(n) / n}\}_{n \geq 60}$ and $\{\sqrt[n]{n}\}_{n \geq 4}$, we are led to a proof of another conjecture of Sun on the log-convexity of $\{\sqrt[n]{p(n)}\}_{n \geq 26}$. Using the same argument, it can be shown that for any real number α, there exists an integer $n(\alpha)$ such that the sequence $\left\{\sqrt[n]{p(n) / n^{\alpha}}\right\}_{n \geq n(\alpha)}$ is log-convex. Moreover, we show that $\lim _{n \rightarrow+\infty} n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}=3 \pi / \sqrt{24}$. Finally, by finding an upper bound of $\Delta^{2} \log \sqrt[n-1]{p(n-1)}$, we establish an inequality on the ratio $\frac{\sqrt[n-1]{p(n-1)}}{\sqrt[n]{p(n)}}$.

Keywords: partition function, log-convex sequence, Hardy-Ramanujan-Rademacher formula, Lehmer's error bound

AMS Subject Classifications: 05A20

1 Introduction

The objective of this paper is to study the log-behavior of the sequences $\sqrt[n]{p(n)}$ and $\sqrt[n]{p(n) / n}$, where $p(n)$ denotes the number of partitions of a nonnegative integer n. A positive sequence $\left\{a_{n}\right\}_{n \geq 0}$ is log-convex if it satisfies that for $n \geq 1$,

$$
a_{n}^{2}-a_{n-1} a_{n+1} \leq 0,
$$

and it is called log-concave if it satisfies that for $n \geq 1$,

$$
a_{n}^{2}-a_{n-1} a_{n+1} \geq 0 .
$$

Let $r(n)=\sqrt[n]{p(n) / n}$ and let Δ be the difference operator respect to n. Sun 11 conjectured that the sequence $\{r(n)\}_{n \geq 60}$ is log-convex. Desalvo and Pak [5] noticed that the log-convexity of $\{r(n)\}_{n \geq 60}$ can be derived from an estimate for $\Delta^{2} \log r(n-1)$, see [5, Final Remark 7.7]. They also remarked that their approach to bounding $-\Delta^{2} \log p(n-1)$ does not seem to apply to $\Delta^{2} \log r(n-1)$. In this paper, we obtain a lower bound for $\Delta^{2} \log r(n-1)$, leading to a proof of the log-convexity of $\{r(n)\}_{n \geq 60}$.

Theorem 1.1 The sequence $\{r(n)\}_{n \geq 60}$ is log-convex.
The log-convexity of $\{r(n)\}_{n \geq 60}$ implies the log-convexity of $\{\sqrt[n]{p(n)}\}_{n \geq 26}$, because the sequence $\{\sqrt[n]{n}\}_{n \geq 4}$ is log-convex [11]. It is known that $\lim _{n \rightarrow+\infty} \sqrt[n]{p(n)}=1$. For a combinatorial proof of this fact, see Andrews [1]. Sun [11] proposed the conjecture that $\{\sqrt[n]{p(n)}\}_{n \geq 6}$ is strictly decreasing, which has been proved by Wang and Zhu [12]. The log-convexity of $\{\sqrt[n]{p(n)}\}_{n \geq 26}$ was also conjectured by Sun [11]. It is easy to see that the log-convexity of $\{\sqrt[n]{p(n)}\}_{n \geq 26}$ implies the decreasing property.

It should be noted that there is an alternative way to prove the log-convexity of $\{\sqrt[n]{p(n)}\}_{n \geq 26}$. Chen, Guo and Wang [3] introduced the notion of a ratio log-convex sequence and showed that the ratio log-convexity implies the log-convexity under a certain initial condition. A sequence $\left\{a_{n}\right\}_{n \geq k}$ is called ratio log-convex if $\left\{a_{n+1} / a_{n}\right\}_{n \geq k}$ is log-convex, or, equivalently, for $n \geq k+1$,

$$
\log a_{n+2}-3 \log a_{n+1}+3 \log a_{n}-\log a_{n-1} \geq 0
$$

Chen, Wang and Xie [4] showed that that for any $r \geq 1$, one can determine a number $n(r)$ such that for $n>n(r),(-1)^{r-1} \Delta^{r} \log p(n)$ is positive. For $r=3$, it can be shown that for $n \geq 116$,

$$
\Delta^{3} \log p(n-1)>0 .
$$

Since

$$
\Delta^{3} \log p(n-1)=\log p(n+2)-3 \log p(n+1)+3 \log p(n)-\log p(n-1),
$$

it is evident that $\{p(n)\}_{n \geq 116}$ is ratio log-convex. So we are led to the following assertion.
Theorem 1.2 The sequence $\{\sqrt[n]{p(n)}\}_{n \geq 26}$ is log-convex.
Moreover, as pointed out by a referee, we may consider the log-behavior of $\sqrt[n]{p(n) / n^{\alpha}}$ for any real number α. To this end, we obtain the following generalization of Theorem 1.1 and 1.2.

Theorem 1.3 Let α be a real number. There exists a positive integer $n(\alpha)$ such that the sequence $\left\{\sqrt[n]{p(n) / n^{\alpha}}\right\}_{n \geq n(\alpha)}$ is log-convex.

We also establish the following inequality on the ratio $\frac{\sqrt[n-1]{p(n-1)}}{\sqrt[n]{p(n)}}$.
Theorem 1.4 For $n \geq 2$, we have

$$
\begin{equation*}
\frac{\sqrt[n]{p(n)}}{\sqrt[n+1]{p(n+1)}}\left(1+\frac{3 \pi}{\sqrt{24} n^{5 / 2}}\right)>\frac{\sqrt[n-1]{p(n-1)}}{\sqrt[n]{p(n)}} \tag{1.1}
\end{equation*}
$$

Desalvo and Pak [5] have shown that the limit of $-n^{\frac{3}{2}} \Delta^{2} \log p(n)$ is $\pi / \sqrt{24}$. By bounding $\Delta^{2} \log \sqrt[n]{p(n)}$, we derive the following limit of $n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}$:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}=3 \pi / \sqrt{24} \tag{1.2}
\end{equation*}
$$

From the above relation $(\sqrt{1.2})$, it can be seen that the coefficent $\frac{3 \pi}{\sqrt{24}}$ in $\sqrt{1.1}$) is the best possible.

