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Abstract14

Let G be a graph. Adopting the terminology of Broersma et al. and15

Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of16

G contains two end-vertices each one has degree at least |V (G)|/2; and G17

is o-heavy if every induced claw of G contains two end-vertices with degree18

sum at least |V (G)| in G. In this paper, we introduce a new concept, and19

say that G is S-c-heavy if for a given graph S and every induced subgraph20

G′ of G isomorphic to S and every maximal clique C of G′, every non-21

trivial component of G′ − C contains a vertex of degree at least |V (G)|/222

in G. In terms of this concept, our original motivation that a theorem23

of Hu in 1999 can be stated as every 2-connected 2-heavy and N -c-heavy24

graph is hamiltonian, where N is the graph obtained from a triangle by25

adding three disjoint pendant edges. In this paper, we will characterize26

all connected graphs S such that every 2-connected o-heavy and S-c-heavy27

graph is hamiltonian. Our work results in a different proof of a stronger28

version of Hu’s theorem. Furthermore, our main result improves or extends29

several previous results.30
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1. Introduction33

Throughout this paper, the graphs considered are undirected, finite and simple34

(without loops and parallel edges). For terminology and definition not defined35

here, we refer the reader to Bondy and Murty [4].36

Let G be a graph and v be a vertex of G. The neighborhood of v in G, denoted37

by NG(v), is the set of neighbors of v in G; and the degree of v in G, denoted by38

dG(v), is the number of neighbors of v in G. For two vertices u, v ∈ V (G), the39

distance between u and v in G, denoted by dG(u, v), is the length of a shortest40

path between u and v in G. When there is no danger of ambiguity, we use N(v),41

d(v) and d(u, v) instead of NG(v), dG(v) and dG(u, v), respectively. For a subset42

U of V (G), we set NU (v) = N(v)∩U , and dU (v) = |NU (v)|. For a subgraph S of43

G such that v /∈ V (S), we use NS(v) and dS(v) instead of NV (S)(v) and dV (S)(v),44

respectively.45

Let G be a graph and G′ be a subgraph of G. If G′ contains all edges46

xy ∈ E(G) with x, y ∈ V (G′), then G′ is an induced subgraph of G (or a subgraph47

induced by V (G′)). For a given graph S, the graph G is S-free if G contains no48

induced subgraph isomorphic to S. Note that if S1 is an induced subgraph of S2,49

then an S1-free graph is also S2-free.50

The bipartite graph K1,3 is the claw. We use Pi (i ≥ 1) and Ci (i ≥ 3) to51

denote the path and cycle of order i, respectively. We denote by Zi (i ≥ 1) the52

graph obtained by identifying a vertex of a C3 with an end-vertex of a Pi+1; by53

Bi,j (i, j ≥ 1) the graph obtained by identifying two vertices of a C3 with the54

origins of a Pi+1 and a Pj+1, respectively; and by Ni,j,k (i, j, k ≥ 1) the graph55

obtained by identifying the three vertices of a C3 with the origins of a Pi+1, a56

Pj+1 and a Pk+1, respectively. In particular, we set B = B1,1, N = N1,1,1, and57

W = B1,2. (These three graphs are sometimes called the bull, the net and the58

wounded, respectively.)59

To find sufficient conditions for hamiltonicity of graphs is a standard topic. In60

particular, sufficient conditions for hamiltonicity of graphs in terms of forbidden61

subgraphs have received much attention from graph theorists. The following are62

some results in this area, where the graphs L1 and L2 are shown in Figure 1.63

Theorem 1. Let G be a 2-connected graph.64

(1) ([12]) If G is claw-free and N -free, then G is hamiltonian.65

(2) ([6]) If G is claw-free and P6-free, then G is hamiltonian.66

(3) ([1]) If G is claw-free and W -free, then G is hamiltonian.67

(4) ([15]) If G is claw-free and Z3-free, then G is hamiltonian or G = L1 or L2.68
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L1 L2
69

Figure 1. Graphs L1 and L2.70

In 1991, Bedrossian [1] characterized all pairs of forbidden subgraphs for a71

2-connected graph to be hamiltonian, in his Ph.D. Thesis. In 1997, Faudree and72

Gould [14] extended Bedrossian’s result by proving the ‘only if’ part based on73

infinite families of non-hamiltonian graphs. Before showing the result of Faudree74

and Gould, we first remark that the only connected graph S of order at least 375

such that the statement ‘every 2-connected S-free graph is hamiltonian’ holds, is76

P3, see [14]. So in the following theorem, we only consider the forbidden pairs77

excluding P3.78

Theorem 2 [14]. Let R,S be connected graphs of order at least 3 with R,S 6= P379

and let G be a 2-connected graph of order n ≥ 10. Then G being R-free and80

S-free implies G is hamiltonian if and only if (up to symmetry) R = K1,3 and81

S = P4, P5, P6, C3, Z1, Z2, Z3, B, N or W .82

Degree condition is also an important type of sufficient conditions for hamil-83

tonicity of graphs. Let G be a graph of order n. A vertex v ∈ V (G) is a heavy84

vertex of G if d(v) ≥ n/2; and a pair of vertices {u, v} is a heavy pair of G if85

uv /∈ E(G) and d(u) + d(v) ≥ n. In 1952, Dirac [11] proved that every graph G86

of order at least 3 is hamiltonian if every vertex of G is heavy. Ore [22] improved87

Dirac’s result by showing that every graph G of order at least 3 is hamiltonian88

if every pair of nonadjacent vertices is a heavy pair. Fan [13] further improved89

Ore’s theorem by showing that every 2-connected graph G is hamiltonian if every90

pair of vertices at distance 2 of G contains a heavy vertex.91

It is natural to relax the forbidden subgraph conditions to ones that the92

subgraphs are allowed, but some degree conditions are restricted to the subgraphs.93