2 The Log-convexity of $r(n)$

In this section, we obtain a lower bound of $\Delta^{2} \log r(n-1)$ and prove the log-convexity of $\{r(n)\}_{n \geq 60}$. First, we follow the approach of Desalvo and Pak to give an expression of $\Delta^{2} \log r(n-1)$ as a sum of $\Delta^{2} \widetilde{B}(n-1)$ and $\Delta^{2} \widetilde{E}(n-1)$, where $\Delta^{2} \widetilde{B}(n-1)$ makes a major contribution to $\Delta^{2} \log r(n-1)$ with $\Delta^{2} \widetilde{E}(n-1)$ being the error term, that is, $\Delta^{2} \widetilde{B}(n-1)$ converges to $\Delta^{2} \log r(n-1)$. The expressions for $B(n)$ and $E(n)$ will be given later. In this setting, we derive a lower bound of $\Delta^{2} \widetilde{B}(n-1)$. By Lehmer's error bound, we give an upper bound for $\left|\Delta^{2} \widetilde{E}(n-1)\right|$. Combining the lower bound for $\Delta^{2} \widetilde{B}(n-1)$ and the upper bound for $\Delta^{2} \widetilde{E}(n-1)$, we are led to a lower bound for $\Delta^{2} \log r(n-1)$. By proving the positivity of this lower bound for $\Delta^{2} \log r(n-1)$, we reach the log-convexity of $\{r(n)\}_{n \geq 60}$.

The strict log-convexity of $\{r(n)\}_{n \geq 60}$ can be restated as the following relation for $n \geq 61$,

$$
\log r(n+1)+\log r(n-1)-2 \log r(n)>0,
$$

that is, for $n \geq 61$,

$$
\Delta^{2} \log r(n-1)>0 .
$$

For $n \geq 1$ and any positive integer N, the Hardy-Ramanujan-Rademacher formula (see [2, 6, 7, 10]) reads

$$
\begin{equation*}
p(n)=\frac{d}{\mu^{2}} \sum_{k=1}^{N} A_{k}^{\star}(n)\left[\left(1-\frac{k}{\mu}\right) e^{\frac{\mu}{k}}+\left(1+\frac{k}{\mu}\right) e^{-\frac{\mu}{k}}\right]+R_{2}(n, N), \tag{2.1}
\end{equation*}
$$

where $d=\frac{\pi^{2}}{6 \sqrt{3}}, \mu(n)=\frac{\pi}{6} \sqrt{24 n-1}, A_{k}^{\star}(n)=k^{-\frac{1}{2}} A_{k}(n), A_{k}(n)$ is a sum of 24 th roots of unity with initial values $A_{1}(n)=1$ and $A_{2}(n)=(-1)^{n}, R_{2}(n, N)$ is the remainder. Lehmer's error bound (see $\left[8,[9]\right.$) for $R_{2}(n, N)$ is given by

$$
\begin{equation*}
\left|R_{2}(n, N)\right|<\frac{\pi^{2} N^{-2 / 3}}{\sqrt{3}}\left[\left(\frac{N}{\mu}\right)^{3} \sinh \frac{\mu}{N}+\frac{1}{6}-\left(\frac{N}{\mu}\right)^{2}\right] \tag{2.2}
\end{equation*}
$$

Let us give an outline of Desalvo and Pak's approach to proving the log-concavity of $\{p(n)\}_{n>25}$. Setting $N=2$ in (2.1), they expressed $p(n)$ as

$$
\begin{equation*}
p(n)=T(n)+R(n) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
& T(n)=\frac{d}{\mu(n)^{2}}\left[\left(1-\frac{1}{\mu(n)}\right) e^{\mu(n)}+\frac{(-1)^{n}}{\sqrt{2}} e^{\frac{\mu(n)}{2}}\right] \tag{2.4}\\
& R(n)=\frac{d}{\mu(n)^{2}}\left[\left(1+\frac{1}{\mu(n)}\right) e^{-\mu(n)}-\frac{(-1)^{n}}{\sqrt{2}} \frac{2}{\mu(n)}+\frac{(-1)^{n}}{\sqrt{2}}\left(1+\frac{2}{\mu(n)}\right) e^{-\frac{\mu(n)}{2}}\right]+R_{2}(n, 2) . \tag{2.5}
\end{align*}
$$

They have shown that

$$
\begin{equation*}
\left|\Delta^{2} \log p(n-1)-\Delta^{2} \log T(n-1)\right|=\left|\Delta^{2} \log \left(1+\frac{R(n-1)}{T(n-1)}\right)\right|<e^{-\frac{\pi \sqrt{2 n}}{10 \sqrt{3}}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\Delta^{2} \log T(n-1)-\Delta^{2} \log \frac{d}{\mu(n-1)^{2}}\left(1-\frac{1}{\mu(n-1)}\right) e^{\mu(n-1)}\right|<e^{-\frac{\pi \sqrt{2 n}}{10 \sqrt{3}}} . \tag{2.7}
\end{equation*}
$$

It follows that $\Delta^{2} \log \frac{d}{\mu(n-1)^{2}}\left(1-\frac{1}{\mu(n-1)}\right) e^{\mu(n-1)}$ converges to $\Delta^{2} \log p(n-1)$. Finally, they use $-\Delta^{2} \log \frac{d}{\mu(n-1)^{2}}\left(1-\frac{1}{\mu(n-1)}\right) e^{\mu(n-1)}$ to estimate $-\Delta^{2} \log p(n-1)$, leading to the log-concavity of $\{p(n)\}_{n>25}$.

We shall use an alternative decomposition of $p(n)$. Setting $N=2$ in (2.1), we can express $p(n)$ as

$$
\begin{equation*}
p(n)=\widetilde{T}(n)+\widetilde{R}(n) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{gather*}
\widetilde{T}(n)=\frac{d}{\mu(n)^{2}}\left(1-\frac{1}{\mu(n)}\right) e^{\mu(n)} \tag{2.9}\\
\widetilde{R}(n)=\frac{d}{\mu(n)^{2}}\left[\left(1+\frac{1}{\mu(n)}\right) e^{-\mu(n)}+\frac{(-1)^{n}}{\sqrt{2}}\left(1-\frac{2}{\mu(n)}\right) e^{\frac{\mu(n)}{2}}\right. \\
\left.+\frac{(-1)^{n}}{\sqrt{2}}\left(1+\frac{2}{\mu(n)}\right) e^{-\frac{\mu(n)}{2}}\right]+R_{2}(n, 2) \tag{2.10}
\end{gather*}
$$

Based on the decomposition 2.8 for $p(n)$, one can express $\Delta^{2} \log r(n-1)$ as follows:

$$
\begin{equation*}
\Delta^{2} \log r(n-1)=\Delta^{2} \widetilde{B}(n-1)+\Delta^{2} \widetilde{E}(n-1) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
\widetilde{B}(n) & =\frac{1}{n} \log \widetilde{T}(n)-\frac{1}{n} \log n \tag{2.12}\\
\widetilde{y}_{n} & =\widetilde{R}(n) / \widetilde{T}(n) \tag{2.13}\\
\widetilde{E}(n) & =\frac{1}{n} \log \left(1+\widetilde{y}_{n}\right) \tag{2.14}
\end{align*}
$$

The following lemma will be used to derive a lower bound and an upper bound of $\Delta^{2} \widetilde{B}(n-1)$.

Lemma 2.1 Suppose $f(x)$ has a continuous second derivative for $x \in[n-1, n+1]$. Then there exists $c \in(n-1, n+1)$ such that

$$
\begin{equation*}
\Delta^{2} f(n-1)=f(n+1)+f(n-1)-2 f(n)=f^{\prime \prime}(c) \tag{2.15}
\end{equation*}
$$

If $f(x)$ has an increasing second derivative, then

$$
\begin{equation*}
f^{\prime \prime}(n-1)<\Delta^{2} f(n-1)<f^{\prime \prime}(n+1) \tag{2.16}
\end{equation*}
$$

Conversely, if $f(x)$ has a decreasing second derivative, then

$$
\begin{equation*}
f^{\prime \prime}(n+1)<\Delta^{2} f(n-1)<f^{\prime \prime}(n-1) \tag{2.17}
\end{equation*}
$$

Proof. Set $\varphi(x)=f(x+1)-f(x)$. By the mean value theorem, there exists a number $\xi \in(n-1, n)$ such that

$$
f(n+1)+f(n-1)-2 f(n)=\varphi(n)-\varphi(n-1)=\varphi^{\prime}(\xi) .
$$

Again, applying the mean value theorem to $\varphi^{\prime}(\xi)$, there exists a number $\theta \in(0,1)$ such that

$$
\varphi^{\prime}(\xi)=f^{\prime}(\xi+1)-f^{\prime}(\xi)=f^{\prime \prime}(\xi+\theta)
$$

Let $c=\xi+\theta$. Then we get (2.15), which yields (2.16) and (2.17).
In order to find a lower bound for $\Delta^{2} \log r(n-1)$ and obtain the limit of $n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}$, we need the following lower and upper bounds for $\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)$.

Lemma 2.2 Let

$$
\begin{align*}
& B_{1}(n)=\frac{72 \pi}{(n+1)(24 n+23)^{3 / 2}}-\frac{4 \log (\mu(n-1))}{(n-1)^{3}}, \tag{2.18}\\
& B_{2}(n)=\frac{72 \pi}{(n-1)(24 n-25)^{3 / 2}}-\frac{4 \log (\mu(n+1))}{(n+1)^{3}}+\frac{5}{(n-1)^{3}} . \tag{2.19}
\end{align*}
$$

For $n \geq 40$, we have

$$
\begin{equation*}
B_{1}(n)<\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)<B_{2}(n) \tag{2.20}
\end{equation*}
$$

Proof. By the definition 2.9, we may write

$$
\frac{\log \widetilde{T}(n)}{n}=\sum_{i=1}^{4} f_{i}
$$

where

$$
\begin{aligned}
& f_{1}(n)=\frac{\mu(n)}{n} \\
& f_{2}(n)=-\frac{3 \log \mu(n)}{n} \\
& f_{3}(n)=\frac{\log (\mu(n)-1)}{n}, \\
& f_{4}(n)=\frac{\log d}{n}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)=\sum_{i=1}^{4} \Delta^{2} f_{i}(n-1) \tag{2.21}
\end{equation*}
$$

Since

$$
f_{1}^{\prime \prime \prime}(n)=\frac{\pi}{n(24 n-1)^{3 / 2}}\left(-\frac{216}{n}+\frac{864}{24 n-1}+\frac{36}{n^{2}}-\frac{1}{n^{3}}\right),
$$

we see that for $n \geq 1, f_{1}^{\prime \prime \prime}(n)<0$. Similarly, it can be checked that for $n \geq 4, f_{2}^{\prime \prime \prime}(n)>0$, $f_{3}^{\prime \prime \prime}(n)<0$, and $f_{4}^{\prime \prime \prime}(n)>0$. Consequently, for $n \geq 4, f_{1}^{\prime \prime}(n)$ and $f_{3}^{\prime \prime}(n)$ are decreasing, whereas $f_{2}^{\prime \prime}(n)$ and $f_{4}^{\prime \prime}(n)$ are increasing. Using Lemma 2.1, for each i, we can get a lower bound and an upper bound for $\Delta^{2} f_{i}(n-1)$ in terms of $f_{i}^{\prime \prime}(n-1)$ and $f_{i}^{\prime \prime}(n+1)$. For example,

$$
f_{1}^{\prime \prime}(n+1)<\Delta^{2} f_{1}(n-1)<f_{1}^{\prime \prime}(n-1) .
$$

So, by (2.21) we find that

$$
\begin{equation*}
\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)>f_{1}^{\prime \prime}(n+1)+f_{2}^{\prime \prime}(n-1)+f_{3}^{\prime \prime}(n+1)+f_{4}^{\prime \prime}(n-1), \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)<f_{1}^{\prime \prime}(n-1)+f_{2}^{\prime \prime}(n+1)+f_{3}^{\prime \prime}(n-1)+f_{4}^{\prime \prime}(n+1), \tag{2.23}
\end{equation*}
$$

where

$$
\begin{align*}
f_{1}^{\prime \prime}(n)= & \frac{72 \pi}{n(24 n-1)^{3 / 2}}-\frac{12 \pi}{n^{2}(24 n-1)^{3 / 2}}+\frac{\pi}{3 n^{3}(24 n-1)^{3 / 2}}, \tag{2.24}\\
f_{2}^{\prime \prime}(n)= & -\frac{6 \log \mu(n)}{n^{3}}+\frac{72}{(24 n-1) n^{2}}+\frac{864}{n(24 n-1)^{2}}, \tag{2.25}\\
f_{3}^{\prime \prime}(n)= & -\frac{4 \pi^{2}}{(\mu(n)-1)^{2}(24 n-1) n}+\frac{2 \log (\mu(n)-1)}{n^{3}} \\
& -\frac{4 \pi}{(\mu(n)-1) \sqrt{24 n-1} n^{2}}-\frac{24 \pi}{(\mu(n)-1)(24 n-1)^{3 / 2} n}, \tag{2.26}\\
f_{4}^{\prime \prime}(n)= & \frac{2 \log d}{n^{3}} . \tag{2.27}
\end{align*}
$$

According to (2.24), one can check that for $n \geq 2$,

$$
\begin{equation*}
f_{1}^{\prime \prime}(n+1)>\frac{72 \pi}{(n+1)(24 n+23)^{3 / 2}}-\frac{12 \pi}{(n+1)^{2}(24 n+23)^{3 / 2}} . \tag{2.28}
\end{equation*}
$$

An easy computation shows that for $n \geq 3$,

$$
\begin{equation*}
\mu(n)-1>\frac{2}{3} \mu(n-2) . \tag{2.29}
\end{equation*}
$$