Early examples of this method used in scientific papers can date back to 1990s94

[2, 19, 5]. In particular, Čada [10] introduced the class of o-heavy graphs by95

restricting Ore’s condition to every induced claw of a graph. Li et al. [18]96

extended Čada’s concept of claw-o-heavy graphs to a general one.97

Let G′ be an induced subgraph of G. Following [18], if G′ contains a heavy98

pair of G, then G′ is an o-heavy subgraph of G (or G′ is o-heavy in G). For a given99
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graph S, the graph G is S-o-heavy if every induced subgraph of G isomorphic to100

S is o-heavy. (It should be mentioned that Čada originally named claw-o-heavy101

graphs as o-heavy graphs in [10].) Note that an S-free graph is trivially S-o-102

heavy, and if S1 is an induced subgraph of S2, then an S1-o-heavy graph is also103

S2-o-heavy.104

Li et al. [18] completely characterized pairs of o-heavy subgraphs for a 2-105

connected graph to be hamiltonian, which extends Theorem 2. The main result106

in [18] is given as follows.107

Theorem 3 [18]. Let R and S be connected graphs of order at least 3 with108

R,S 6= P3 and let G be a 2-connected graph. Then G being R-o-heavy and S-o-109

heavy implies G is hamiltonian if and only if (up to symmetry) R = K1,3 and110

S = P4, P5, C3, Z1, Z2, B,N or W .111

Following [20], we introduce another type of heavy subgraph condition moti-112

vated by Fan’s condition [13]. Let G be a graph and G′ be an induced subgraph of113

G. If for each two vertices u, v ∈ V (G′) with dG′(u, v) = 2, either u or v is heavy114

in G, then G′ is an f-heavy subgraph of G (or G′ is f-heavy in G). For a given115

graph S, the graph G is S-f-heavy if every induced subgraph of G isomorphic to116

S is f-heavy. A claw-f-heavy graph is also called a 2-heavy graph (see [5]).117

Note that an S-free graph is trivially S-f-heavy, but in general, an S1-f-heavy118

graph is not necessarily S2-f-heavy when S1 is an induced subgraph of S2. In119

Figure 2, we show the implication relations among the conditions being S-f-heavy120

for the graphs S listed in Theorem 2.121

P3

W Z2 Z3

P4 P5 P6 C3

Z1 B N

R R R

-1
�

- - - -
�

- -
1

R

122

Figure 2. S1 → S2: Being S1-f-heavy implies being S2-f-heavy123

We remark that f-heavy conditions cannot compare with o-heavy conditions124

in general. For example, every P3-o-heavy graph is P3-f-heavy; and every claw-f-125

heavy graph is claw-o-heavy, but for the conditions being N -o-heavy and being126

N -f-heavy, no one can imply the other.127

Motivated by Theorem 3, Ning and Zhang [20] characterized pairs of f-heavy128

subgraphs for a 2-connected graph to be hamiltonian, which not only is a new129

extension of Theorem 2 but also unifies some previous theorems in [2, 9, 19].130



Heavy subgraphs, stability and hamiltonicity 5

Theorem 4 [20]. Let R and S be connected graphs with R,S 6= P3 and let131

G be a 2-connected graph of order n ≥ 10. Then G being R-f-heavy and S-f-132

heavy implies G is hamiltonian if and only if (up to symmetry) R = K1,3 and133

S = P4, P5, P6, Z1, Z2, Z3, B,N or W .134

Now we will put our views to another new sufficient condition for hamiltonic-135

ity of graphs due to Hu [17]. Some previous theorems can be obtained from Hu’s136

theorem as corollaries (see [2, 19]).137

Theorem 5 [17]. Let G be a 2-connected graph. If G is 2-heavy and every induced138

P4 in an induced N of G contains a heavy vertex, then G is hamiltonian.139

In fact, we can see that the cases S = Z1, B,N in Theorem 4 can be deduced140

from Hu’s theorem. This motivates us to consider the counterpart results for141

other subgraphs. Armed with this idea, we first propose the following definition.142

Definition 1. Let G be a graph and G′ be an induced subgraph of G. If for143

every maximal clique C of G′, each nontrivial component of G′ − C contains a144

heavy vertex of G, then G′ is a clique-heavy (or in short, c-heavy) subgraph of G.145

For a given graph S, G is S-c-heavy if every induced subgraph of G isomorphic146

to S is c-heavy.147

In Figure 3, we show the implication relations of the conditions being S-c-148

heavy for the graphs S listed in Theorem 2.149

Z1 B N

P4 P5 P6 C3 P3

Z2 W Z3

- -

- -

-

1
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R
-
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150

Figure 3. S1 → S2: Being S1-c-heavy implies being S2-c-heavy.151

So Theorem 5 can be stated as every 2-connected claw-f-heavy and N -c-heavy152

graph is hamiltonian. As we will show below, this can be extended to that every153

2-connected claw-o-heavy and N -c-heavy graph is hamiltonian.154

We remark that saying a graph is claw-c-heavy is meaningless (if we remove155

a maximal clique from a claw, then only isolated vertices remain). Motivated by156

Theorems 2, 3 and 4, we naturally propose the following problem.157

Problem 1. Which connected graphs S imply that every 2-connected claw-free158

(or claw-f-heavy or claw-o-heavy) and S-c-heavy graph is hamiltonian?159
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The solution to Problem 1 is one of the main results in this paper.160

Theorem 6. Let S be a connected graph of order at least 3 and let G be a 2-161

connected claw-o-heavy graph of order n ≥ 10. Then G being S-c-heavy implies162

G is hamiltonian if and only if S = P4, P5, P6, Z1, Z2, Z3, B,N or W .163

Note that the only subgraphs appearing in Theorem 2 but missed here are P3164

and C3. Also note that every graph is P3-c-heavy and C3-c-heavy and there exist165

2-connected claw-free graphs which are non-hamiltonian. By Theorem 2 and the166

fact that every claw-free (claw-f-heavy) graph is claw-o-heavy, we can see that167