Substituting (2.29) into (2.26) yields that

$$
\begin{equation*}
f_{3}^{\prime \prime}(n+1)>\frac{2 \log (\mu(n+1)-1)}{(n+1)^{3}}-\frac{540}{(24 n-25)^{2}(n-1)}-\frac{36}{(24 n-25)(n-1)^{2}} . \tag{2.30}
\end{equation*}
$$

Using (2.25) and 2.30, we find that

$$
\begin{aligned}
f_{2}^{\prime \prime}(n & -1)+f_{3}^{\prime \prime}(n+1) \\
& >\frac{2 \log (\mu(n+1)-1)}{(n+1)^{3}}-\frac{6 \log (\mu(n-1))}{(n-1)^{3}}
\end{aligned}
$$

$$
\begin{equation*}
+\frac{324}{(n-1)(24 n-25)^{2}}+\frac{36}{(n-1)^{2}(24 n-25)} \tag{2.31}
\end{equation*}
$$

Apparently, for $n \geq 2$,

$$
\frac{2}{(n+1)^{3}}-\frac{2}{(n-1)^{3}}>-\frac{12}{(n-1)^{4}},
$$

so that

$$
\begin{align*}
& \frac{2 \log (\mu(n+1)-1)}{(n+1)^{3}}-\frac{6 \log (\mu(n-1))}{(n-1)^{3}} \\
& \quad>\frac{2 \log (\mu(n+1)-1)}{(n+1)^{3}}-\frac{2 \log (\mu(n+1)-1)}{(n-1)^{3}}-\frac{4 \log (\mu(n-1))}{(n-1)^{3}} \\
& \quad>-\frac{12 \log (\mu(n+1)-1)}{(n-1)^{4}}-\frac{4 \log (\mu(n-1))}{(n-1)^{3}} . \tag{2.32}
\end{align*}
$$

Since, for $n \geq 2$,

$$
\begin{equation*}
\frac{324}{(n-1)(24 n-25)^{2}}+\frac{36}{(n-1)^{2}(24 n-25)}>\frac{2}{(n-1)^{3}} \tag{2.33}
\end{equation*}
$$

utilizing (2.31) and 2.32) yields that for $n \geq 3$,

$$
\begin{equation*}
f_{2}^{\prime \prime}(n-1)+f_{3}^{\prime \prime}(n+1)>-\frac{4 \log (\mu(n-1))}{(n-1)^{3}}+\frac{2}{(n-1)^{3}}-\frac{12 \log (\mu(n+1)-1)}{(n-1)^{4}} \tag{2.34}
\end{equation*}
$$

Using (2.27), 2.28) and (2.34), we deduce that

$$
\begin{align*}
& f_{1}^{\prime \prime}(n+1)+f_{2}^{\prime \prime}(n-1)+f_{3}^{\prime \prime}(n+1)+f_{4}^{\prime \prime}(n-1)-B_{1}(n) \\
& \quad>\frac{2(1+\log d)}{(n-1)^{3}}-\frac{12 \pi}{(n+1)^{2}(24 n+23)^{3 / 2}}-\frac{12 \log (\mu(n+1)-1)}{(n-1)^{4}} . \tag{2.35}
\end{align*}
$$

Let $C(n)$ be the right hand side of 2.35). To prove 2.22, it is enough to show that $C(n)>0$ when $n \geq 40$. Since $\log x<x$ for $x>0$, and for $n \geq 3$

$$
\begin{equation*}
\mu(n+1)-1<\frac{\pi}{4} \sqrt{24 n-24} \tag{2.36}
\end{equation*}
$$

we get

$$
\begin{equation*}
-\frac{12 \log (\mu(n+1)-1)}{(n-1)^{4}}>-\frac{12(\mu(n+1)-1)}{(n-1)^{4}}>-\frac{3 \sqrt{24} \pi}{(n-1)^{7 / 2}} . \tag{2.37}
\end{equation*}
$$

Note that for $n \geq 2$,

$$
\begin{equation*}
-\frac{12 \pi}{(n+1)^{2}(24 n+23)^{3 / 2}}>-\frac{\sqrt{24} \pi}{48(n-1)^{7 / 2}} \tag{2.38}
\end{equation*}
$$

Combining (2.37) and (2.38) gives for $n \geq 2$,

$$
\begin{equation*}
C(n)>\frac{2(1+\log d)}{(n-1)^{3}}-\frac{(3+1 / 48) \sqrt{24} \pi}{(n-1)^{7 / 2}} . \tag{2.39}
\end{equation*}
$$

It is straightforward to show that the right hand side of (2.39) is positive if $n \geq 490$. For $40 \leq n \leq 489$, it is routine to check that $C(n)>0$, and so $C(n)>0$ for $n \geq 40$. It follows from (2.35) that for $n \geq 40$,

$$
\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)>B_{1}(n)
$$

To derive the upper bound for $\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)$, we obtain the following upper bounds which can be verified directly. The proofs are omitted. For $n \geq 2$,

$$
\begin{aligned}
& f_{1}^{\prime \prime}(n-1)< \frac{72 \pi}{(n-1)[24 n-25]^{3 / 2}}, \\
& f_{2}^{\prime \prime}(n+1)<-\frac{6 \log \mu(n+1)}{(n+1)^{3}}+\frac{9}{2(n-1)^{3}}, \\
& f_{3}^{\prime \prime}(n-1)<-\frac{4 \pi^{2}}{(\mu(n-1))^{2}(24 n-25)(n-1)}+\frac{2 \log (\mu(n-1))}{(n-1)^{3}} \\
& \quad-\frac{4 \pi}{\mu(n-1) \sqrt{24 n-25}(n-1)^{2}}-\frac{24 \pi}{\mu(n-1)(24 n-25)^{3 / 2}(n-1)}, \\
& f_{2}^{\prime \prime}(n+1)+f_{3}^{\prime \prime}(n-1)<\frac{3}{(n-1)^{3}}+\frac{12 \log (\mu(n+1))}{(n-1)^{4}}-\frac{4 \log (\mu(n+1))}{(n+1)^{3}}, \\
& \quad f_{4}^{\prime \prime}(n+1)<0 .
\end{aligned}
$$

Combining the above upper bounds, we conclude that for $n \geq 40$,

$$
f_{1}^{\prime \prime}(n-1)+f_{2}^{\prime \prime}(n+1)+f_{3}^{\prime \prime}(n-1)+f_{4}^{\prime \prime}(n+1)<B_{2}(n) .
$$

This completes the proof.

The following lemma gives an upper bound for $\left|\Delta^{2} \widetilde{E}(n-1)\right|$.

Lemma 2.3 For $n \geq 40$,

$$
\begin{equation*}
\left|\Delta^{2} \widetilde{E}(n-1)\right|<\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} \tag{2.40}
\end{equation*}
$$

Proof. By (2.14), we find that for $n \geq 2$,

$$
\begin{equation*}
\Delta^{2} \widetilde{E}(n-1)=\frac{1}{n-1} \log \left(1+\widetilde{y}_{n-1}\right)+\frac{1}{n+1} \log \left(1+\widetilde{y}_{n+1}\right)-\frac{2}{n} \log \left(1+\widetilde{y}_{n}\right), \tag{2.41}
\end{equation*}
$$

where

$$
\widetilde{y}_{n}=\widetilde{R}(n) / \widetilde{T}(n) .
$$

To bound $\left|\Delta^{2} \widetilde{E}(n-1)\right|$, it is necessary to bound \widetilde{y}_{n}. For this purpose, we first consider $\widetilde{R}(n)$, as defined by 2.10 . Since $d<1$ and $\mu(n)>2$, for $n \geq 1$ we have

$$
\frac{d}{\mu(n)^{2}}\left[\left(1+\frac{1}{\mu(n)}\right) e^{-\mu(n)}+\frac{(-1)^{n}}{\sqrt{2}}\left(1-\frac{2}{\mu(n)}\right) e^{\frac{\mu(n)}{2}}+\frac{(-1)^{n}}{\sqrt{2}}\left(1+\frac{2}{\mu(n)}\right) e^{-\frac{\mu(n)}{2}}\right]
$$

$$
<\frac{1}{\mu(n)^{2}}\left(1+e^{\frac{\mu(n)}{2}}+1\right)
$$

For $N=2$ and $n \geq 1$, Lehmer's bound (2.2) reduces to

$$
\left|R_{2}(n, 2)\right|<4\left(1+\frac{4}{\mu(n)^{3}} e^{\frac{\mu(n)}{2}}\right)
$$

By the definition of $\widetilde{R}(n)$,

$$
\begin{equation*}
|\widetilde{R}(n)|<\frac{1}{\mu(n)^{2}}\left(1+e^{\frac{\mu(n)}{2}}+1\right)+4\left(1+\frac{4}{\mu(n)^{3}} e^{\frac{\mu(n)}{2}}\right)<5+\frac{9}{\mu(n)^{2}} e^{\frac{\mu(n)}{2}} \tag{2.42}
\end{equation*}
$$

Recalling the definition (2.9) of $\widetilde{T}(n)$, it follows from 2.42 that for $n \geq 1$,

$$
\begin{equation*}
\left|\widetilde{y}_{n}\right|<\frac{\mu(n)}{d(\mu(n)-1)}\left(5 \mu(n)^{2} e^{-\frac{2 \mu(n)}{3}}+9 e^{-\frac{\mu(n)}{6}}\right) e^{-\frac{\mu(n)}{3}} \tag{2.43}
\end{equation*}
$$

Observe that for $n \geq 2$,

$$
\begin{equation*}
\left(5 \mu(n)^{2} e^{-\frac{2 \mu(n)}{3}}+9 e^{-\frac{\mu(n)}{6}}\right)^{\prime}<0 \tag{2.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{d(\mu(n)-1)}{\mu(n)}\right)^{\prime}>0 \tag{2.45}
\end{equation*}
$$

Since

$$
5 \mu^{2}(40) e^{-\frac{2 \mu(40)}{3}}+9 e^{-\frac{\mu(40)}{6}}<\frac{d(\mu(40)-1)}{\mu(40)}
$$

using (2.44) and 2.45, we deduce that for $n \geq 40$,

$$
\begin{equation*}
5 \mu^{2}(n) e^{-\frac{2 \mu(n)}{3}}+9 e^{-\frac{\mu(n)}{6}}<\frac{d(\mu(n)-1)}{\mu(n)} \tag{2.46}
\end{equation*}
$$

Now, it is clear from (2.43) and 2.46 that for $n \geq 40$,

$$
\begin{equation*}
\left|\widetilde{y}_{n}\right|<e^{-\frac{\mu(n)}{3}} \tag{2.47}
\end{equation*}
$$

In view of 2.47 , for $n \geq 40$,

$$
\begin{equation*}
\left|\widetilde{y}_{n}\right|<e^{-\frac{\mu(40)}{3}}<\frac{1}{5} \tag{2.48}
\end{equation*}
$$

It is known that $\log (1+x)<x$ for $0<x<1$ and $-\log (1+x)<-x /(1+x)$ for $-1<x<0$. Thus, for $|x|<1$,

$$
\begin{equation*}
|\log (1+x)| \leq \frac{|x|}{1-|x|} \tag{2.49}
\end{equation*}
$$

see also [5], and so it follows from (2.48) and (2.49) that for $n \geq 40$,

$$
\begin{equation*}
\left|\log \left(1+\widetilde{y}_{n}\right)\right| \leq \frac{\left|\widetilde{y}_{n}\right|}{1-\left|\widetilde{y}_{n}\right|} \leq \frac{5}{4}\left|\widetilde{y}_{n}\right| \tag{2.50}
\end{equation*}
$$

Because of 2.41, we see that for $n \geq 2$,

$$
\begin{equation*}
\left|\Delta^{2} \widetilde{E}(n-1)\right| \leq \frac{1}{n-1}\left|\log \left(1+\widetilde{y}_{n-1}\right)\right|+\frac{1}{n+1}\left|\log \left(1+\widetilde{y}_{n+1}\right)\right|+\frac{2}{n}\left|\log \left(1+\widetilde{y}_{n}\right)\right| \tag{2.51}
\end{equation*}
$$

Applying (2.50) to (2.51), we obtain that for $n \geq 40$,

$$
\begin{equation*}
\left|\Delta^{2} \widetilde{E}(n-1)\right| \leq \frac{5}{4}\left(\frac{\left|\widetilde{y}_{n-1}\right|}{n-1}+\frac{\left|\widetilde{y}_{n+1}\right|}{n+1}+\frac{2\left|\widetilde{y}_{n}\right|}{n}\right) . \tag{2.52}
\end{equation*}
$$

Plugging (2.47) into (2.52), we infer that for $n \geq 40$,

$$
\begin{equation*}
\left|\Delta^{2} \widetilde{E}(n-1)\right|<\frac{5}{4}\left(\frac{e^{-\frac{\mu(n-1)}{3}}}{n-1}+\frac{e^{-\frac{\mu(n+1)}{3}}}{n+1}+\frac{2 e^{-\frac{\mu(n)}{3}}}{n}\right) . \tag{2.53}
\end{equation*}
$$

But $\frac{1}{n} e^{-\frac{\mu(n)}{3}}$ is decreasing for $n \geq 1$, it follows from (2.53) that for $n \geq 40$,

$$
\left|\Delta^{2} \widetilde{E}(n-1)\right|<\frac{5}{n-1} e^{-\frac{\mu(n-1)}{3}} .
$$

This proves (2.40).