Theorem 6 gives a complete solution to Problem 1.168

We point out that a special case of our work results in a new proof of a169

stronger version of Theorem 5.170

Theorem 7. Let G be a 2-connected graph. If G is claw-o-heavy and N -c-heavy,171

then G is hamiltonian.172

Some previous theorems can also be obtained from this theorem as corollaries173

in a unified way.174

Corollary 1 [17]. Let G be a graph. If G is claw-f-heavy and N -c-heavy, then175

G is hamiltonian.176

Corollary 2 [20]. Let G be a graph. If G is claw-o-heavy and N -f-heavy, then177

G is hamiltonian.178

Corollary 3 [19]. Let G be a graph. If G is claw-f-heavy and B-f-heavy, then G179

is hamiltonian.180

Corollary 4 [2]. Let G be a graph. If G is claw-f-heavy and Z1-f-heavy, then G181

is hamiltonian.182

We remark that our methods used here are completely different from the ones183

in [17, 18, 20]. We mainly use the claw-o-heavy closure theory introduced by Čada184

[10], and many other results from the area of forbidden subgraphs. However, our185

technique here is new, and it is heavily dependent on some new concepts and186

tools developed by us recently. (See Lemma 7 in Sec.2 for example.) We point187

out that this is the first time to deal with Hamiltonicity of graphs under pairs188

of heavy subgraph conditions by using c-Closure theory systemically, compared189

with several previous works in [2, 19, 17, 9, 18, 20, 21].190

The rest of this paper is organized as follows. In Section 2, we will present191

necessary and additional preliminaries (including the introduction to claw-free192

closure theory, claw-o-heavy closure theory and a useful theorem of Brousek). In193

Section 3, in the spirit of some previous works of Brousek et al. [8], we will study194

the stability of some subclasses of the class of claw-o-heavy graphs. In Section 4,195

by using the closure theory and a previous result of Brousek [7], we give the proof196

of Theorem 6. In Section 5, one useful remark is given to conclude this paper.197
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2. Preliminaries198

The main tools in our paper are two kinds of closure theories introduced by199

Ryjáček [23] and Čada [10], respectively. These two closure theories are used to200

study hamiltonian properties of claw-free graphs and claw-o-heavy graphs, respec-201

tively. We will give some terminology and notation with a prefix or superscript r202

or c, respectively, to distinguish them.203

r-Closure theory.204

Let G be a claw-free graph and x be a vertex of G. Following [23], we call205

x an r-eligible vertex of G if N(x) induces a connected graph in G but not a206

complete graph. The completion of G at x, denoted by G′

x, is the graph obtained207

from G by adding all missing edges uv with u, v ∈ N(x).208

Lemma 1 [23]. Let G be a claw-free graph and x be an r-eligible vertex of G.209

Then210

(1) the graph G′

x is claw-free; and211

(2) the circumferences of G′

x and G are equal.212

The r-closure of a claw-free graph G, denoted by clr(G), is defined by a213

sequence of graphs G1, G2, . . . , Gt, and vertices x1, x2 . . . , xt−1 such that214

(1) G1 = G, Gt = clr(G);215

(2) xi is an r-eligible vertex of Gi, Gi+1 = (Gi)
′

xi
, 1 ≤ i ≤ t− 1; and216

(3) clr(G) has no r-eligible vertices.217

A claw-free graph G is r-closed if G has no r-eligible vertices, i.e., if clr(G) =218

G.219

Theorem 8 [23]. Let G be a claw-free graph. Then220

(1) the r-closure clr(G) is well defined;221

(2) there is a C3-free graph H such that clr(G) is the line graph of H; and222

(3) the circumferences of clr(G) and G are equal.223

It is not difficult to get the following (see [8]).224

Lemma 2 [8]. Let G be a claw-free graph. Then clr(G) is a K1,1,2-free supergraph225

of G with the least number of edges.226

Following [8], we say a family G of graphs is stable under the r-closure (or227

shortly, r-stable) if for every graph in G, its r-closure is also in G. From Theorem228

8, we can see that the class of all claw-free hamiltonian graphs and the class of229

all claw-free non-hamiltonian graphs are r-stable.230
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c-Closure theory.231

Let G be a claw-o-heavy graph and let x ∈ V (G). Let G′ be the graph232

obtained from G by adding the missing edges uv with u, v ∈ N(x) and {u, v} is233

a heavy pair of G. We call x a c-eligible vertex of G if N(x) is not a clique of G234

and one of the following is true:235

(1) G′[N(x)] is connected; or236

(2) G′[N(x)] consists of two disjoint cliques C1 and C2, and x is contained in a237

heavy pair {x, z} of G such that zy1, zy2 ∈ E(G) for some y1 ∈ C1 and y2 ∈ C2.238

Note that if G is claw-free, then an r-eligible vertex is also c-eligible.239

Lemma 3 [10]. Let G be a claw-o-heavy graph and x be a c-eligible vertex of G.240

Then241

(1) for every vertex y ∈ N(x), dG′

x
(y) ≥ dG′

x
(x);242

(2) the graph G′

x is claw-o-heavy; and243

(3) the circumferences of G′

x and G are equal.244

The c-closure of a claw-o-heavy graph G, denoted by clc(G), is defined by a245

sequence of graphs G1, G2, . . . , Gt, and vertices x1, x2 . . . , xt−1 such that246

(1) G1 = G, Gt = clc(G);247

(2) xi is a c-eligible vertex of Gi, Gi+1 = (Gi)
′

xi
, 1 ≤ i ≤ t− 1; and248

(3) clc(G) has no c-eligible vertices.249

Theorem 9 [10]. Let G be a claw-o-heavy graph. Then250

(1) the c-closure clc(G) is well defined;251

(2) there is a C3-free graph H such that clc(G) is the line graph of H; and252

(3) the circumferences of clc(G) and G are equal.253

A claw-o-heavy graph G is c-closed if clc(G) = G. Note that every line graph254

is claw-free (see [3]). This implies that clc(G) is a claw-free graph. Also note255

that for a claw-free graph, an r-eligible vertex is also c-eligible. This implies that256

every c-closed graph is also r-closed.257

Similarly as the case of r-closure, we say a family G of graphs is stable under258

the c-closure (or shortly, c-stable) if for every graph in G, its c-closure is also in259