With the aid of Lemma 2.2 and 2.3 , we are ready to prove the log-convexity of $\{r(n)\}_{n \geq 60}$. Proof of Theorem 1.1. To prove the strict log-convexity of $\{r(n)\}_{n \geq 60}$, we proceed to show that for $n \geq 61$,

$$
\Delta^{2} \log r(n-1)>0
$$

Evidently, for $n \geq 40$,

$$
\left(-\frac{\log n}{n}\right)^{\prime \prime \prime}>0
$$

By Lemma 2.1 ,

$$
-\Delta^{2} \frac{\log (n-1)}{n-1}>\left(-\frac{\log (n-1)}{n-1}\right)^{\prime \prime}
$$

that is,

$$
\begin{equation*}
-\Delta^{2} \frac{\log (n-1)}{n-1}>-\frac{2 \log (n-1)}{(n-1)^{3}}+\frac{3}{(n-1)^{3}} . \tag{2.54}
\end{equation*}
$$

It follows from (2.12) that

$$
\Delta^{2} \widetilde{B}(n-1)=\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)-\Delta^{2} \frac{\log (n-1)}{n-1}
$$

Applying Lemma 2.2 and 2.54 to the above relation, we deduce that for $n \geq 40$,

$$
\Delta^{2} \widetilde{B}(n-1)>\widetilde{B}_{1}(n)-\frac{2 \log (n-1)}{(n-1)^{3}}+\frac{3}{(n-1)^{3}},
$$

that is,

$$
\begin{equation*}
\Delta^{2} \widetilde{B}(n-1)>\frac{72 \pi}{(n+1)(24 n+23)^{3 / 2}}-\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \log (n-1)}{(n-1)^{3}}+\frac{3}{(n-1)^{3}} . \tag{2.55}
\end{equation*}
$$

By (2.11) and Lemma 2.3, we find that for $n \geq 40$,

$$
\begin{equation*}
\Delta^{2} \log r(n-1)>\Delta^{2} \widetilde{B}(n-1)-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} \tag{2.56}
\end{equation*}
$$

It follows from (2.55) and (2.56) that for $n \geq 40$,

$$
\begin{aligned}
& \Delta^{2} \log r(n-1) \\
& >\frac{72 \pi}{(n+1)(24 n+23)^{3 / 2}}-\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \log (n-1)}{(n-1)^{3}}+\frac{3}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} .
\end{aligned}
$$

Let $D(n)$ denote the right hand side of the above relation. Clearly, for $n \geq 5505$,

$$
\begin{equation*}
\frac{72 \pi}{(n+1)(24 n+23)^{3 / 2}}>\frac{3 \pi}{\sqrt{24}(n+1)^{5 / 2}}>\frac{1}{(n-1)^{5 / 2}} . \tag{2.57}
\end{equation*}
$$

To prove that $D(n)>0$ for $n \geq 5505$, we wish to show that for $n \geq 5505$,

$$
\begin{equation*}
-\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \log (n-1)}{(n-1)^{3}}+\frac{3}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}>-\frac{1}{(n-1)^{5 / 2}} \tag{2.58}
\end{equation*}
$$

Using the fact that for $x>5504, \log x<x^{1 / 4}$, we deduce that for $n \geq 5505$,

$$
\begin{equation*}
\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}<\frac{4 \sqrt[4]{\mu(n-1)}}{(n-1)^{3}}<\frac{4 \sqrt[4]{\frac{\pi}{4} \sqrt{24 n-24}}}{(n-1)^{3}}<\frac{6}{(n-1)^{23 / 8}} \tag{2.59}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 \log (n-1)}{(n-1)^{3}}<\frac{2(n-1)^{1 / 4}}{(n-1)^{3}}<\frac{2}{(n-1)^{11 / 4}} \tag{2.60}
\end{equation*}
$$

Since $e^{x}>x^{6} / 720$ for $x>0$, we see that for $n \geq 2$,

$$
\begin{equation*}
\frac{1}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}<\frac{1}{n-1} e^{-\frac{\pi \sqrt{23 n}}{18}}<\frac{2094}{n^{3}(n-1)}<\frac{2094}{(n-1)^{4}} \tag{2.61}
\end{equation*}
$$

Combining 2.59, 2.60 and 2.61, we find that for $n \geq 5505$,

$$
\begin{aligned}
& -\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \log (n-1)}{(n-1)^{3}}+\frac{3}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} \\
& \quad>-\frac{6}{(n-1)^{23 / 8}}-\frac{2}{(n-1)^{11 / 4}}+\frac{3}{(n-1)^{3}}-\frac{10470}{(n-1)^{4}} \\
& \quad>-\frac{6}{(n-1)^{23 / 8}}-\frac{2}{(n-1)^{11 / 4}} \\
& \quad>-\frac{1}{(n-1)^{5 / 2}} .
\end{aligned}
$$

This proves the inequality (2.58). By (2.58) and 2.57), we obtain that $D(n)>0$ for $n \geq 5505$. Verifying that $\Delta^{2} \log r(n-1)>0$ for $61 \leq n \leq 5504$ completes the proof.

Clearly, Theorem 1.3 is a generalization as well as a unification of Theorem 1.1 and 1.2. In fact, it can be proved in the same manner as the proof of Theorem 1.1.

Proof of Theorem 1.3. Let α be a real number. When $\alpha \leq 0$, it is clear that $\frac{1}{\sqrt[n]{n^{\alpha}}}$ is \log-convex. It follows from Theorem 1.2 that $\sqrt[n]{p(n) / n^{\alpha}}$ is log-convex for $n \geq 26$.

We now consider the case $\alpha>0$. A similar argument to the proof of Theorem 1.1 shows that for $n \geq 40$,

$$
\begin{align*}
& \Delta^{2} \log \sqrt[n-1]{p(n-1) /(n-1)^{\alpha}} \\
& \quad=\Delta^{2} \frac{1}{n-1} \log T(n)+\Delta^{2} \frac{1}{n-1} \log \left(1+y_{n-1}\right)-\alpha \Delta^{2} \frac{\log (n-1)}{n-1} \\
& \quad>\frac{72 \pi}{(n+1)(24 n+23)^{3 / 2}}-\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \alpha \log (n-1)}{(n-1)^{3}} \\
& \quad+\frac{3 \alpha}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} . \tag{2.62}
\end{align*}
$$

It is easy to check that for $n \geq \max \left\{\left[\frac{3490}{\alpha}\right]+2,5505\right\}$,

$$
\frac{3 \alpha}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}>\frac{3 \alpha}{(n-1)^{3}}-\frac{10470}{(n-1)^{4}}>0
$$

and for $n \geq \max \left\{\left[(2 \alpha+3)^{4}\right]+2,5505\right\}$,

$$
-\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \alpha \log (n-1)}{(n-1)^{3}}>-\frac{6}{(n-1)^{23 / 8}}-\frac{2 \alpha}{(n-1)^{11 / 4}}>-\frac{1}{(n-1)^{5 / 2}} .
$$

Let

$$
n(\alpha)=\max \left\{\left[\frac{3490}{\alpha}\right]+2,\left[(2 \alpha+3)^{4}\right]+2,5505\right\}
$$

It can be seen that for $n>n(\alpha)$,

$$
\begin{equation*}
-\frac{4 \log [\mu(n-1)]}{(n-1)^{3}}-\frac{2 \alpha \log (n-1)}{(n-1)^{3}}+\frac{3 \alpha}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}>-\frac{1}{(n-1)^{5 / 2}} \tag{2.63}
\end{equation*}
$$

Combing (2.57) and (2.63), we deduce that the right hand side of (2.62) is positive for $n>n(\alpha)$. So we are led to the log-convexity of the sequence $\left\{\sqrt[n]{p(n) / n^{\alpha}}\right\}_{n \geq n(\alpha)}$.

3 An inequality on the ratio $\frac{\sqrt[n-1]{p(n-1)}}{\sqrt[n]{p(n)}}$

In this section, we employ Lemma 2.2 and Lemma 2.3 to find the limit of $n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}$. Then we give an upper bound for $\Delta^{2} \log \sqrt[n-1]{p(n-1)}$. This leads to the inequality (1.1).

Theorem 3.1 Let $\beta=3 \pi / \sqrt{24}$. We have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}=\beta \tag{3.1}
\end{equation*}
$$

Proof. Using (2.8), that is, the $N=2$ case of the Hardy-Ramanujan-Rademacher formula for $p(n)$, we find that

$$
\log \sqrt[n]{p(n)}=\frac{1}{n} \log \widetilde{T}(n)+\frac{1}{n} \log \left(1+\widetilde{y}_{n}\right)
$$

where $\widetilde{T}(n)$ and y_{n} are given by (2.9) and (2.13). By the definition (2.14) of $\widetilde{E}(n)$, we get

$$
\begin{equation*}
\Delta^{2} \log \sqrt[n-1]{p(n-1)}=\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)+\Delta^{2} \widetilde{E}(n-1) \tag{3.2}
\end{equation*}
$$

Applying Lemma 2.2, we get that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}(n-1)^{\frac{5}{2}} \Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)=\beta \tag{3.3}
\end{equation*}
$$

From Lemma 2.3, we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}(n-1)^{\frac{5}{2}} \Delta^{2} \widetilde{E}(n-1)=0 \tag{3.4}
\end{equation*}
$$

Using (3.2), (3.3) and (3.4), we deduce that

$$
\lim _{n \rightarrow+\infty} n^{\frac{5}{2}} \Delta^{2} \log \sqrt[n]{p(n)}=\beta
$$

as required.
To prove Theorem 1.4, we need the following upper bound for $\Delta^{2} \log \sqrt[n-1]{p(n-1)}$.

Theorem 3.2 For $n \geq 2$,

$$
\begin{equation*}
\Delta^{2} \log \sqrt[n-1]{p(n-1)}<\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi} \tag{3.5}
\end{equation*}
$$

Proof. By the upper bound of $\Delta^{2} \frac{1}{n-1} \log \widetilde{T}(n-1)$ given in Lemma 2.2 , the upper bound of $\Delta^{2} \widetilde{E}(n-1)$ given in Lemma 2.3 and the relation (3.2), we get the following upper bound of $\Delta^{2} \log \sqrt[n-1]{p(n-1)}$ for $n \geq 40$,

$$
\Delta^{2} \log \sqrt[n-1]{p(n-1)}<\frac{72 \pi}{(n-1)(24 n-25)^{3 / 2}}+\frac{5}{(n-1)^{3}}-\frac{4 \log [\mu(n+1)]}{(n+1)^{3}}+\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}
$$

To prove (3.5), we claim that for $n \geq 2095$,

$$
\begin{equation*}
\frac{72 \pi}{(n-1)(24 n-25)^{3 / 2}}+\frac{5}{(n-1)^{3}}-\frac{4 \log [\mu(n+1)]}{(n+1)^{3}}+\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}<\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi} . \tag{3.6}
\end{equation*}
$$

First, we show that for $n \geq 60$,

$$
\begin{equation*}
\frac{72 \pi}{(n-1)(24 n-25)^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi}<\frac{1}{(n-1)^{3}} . \tag{3.7}
\end{equation*}
$$

For $0<x \leq \frac{1}{48}$, it can be checked that

$$
\begin{equation*}
\frac{1}{(1-x)^{3 / 2}}<1+\frac{3}{2} x+\frac{3}{8} x^{\frac{3}{2}} \tag{3.8}
\end{equation*}
$$

In the notation $\beta=3 \pi / \sqrt{24}$, we have

$$
\begin{equation*}
\frac{72 \pi}{(n-1)(24 n-25)^{3 / 2}}=\frac{\beta}{(n-1) n^{3 / 2}\left(1-\frac{25}{24 n}\right)^{3 / 2}} . \tag{3.9}
\end{equation*}
$$

Setting $x=\frac{25}{24 n}$, we have $x \leq \frac{1}{48}$ for $n \geq 60$. Applying (3.8) to the right hand side of (3.9), we find that for $n \geq 60$,

$$
\begin{equation*}
\frac{\beta}{(n-1) n^{3 / 2}\left(1-\frac{25}{24 n}\right)^{3 / 2}}<\frac{\beta}{(n-1) n^{3 / 2}}\left[1+\frac{75}{48 n}+\frac{3}{8}\left(\frac{25}{24 n}\right)^{\frac{3}{2}}\right] \tag{3.10}
\end{equation*}
$$

so that for $n \geq 60$,

$$
\begin{align*}
& \frac{72 \pi}{(n-1)[24 n-25]^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi} \\
& \quad<\frac{\beta}{(n-1) n^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi}+\frac{\beta}{(n-1) n^{3 / 2}}\left[\frac{75}{48 n}+\frac{3}{8}\left(\frac{25}{24 n}\right)^{\frac{3}{2}}\right] \tag{3.11}
\end{align*}
$$

To prove (3.7), we proceed to show that the right hand side of 3.11 is bounded by $\frac{1}{(n-1)^{3}}$. Noted that for $n \geq 2$,

$$
\frac{\beta}{(n-1) n^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi}=\frac{\beta}{\left(n^{5 / 2}+\beta\right)(n-1)}+\frac{\beta^{2}}{\left(n^{5 / 2}+\beta\right)(n-1) n^{3 / 2}}
$$

and $n^{5 / 2}+\beta>(n-1)^{5 / 2}$, together with $n^{3 / 2}>(n-1)^{3 / 2}$, we have that

$$
\begin{equation*}
\frac{\beta}{(n-1) n^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi}<\frac{\beta}{(n-1)^{7 / 2}}+\frac{\beta}{(n-1)^{5}} \tag{3.12}
\end{equation*}
$$