G.260

The following lemma is an obvious but important fact, which can be deduced261

from Lemma 14 in [10] easily.262

Lemma 4 [10]. Let G be a claw-o-heavy graph. Then clc(G) has no heavy pair.263

Here we list some new concepts introduced by us recently [21]. Let G be a264

claw-o-heavy graph and C be a maximal clique of clc(G). We call G[C] a region265

of G. For a vertex v of G, we call v an interior vertex if it is contained in only266

one region, and a frontier vertex if it is contained in two distinct regions.267
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A graph G is nonseparable if it is connected and has no cut-vertex (i.e., either268

G is 2-connected, or G = K1 or K2). The following useful lemma originally269

appeared as Lemma 2 in [21], and it plays the crucial role of our proofs.270

Lemma 5 [21]. Let G be a claw-o-heavy graph and R be a region of G. Then271

(1) R is nonseparable;272

(2) if v is a frontier vertex of R, then v has an interior neighbor in R or R is273

complete and has no interior vertices; and274

(3) for any two vertices u, v ∈ R, there is an induced path of G from u to v such275

that every internal vertex of the path is an interior vertex of R.276

Following [7], we define P to be the class of graphs obtained from two vertex-277

disjoint triangles a1a2a3a1 and b1b2b3b1 by joining every pair of vertices {ai, bi}278

by a path Pki , where ki ≥ 3 or by a triangle. We use Px1,x2,x3
to denote the graph279

in P, where xi = ki if ai and bi are joined by a path Pki , and xi = T if ai and bi280

are joined by a triangle. Note that L1 = PT,T,T and L2 = P3,T,T .281

We give the following useful result to finish this section.282

Theorem 10 [7]. Every non-hamiltonian 2-connected claw-free graph contains283

an induced subgraph G′ ∈ P.284

3. Stable classes under closure operation285

Brousek et al. [8] studied the graphs S such that the class of claw-free and S-286

free graphs is r-stable. Before we present their result, we first remark that if S287

contains an induced claw or an induced K1,1,2, then the class of claw-free and288

S-free graphs is trivially r-stable by Lemma 2. So in the following theorem we289

assume that S is claw-free and K1,1,2-free.290

Theorem 11 [8]. Let S be a connected claw-free and K1,1,2-free graph of order
at least 3. Then the class of claw-free and S-free graphs is r-stable, if and only if

S ∈ {C3,H} ∪ {Pi : i ≥ 3} ∪ {Zi : i ≥ 1} ∪ {Ni,j,k : i, j, k ≥ 1}.

291

Figure 4. Graph H (hourglass).292
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In the spirit of previous works of Brousek et al. [8], we will consider the293

c-stability of the class of claw-o-heavy and S-c-heavy graphs. Before showing our294

results about this topic, we first remark the following trivial facts:295

If S is the join of a complete graph and an empty graph (specially, if S is296

a complete graph or a star), then for every maximal clique C of S, S − C has297

only trivial components. Thus by our definition, every graph will be S-c-heavy.298

Moreover, by our definition of c-stability, the class of claw-o-heavy and S-c-heavy299

graphs is c-stable. In the following, we will characterize all the other graphs S300

such that the class of claw-o-heavy and S-c-heavy graphs is c-stable.301

a1 a2 a3 ai−1 ai

Pi

b

c

a a1 ai−1 ai

Zi

a

a1

b

b1

c

c1

N
302

Figure 5. Graphs Pi, Zi and N .303

For a vertex x of a graph G, we set BG(x) = {uv : u, v ∈ N(x) and uv /∈304

E(G)}. For convenience, we say a vertex or a pair of nonadjacent vertices is light305

if it is not heavy.306

Theorem 12. Let G be a claw-o-heavy and Pi-c-heavy graph, i ≥ 4, and x be a307

c-eligible vertex of G. Then G′

x is Pi-c-heavy.308

Proof. Let P be an induced Pi of G
′

x. We denote the vertices of P as in Figure309

5, and will prove that one vertex of {a1, a2} is heavy in G′

x and one vertex of310

{ai−1, ai} is heavy in G′

x. Note that dG′

x
(v) ≥ d(v) for every vertex v ∈ V (G). If311

P is also an induced subgraph of G, then P is c-heavy in G, and then, is c-heavy312

in G′

x. So we assume that P is not an induced subgraph of G, which implies313

that E(P )∩BG(x) 6= ∅. Suppose that ajaj+1 is an edge in E(P )∩BG(x), where314

1 ≤ j ≤ i− 1.315

Since N(x) is a clique in G′

x, N(x)∩V (P ) = {aj , aj+1} and there is only one316

edge in E(P ) ∩BG(x). If j ≥ 2, then P ′ = a1a2 · · · ajxaj+1 · · · ai−1 is an induced317

Pi of G. Since G is Pi-c-heavy, one vertex of {a1, a2} is heavy in G, and then, is318

heavy in G′

x. If j = 1, then P ′ = a1xa2 · · · ai−1 is an induced Pi of G. Thus one319

vertex of {a1, x} is heavy in G. Note that dG′

x
(a1) ≥ dG′

x
(x) = d(x) (see Lemma320

3). Thus a1 is heavy in G′

x. Hence in any case, we have shown that one vertex321

of {a1, a2} is heavy in G′

x. By the symmetry, we can prove that one vertex of322

{ai−1, ai} is heavy in G′

x.323
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Note that every c-closed graph has no heavy pairs, and note that every c-324

heavy Pi with i ≥ 5 must have a heavy pair. By Theorem 12, we have325

Corollary 5. Let G be a claw-o-heavy and Pi-c-heavy graph with i ≥ 5. Then326

clc(G) is Pi-free.327

Corollary 6. For i ≥ 3, the class of claw-o-heavy and Pi-c-heavy graphs is c-328

stable.329

There are no counterpart results of Theorem 12 for the graph Zi. In fact,330

there exist claw-free and Zi-free graphs G with an r-eligible vertex x such that331

G′

x is not Zi-free, see [8]. However, we can prove that the class of claw-o-heavy332

and Zi-c-heavy graphs is also c-stable for i 6= 2.333

Theorem 13. Let G be a claw-o-heavy and Z1-c-heavy graph. Then clc(G) is334

also Z1-c-heavy.335

Proof. Let Z be an induced Z1 in clc(G). We denote the vertices of Z as in336

Figure 5. We will prove that either b or c is heavy.337

Claim 1. Let R be a region of G and x ∈ V (R) be a frontier vertex. If y, y′ are338

two neighbors of x in R, then one vertex in {y, y′} is heavy in G.339

Proof. Let z be a neighbor of x in G−R. Clearly yz, y′z /∈ E(G). If yy′ ∈ E(G),340

then the subgraph of G induced by {x, y, y′, z} is a Z1. Since G is Z1-c-heavy,341

either y or y′ is heavy in G. Now we assume that yy′ /∈ E(G). Then the subgraph342

of G induced by {x, y, y′, z} is a claw. Note that {y, z} and {y′, z} are not heavy343

pairs in clc(G), and then, are not heavy pairs in G. This implies that {y, y′} is a344

heavy pair of G. Thus either y or y′ is heavy in G.345

Suppose that both b and c are light. Let R be the region of G containing346

{a, b, c}. Note that R is a clique in clc(G). If |V (R)| ≥ |V (G)|/2 + 1, then b is347

heavy in clc(G), a contradiction. So we assume that |V (R)| ≤ (|V (G)| + 1)/2.348

This implies that every interior vertex of R is light in clc(G), and also, light in349

G.350

If R has no interior vertex, then by Lemma 5, R is a clique in G. By Claim 1,351

either b or c is heavy in G, a contradiction. So we assume that R has an interior352

vertex. By Lemma 5, R has an interior vertex adjacent to a. Since a has at least353

two neighbors in R, we may choose two neighbors x, y of a in R such that x is354

an interior vertex of R. Note that x is light in G. By Claim 1, y is heavy in G.355

Recall that b, c and every interior vertex of R are light. Hence y 6= b, c and y is a356

frontier vertex of R.357

If both by and cy are in E(G), then by Claim 1, either b or c is heavy in G,358

a contradiction. So we conclude that by /∈ E(G) or cy /∈ E(G).359
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If dG−R(y) = 1, then d(y) = dR(y) + 1 ≤ |V (R)| − 2 + 1 ≤ (n − 1)/2. Hence360

y is light in G, a contradiction. So we conclude that dG−R(y) ≥ 2. Also note361

that dR(y) ≥ 2 by Lemma 5. Let x′, x′′ be two vertices in NR(y) and y′, y′′ be362

two vertices in NG−R(y). By Claim 1, one vertex of {x′, x′′} is heavy in G, and363

one vertex of {y′, y′′} is heavy in G. We assume without loss of generality that364

x′, y′ are heavy in G. Then {x′, y′} is a heavy pair in G, and also is a heavy pair365

of clc(G), a contradiction.366

Theorem 14. Let G be a claw-o-heavy and Zi-c-heavy graph with i ≥ 3. Then367

clc(G) is Zi-free.368

Proof. The proof is almost the same as the proof of Lemma 3 in [21]. The only369

difference occurs when we find an induced Zi in clc(G), instead of a Z3 as done370

in the proof of Lemma 3 in [21], and when we use the c-heavy condition, instead371

of the f-heavy condition. But we still shall carry it in full, due to some specific372

details and the integrity of this paper. Now we give the proof along the outline373

in [21] step by step.374

Suppose the contrary. Let Z be an induced Zi in clc(G). We denote the375

vertices of Z as in Figure 5. Let R be the region of G containing {a, b, c}. Proofs376

of the first two claims are almost the same as Claims 1, 2 in the proof of Lemma377

3 in [21].378

Claim 1. [21, Claim 1 in the proof of Lemma 3]379

|NR(a2) ∪NR(a3)| ≤ 1.380

Proof. Note that every vertex in G − R has at most one neighbor in R. If381

NR(a2) = ∅, then the assertion is obviously true. Now we assume that NR(a2) 6=382

∅. Let x be the vertex in NR(a2). Clearly x 6= a and a1x /∈ E(clc(G)). If a3x /∈383

E(clc(G)), then {a2, a1, a3, x} induces a claw in clc(G), a contradiction. This384

implies that a3x ∈ E(clc(G)), and x is the unique vertex in Nclc(G)(a3) ∩ V (R).385

Thus NR(a2) ∪NR(a3) = {x}.386

We denote by IR the set of interior vertices of R, and by FR the set of frontier387

vertices of R.388

Claim 2. [21, Claim 2 in the proof of Lemma 3]389

Let x, y be two vertices in R.390

(1) If {x, y} is a heavy pair of G, then x, y have two common neighbors in IR.391

(2) If x, y ∈ IR ∪ {a}, xy ∈ E(G) and d(x) + d(y) ≥ n, then x, y have a common392

neighbor in IR.393

Proof. (1) Note that every vertex in FR has at least one neighbor in G −
R, and every vertex in G − R has at most one neighbor in FR. We have
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|NG−R(FR\{x, y})| ≥ |FR\{x, y}|. Also note that n = |IR\{x, y}|+ |FR\{x, y}|+
|V (G−R)|+ 2. Thus

n ≤ d(x) + d(y)

= dIR(x) + dIR(y) + dFR
(x) + dFR

(y) + dG−R(x) + dG−R(y)

≤ dIR(x) + dIR(y) + 2|FR\{x, y}| + dG−R(x) + dG−R(y)

≤ dIR(x) + dIR(y) + |FR\{x, y}| + |NG−R(FR\{x, y})| + |NG−R(x)|+ |NG−R(y)|

= dIR(x) + dIR(y) + |FR\{x, y}| + |NG−R(FR)|

≤ dIR(x) + dIR(y) + |FR\{x, y}| + |V (G−R)|,

and

dIR(x) + dIR(y) ≥ n− |FR\{x, y}| − |V (G−R)| = |IR\{x, y}| + 2.