Applying $(3.12$ to (3.11), we obtain that for $n \geq 60$,

$$
\begin{align*}
& \frac{72 \pi}{(n-1)[24 n-25]^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi} \\
& \quad<\frac{\beta}{(n-1)^{7 / 2}}+\frac{\beta^{2}}{(n-1)^{5}}+\frac{\beta}{(n-1) n^{3 / 2}}\left[\frac{75}{48 n}+\frac{3}{8}\left(\frac{25}{24 n}\right)^{\frac{3}{2}}\right] \tag{3.13}
\end{align*}
$$

Since $\frac{75}{48 n}<\frac{2}{n-1}$ and $\frac{3}{8}\left(\frac{25}{24 n}\right)^{\frac{3}{2}}<\frac{1}{(n-1)^{3 / 2}}$ for $n \geq 2$, it follows from 3.13 that for $n \geq 60$,

$$
\begin{aligned}
& \frac{72 \pi}{(n-1)[24 n-25]^{3 / 2}}-\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi} \\
& \quad<\frac{\beta}{(n-1)^{7 / 2}}+\frac{\beta^{2}}{(n-1)^{5}}+\frac{2 \beta}{(n-1)^{7 / 2}}+\frac{\beta}{(n-1)^{4}}
\end{aligned}
$$

Using the fact that $\beta<2$, we see that

$$
\begin{equation*}
\frac{3 \beta}{(n-1)^{7 / 2}}+\frac{\beta^{2}}{(n-1)^{5}}+\frac{\beta}{(n-1)^{4}}<\frac{6}{(n-1)^{7 / 2}}+\frac{4}{(n-1)^{5}}+\frac{2}{(n-1)^{4}} . \tag{3.14}
\end{equation*}
$$

For $n \geq 60$, it is easily checked that the right hand side of (3.14) is bounded by $\frac{1}{(n-1)^{3}}$. This confirms (3.7).

To prove the claim (3.6), it is enough to show that for $n \geq 2095$,

$$
\begin{equation*}
\frac{1}{(n-1)^{3}}<\frac{4 \log [\mu(n+1)]}{(n+1)^{3}}-\frac{5}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} . \tag{3.15}
\end{equation*}
$$

From (2.61) it can be seen that for $n \geq 2095$,

$$
\begin{equation*}
\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}}<\frac{5}{(n-1)^{3}} . \tag{3.16}
\end{equation*}
$$

Since $4 \log [\mu(n+1)]>18$ for $n \geq 2095$, it follows from (3.16) that for $n \geq 2095$,

$$
\begin{gathered}
\frac{4 \log [\mu(n+1)]}{(n+1)^{3}}-\frac{5}{(n-1)^{3}}-\frac{5}{n-1} e^{-\frac{\pi \sqrt{24 n-25}}{18}} \\
>\frac{18}{(n+1)^{3}}-\frac{10}{(n-1)^{3}}>\frac{1}{(n-1)^{3}}
\end{gathered}
$$

So we obtain (3.15), which yields (3.6). For $2 \leq n \leq 2094$, the inequality (3.5) can be easily checked. This completes the proof.

We are now in a position to finish the proof of Theorem 1.4 .
Proof of Theorem 1.4. It is known that for $x>0$,

$$
\frac{x}{1+x}<\log (1+x),
$$

so that for $n \geq 1$,

$$
\frac{3 \pi}{\sqrt{24} n^{5 / 2}+3 \pi}<\log \left(1+\frac{3 \pi}{\sqrt{24} n^{5 / 2}}\right) .
$$

In light of the above relation, Theorem 3.2 implies that for $n \geq 2$,

$$
\Delta^{2} \log \sqrt[n-1]{p(n-1)}<\log \left(1+\frac{3 \pi}{\sqrt{24} n^{5 / 2}}\right)
$$

that is,

$$
\sqrt[n+1]{p(n+1)} \sqrt[n-1]{p(n-1)}<\left(1+\frac{3 \pi}{\sqrt{24} n^{5 / 2}}\right)(\sqrt[n]{p(n)})^{2}
$$

as required.
We remark that $\beta=3 \pi / \sqrt{24}$ is the smallest possible number for the inequality in Theorem 1.4. Suppose that $0<\gamma<\beta$. By Theorem 3.1, there exists an integer N so as to for $n>N$,

$$
n^{5 / 2} \Delta^{2} \log \sqrt[n-1]{p(n-1)}>\gamma
$$

It follows that

$$
\Delta^{2} \log \sqrt[n-1]{p(n-1)}>\frac{\gamma}{n^{5 / 2}}>\log \left(1+\frac{\gamma}{n^{5 / 2}}\right)
$$

which implies that for $n>N$,

$$
\frac{\sqrt[n]{p(n)}}{\sqrt[n+1]{p(n+1)}}\left(1+\frac{\gamma}{n^{5 / 2}}\right)<\frac{\sqrt[n-1]{p(n-1)}}{\sqrt[n]{p(n)}}
$$

Acknowledgments. We thank the referee for helpful comments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] G.E. Andrews, Combinatorial proof of a partition function limit, Amer. Math. Monthly., 78 (1971), 276-278.
[2] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[3] W.Y.C. Chen, J.J.F. Guo and L.X.W. Wang, Infinitely log-monotonic combinatorial sequences. Adv. Appl. Math., 52 (2014), 99-120.
[4] W.Y.C. Chen, L.X.W. Wang and G.Y.B. Xie, Finite differences of the logarithm of the partition function. Math. Comp., 85 (2016), 825-847.
[5] S. Desalvo and I. Pak, Log-concavity of the partition function, Ramanujan J., 38 (2016), 61-73.
[6] G.H. Hardy, Twelve Lectures on Subjects Suggested by His Life and Work, Cambridge University Press, Cambridge, 1940.
[7] G.H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 17 (1918), 75-175.
[8] D.H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc., 43 (1938), 271-292.
[9] D.H. Lehmer, On the remainders and convergence of the series for the partition function, Trans. Amer. Math. Soc., 46 (1939), 362-373.
[10] H. Rademacher, A convergent series for the partition function $p(n)$, Proc. Nat. Acad. Sci. USA, 23 (1937), 78-84.
[11] Z.W. Sun, On a sequence involving sums of primes, Bull. Aust. Math. Soc. 88 (2013), 197-205.
[12] Y. Wang and B.X. Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, Sci. China Math. 57 (2014), 2429-2435.