This implies that x, y have two common neighbors in IR.394

(2) Note that if a2, a3 ∈ NG−R(R), then they have a common neighbor in
FR\{a}. By Claim 1, we can see that

|V (G−R)| ≥ |FR|+ 1 and |V (G−R)\NG−R(a)| ≥ |FR\{a}| + 1.

If x, y ∈ IR, then

n ≤ d(x) + d(y)

= dIR(x) + dIR(y) + dFR
(x) + dFR

(y)

≤ dIR(x) + dIR(y) + 2|FR|

≤ dIR(x) + dIR(y) + |FR|+ |V (G−R)| − 1,

and
dIR(x) + dIR(y) ≥ n− |FR| − |V (G−R)|+ 1 = |IR|+ 1.

This implies that x, y have a common neighbor in IR.395

If one of x, y, say y, is equal to a, then

n ≤ d(x) + d(a)

= dIR(x) + dIR(a) + dFR
(x) + dFR

(a) + dG−R(a)

≤ dIR(x) + dIR(a) + |FR|+ |FR\{a}| + dG−R(a)

≤ dIR(x) + dIR(a) + |FR|+ |V (G−R)\NG−R(a)| − 1 + |NG−R(a)|

≤ dIR(x) + dIR(a) + |FR|+ |V (G−R)| − 1,

and
dIR(x) + dIR(a) ≥ n− |FR| − |V (G−R)|+ 1 = |IR|+ 1.

This implies that x, a have a common neighbor in IR.396
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From here, the main difference between the proof presented here and the397

proof of Lemma 3 in [21] will occur, considering that we would find an induced398

Zi and use the Zi-c-heavy condition.399

By Lemma 5, G has an induced path P from a to ai such that every vertex400

of P is either in {aj : 0 ≤ j ≤ i} or an interior vertex of some regions (we set401

a0 = a). Let a, a′1, a
′

2, . . . , a
′

i be the first i + 1 vertices of P . Note that every402

vertex a′i is nonadjacent to every vertex in {b, c}∪ IR. If abca is also a triangle in403

G, then {a, b, c, a′1, . . . , a
′

i} induces a Zi in G. Thus one vertex of {b, c} is heavy404

in G and one of {a′i−1, a
′

i} is heavy in G. We assume without loss of generality405

that b, a′i−1 are heavy in G, and then, also are heavy in clc(G). Then {b, a′i−1} is406

a heavy pair in clc(G), a contradiction. So we only consider the case one edge of407

{ab, bc, ac} does not exist in G.408

If IR = ∅, then R is a clique in G, and ab, bc, ac ∈ E(G), a contradiction.409

Thus, IR 6= ∅. By Lemma 5, a has a neighbor in IR.410

Claim 3. [21, Claim 3 in the proof of Lemma 3]411

dIR(a) = 1.412

Proof. If a is contained in a triangle axya such that x, y ∈ IR, then {a, x, y, a′1, . . . ,413

a′i} induces a Zi in G. Thus one vertex of {x, y} is heavy in G and one vertex of414

{a′i−1, a
′

i} is heavy in G, a contradiction. Hence, NIR(a) is an independent set.415

Suppose that dIR(a) ≥ 2. Let x, y be two vertices in NIR(a). Then xy /∈416

E(G). Since {a, x, y, a′1} induces a claw in G, and {a′1, x}, {a
′

1, y} are not heavy417

pairs of G, it follows {x, y} is a heavy pair of G. Without loss of generality,418

suppose that x is heavy in G.419

If a is also heavy in G, then by Claim 2, a, x have a common neighbor in IR,420

contradicting the fact that NIR(a) is independent. So we conclude that a is light421

in G.422

Since {x, y} is a heavy pair of G, by Claim 2, x, y have two common neighbors423

in IR. Let x
′, y′ be two vertices in NIR(x) ∩NIR(y). Clearly ax′, ay′ /∈ E(G).424

If x′y′ ∈ E(G), then {x, x′, y′, a, a′1, . . . , a
′

i−1} induces a Zi in G. Thus one425

vertex of {a′i−2, a
′

i−1} is heavy in G. This implies either {x, a′i−2} or {x, a′i−1} is a426

heavy pair of G, and also a heavy pair of clc(G), a contradiction. So we conclude427

that x′y′ /∈ E(G).428

Note that {x, x′, y′, a} induces a claw in G, and a is light in G. So one vertex429

of {x′, y′} is heavy in G. We assume without loss of generality that x′ is heavy430

in G. By Claim 2, x, x′ have a common neighbor x′′ in IR. Clearly ax′′ /∈ E(G).431

Thus {x, x′, x′′, a, a′1, . . . , a
′

i−1} induces a Zi, and hence one vertex of {a′i−2, a
′

i−1}432

is heavy in G, a contradiction.433

Now let x be the vertex in NIR(a). The left part is almost the same as in the434

proof of Lemma 3 in [21]. We rewrite it here.435
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Claim 4. [21, Claim 4 in the proof of Lemma 3]436

NR(a) = V (R)\{a}.437

Proof. Suppose that V (R)\{a}\NR(a) 6= ∅. By Lemma 5, R − x is connected.438

Let y be a vertex in V (R)\{a}\NR(a) such that a, y have a common neighbor z439

in R−x. Since NIR(a) = {x} and z ∈ NR(a)\{x}, z is a frontier vertex of R. Let440

z′ be a vertex in NG−R(z). Then {z, y, a, z′} induces a claw in G. Since {a, z′},441

{y, z′} are not heavy pairs of G, {a, y} is a heavy pair of G. By Claim 2, a, y442

have two common neighbors in IR, contradicting Claim 3.443

By Claims 3 and 4, we can see that |IR| = 1. Recall that one edge of444

{ab, bc, ac} is not in E(G). By Claim 4, ab, ac ∈ E(G). This implies that bc /∈445

E(G), and {a, b, c, a′1} induces a claw in G. Since {b, a′1}, {c, a
′

1} are not heavy446

pairs of G, {b, c} is a heavy pair ofG. By Claim 2, b, c have two common neighbors447

in IR, contradicting the fact that |IR| = 1.448

Corollary 7. For i = 1 or i ≥ 3, the class of claw-o-heavy and Zi-c-heavy graphs449

is c-stable.450

Theorem 15. Let S be a connected claw-free and K1,1,2-free graph of order at
least 3. Then the class of claw-o-heavy and S-c-heavy graphs is c-stable, if and
only if

S ∈ {Ki : i ≥ 3} ∪ {Pi : i ≥ 3} ∪ {Zi : i = 1 or i ≥ 3}.

Proof. If S = Ki, i ≥ 3, then every graph is S-c-heavy, and the class of claw-451

o-heavy and S-c-heavy graphs is c-stable. If S = Pi, i ≥ 3 or S = Zi, i = 1452

or i ≥ 3, then by Corollaries 6 and 7, the class of claw-o-heavy and S-c-heavy453

graphs is c-stable. This completes the ‘if’ part of the proof.454

Now we consider the ‘only if’ part of the theorem. We first construct some455

claw-o-heavy graphs as in Figure 6.456

457
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Figure 6. Some claw-o-heavy graphs.459

Suppose S is a claw-free and K1,1,2-free graph such that the class of claw-460

o-heavy and S-c-heavy graphs is c-stable. Consider the case where the class of461

claw-free and S-free graphs is r-stable. By Theorem 11, S ∈ {C3,H} ∪ {Pi : i ≥462

1} ∪ {Zi : i ≥ 1} ∪ {Ni,j,k : i, j, k ≥ 1}. Now we will explain why the graphs in463

Figure 6. are the required graphs.464

• The graph G1 is Z2-c-heavy, and the closure clc(G1) is obtained by adding465

all possible edges between vertices in the V (Kr)∪{a1, . . . , ar, b1, b2}. Notice466

that the subgraph of clc(G1) induced by {a1, a2, b1, c1, c2} is a Z2 which is467

not c-heavy in clc(G1).468

• The graph G2 is N -c-heavy, and the closure clc(G2) is obtained by adding469

all possible edges between vertices in the V (Kr)∪{a1, . . . , a4}. Notice that470

the subgraph of clc(G2) induced by {a1, b1, a2, b2, a3, b3} is an N which is471

not c-heavy in clc(G2) (noting that a2, a3 are not heavy in clc(G)).472

• The graph G3 is Ni,j,k-c-heavy for max{i, j, k} ≥ 2 (in fact, it is Ni,j,k-free),473

and the closure clc(G3) is obtained by adding all possible edges between474

vertices in the V (Kr)∪ {a0, b0, c0, d0}. Notice that the subgraph of clc(G3)475

induced by {a0, . . . , ai, b0, . . . , bj , c0, . . . , ck} is an Ni,j,k which is not c-heavy476

in clc(G3).477

• The graph G4 is H-c-heavy (max{i, j, k} ≥ 2) (in fact, it is H-free), and the478

closure clc(G4) is obtained by adding all possible edges between vertices in479

the V (Kr) ∪ {a1, . . . , a4}. Notice that the subgraph of clc(G4) induced by480

{a1, a2, b1, c1, c2} is an H which is not c-heavy in clc(G4).481
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Thus, we can see S is C3, Pi, i ≥ 1 or Zi, i = 1 or i ≥ 3.482

Next we consider the case where the class of claw-free and S-free graphs is483

not r-stable. Let G′ be a claw-free and S-free graph such that clr(G) is not S-free.484

Let G be the disjoint union of G′ and an empty graph of order |V (G′)|. Clearly G485

is claw-free and S-free, and then, claw-o-heavy and S-c-heavy. Let Gi, 1 ≤ i ≤ r,486

be the sequence of graphs in the definition of the c-closure of G, where G = G1487

and clc(G) = Gr. Note that for every i, every vertex of Gi has degree less than488

|V (G)|/2. This implies that the c-eligible vertices of Gi are exactly the r-eligible489

ones. Thus clc(G) = clr(G) and clc(G) contains an induced S. Note that clc(G)490

has no heavy vertex. If S has a maximal clique C such that S−C has a nontrivial491

component, then the induced S in clc(G) is not c-heavy, a contradiction. So we492

conclude that for every maximal clique C of S, S − C has only isolated vertex.493

Let C be a maximal clique of S. If V (S)\V (C) = ∅, then S is a complete494

graph Kk. Now we consider the case that V (S)\V (C) 6= ∅. Note that every495

vertex of S − C is an isolated vertex. Let x be a vertex in S − C. Since C is a496

maximal clique, C\NS(x) 6= ∅. If |C\NS(x)| ≥ 2, then let C ′ be a maximal clique497

of S containing x. Then S−C ′ will have a nontrivial component, a contradiction.498

So we conclude that |C\NS(x)| = 1. Let y be the vertex in C\NS(x). By our499

assumption that S is connected, we obtain |C| ≥ 2. If |C| ≥ 3, letting z, z′ be two500

vertices of C\{y}, then {x, y, z, z′} induces a K1,1,2 of S, a contradiction. Thus501

we conclude that C has exactly two vertices. Let z be the vertex of C other than502

y. Note that C ′ = C∪{x}\{y} is a maximal clique of S. Every vertex of S−C ′ is503

nonadjacent to y. If S −C has a vertex w other than x, then {z, x, y, w} induces504

a claw in S, a contradiction. This implies that S −C has only one vertex x, and505

S = P3, a contradiction.506

By Theorem 15, the class of claw-o-heavy and N -c-heavy graphs is not c-507

stable. However, we have a slightly larger class of graphs which is c-stable.508

Let G be a graph and M be an induced N in G. We denote the vertices of M509

as in Figure 5. Note that M is c-heavy in G if and only if there are two vertices510

u, v of M which are heavy in G such that {u, v} /∈ {{a, a1}, {b, b1}, {c, c1}}.511

Now we say that M is p-heavy in G if there are two vertices u, v of M with512

d(u) + d(v) ≥ n, such that {u, v} /∈ {{a, a1}, {b, b1}, {c, c1}}. Also, we say that G513

is N -p-heavy if every induced N in G is p-heavy. Note that an N -c-heavy graph514

is also N -p-heavy.515

Now we prove that the class of claw-o-heavy andN -p-heavy graphs is c-stable.516

Theorem 16. Let G be a claw-o-heavy and N -p-heavy graph, and x be a c-eligible517

vertex of G. Then G′

x is N -p-heavy.518

Proof. Let M be an induced N in G′

x. We will prove that M is p-heavy. We519

denote the vertices of M as in Figure 5. Let n = |V (G)|. If M is also an induced520

subgraph of G, then M is p-heavy in G, and then, is p-heavy in G′

x.521
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Now we consider the case E(M) ∩ BG(x) 6= ∅. First suppose that aa1 ∈522

BG(x). Note that N(x) is a clique in G′

x. This implies that N(x) ∩ V (M) =523

{a, a1}. Thus {a, x, b, b1, c, c1} induces an N in G. Since G is N -p-heavy and524

dG′

x
(a) ≥ dG′

x
(x) ≥ d(x), M is p-heavy in G′

x. Now we consider the case aa1 /∈525

BG(G), and similarly, bb1, cc1 /∈ BG(G). Thus at least one edge in {ab, ac, bc} is526

in BG(x).527

If |BG(x) ∩ {ab, ac, bc}| = 1, then without loss of generality, suppose that528

ab ∈ BG(x). Then {c, a, b, c1} induces a claw. Thus one of the three pairs529

{a, b}, {a, c1}, {b, c1} is a heavy pair in G, and then has degree sum at least n in530

G′

x. Hence M is p-heavy in G′

x.531

If |BG(x) ∩ {ab, ac, bc}| = 2, then without loss of generality, suppose that532

ab, ac ∈ BG(x). Then {x, a, b, b1, c, c1} induces an N . Thus there are two vertices533

u, v in {x, a, b, b1, c, c1} such that {u, v} /∈ {{x, a}, {b, b1}, {c, c1}}, with degree534

sum at least n in G. Since dG′

x
(a) ≥ d(x), we can see that M is p-heavy.535

If |BG(x)∩{ab, ac, bc}| = 3, then all the three edges {ab, ac, bc} are in BG(x),536

which implies that {x, a, b, c} induces a claw in G. So, one pair of {{a, b}, {a, c},537

{b, c}} is a heavy pair in G, and then has degree sum at least n in G′

x. Hence,538

M is p-heavy in G′

x.539

Corollary 8. The class of claw-o-heavy and N -p-heavy graphs is c-stable.540

4. Proof of Theorem 6541

Note that every graph is P3-c-heavy and C3-c-heavy, and there indeed exist some542

2-connected claw-o-heavy graphs which are not hamiltonian. The ‘only if’ part543

of the theorem can be deduced by Theorem 2 immediately. Now we prove the ‘if’544

part of the theorem.545

The cases S = P4, P5, P6.546

Note that every P4-c-heavy graph is P5-c-heavy and every P5-c-heavy graph547

is P6-c-heavy. We only need to prove the case S = P6.548

Let G be a claw-o-heavy and P6-c-heavy graph. By Theorem 9 and Corollary549

6, clc(G) is claw-free and P6-free. By Theorem 1, clc(G) is hamiltonian, and by550

Theorem 9, so is G.551

The cases S = Z1, B, N .552

Note that every Z1-c-heavy graph is B-c-heavy and every B-c-heavy graph553

is N -c-heavy. We only need deal with the case S = N .554

Let G be a claw-o-heavy and N -c-heavy graph. Note that every N -c-heavy555

graph is also N -p-heavy. By Theorem 9 and Corollary 8, clc(G) is claw-free and556
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N -p-heavy. If clc(G) is hamiltonian, then so is G. So we assume that clc(G)557

is not hamiltonian. Since clc(G) is 2-connected and claw-free, by Theorem 10,558

clc(G) has an induced subgraph in P. We denote the notation ai, bi i = 1, 2, 3 as559

in Section 2 and let n = |V (G)|.560

Note that clc(G) has no heavy pair. Since clc(G) is N -p-heavy, every induced561

N of clc(G) has two vertices in its triangle with degree sum at least n. Since both562

triangles a1a2a3a1 and b1b2b3b1 are contained in some induced N of clc(G), two563

vertices of {a1, a2, a3} have degree sum at least n and two vertices of {b1, b2, b3}564

have degree sum at least n. We assume without loss of generality that a1 has565

the maximum degree in clc(G) among all the six vertices. Then two pairs of566

{{a1, b1}, {a1, b2}, {a1, b3}} have degree sum at least n. Since a1 is nonadjacent567

to b2, b3, cl
c(G) has a heavy pair, a contradiction.568

The cases S = Z2, W .569

Note that every Z2-c-heavy graph is W -c-heavy. We only need to prove the570

case S = W . If G is W -c-heavy, then it is also W -o-heavy. By Theorem 3, G is571

hamiltonian.572

The case S = Z3.573

Let G be a claw-o-heavy and Z3-c-heavy graph. By Theorem 9 and Theorem574

14, clc(G) is claw-free and Z3-free. By Theorem 1, clc(G) is hamiltonian or575

clc(G) = L1 or L2 (see Figure 1). If clc(G) = L1 or L2, then G has no c-eligible576

vertices (any c-eligible vertex of G is an interior vertex and of degree at least 3577

in clc(G)). Thus G = clc(G) = L1 or L2, contradicting the assumption n ≥ 10.578

5. One remark579

In fact, in this paper we prove the following theorem, which is a common extension580

of the case S = N in Theorems 3, 4 and 6.581

Theorem 17. Let G be a 2-connected graph. If G is claw-o-heavy and N -p-heavy,582

then G is hamiltonian.583
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