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LOWER ORDER TENSORS IN NON-KÄHLER GEOMETRY AND

NON-KÄHLER GEOMETRIC FLOW

SONG DAI

Abstract. In recent years, Streets and Tian introduced a series of curvature flows to study non-
Kähler geometry. In this paper, we study how to construct the second order curvature flows in
a uniform way, under some natural assumptions which hold in Streets and Tian’s works. As a
result, by classifying the lower order tensors, we classify the second order curvature flows in almost
Hermitian , almost Kähler and Hermitian geometries in certain sense. In particular, the Symplectic
Curvature Flow is the unique way to generalize Ricci Flow on almost Kähler manifolds.
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1. Introduction

In 1982, Hamilton [11] introduced the Ricci Flow ∂
∂tg = −2Ric on Riemannian manifolds and

showed that compact 3-manifold with positive Ricci curvature is the spherical space form. After
that, many people studied the Ricci Flow intensively. In 2002, Perelman [16][17][18] did break-
through that by using the Ricci Flow, he proved Thurston’s Geometric Conjecture and as a corol-
lary, Poincaré Conjecture. Since the method of curvature flow is so powerful, people tried to use
the similar idea to study other geometric objects. In 1985, Cao [3] initialized the study of the Ricci
Flow on Kähler manifolds, which is the Kähler Ricci Flow. He showed that if we fix the complex
structure J , the Ricci Flow preserves the Kähler structure.

To generalize the Kähler Ricci Flow to the non-Kähler case, Streets and Tian introduced a series
of the second order curvature flows on this subject, including the Hermitian Curvature Flow [26], the
Symplectic Curvature Flow [27], the Almost Hermitian Curvature Flow [27], the Pluriclosed Flow
[24], the Pluriclosed Flow on generalized Kähler manifolds (or Generalized Kähler Ricci Flow) [28].
Along this direction, other people constructed new flows. Vezzoni [31] generalized the Hermitian
Curvature Flow to almost Hermitian setting. The author [4] unified the Symplectic Curvature Flow
and the Pluriclosed Flow in almost Hermitian setting. For other relevant studies , one may refer
to [1][5][6][7][8][12][13][19][20][21][22][23][25][29]. Besides this series of works, there are other ways
to define the second order curvature flows on non-Kähler geometry. Gill, Tosatti and Weinkove
[10][30] studied the Chern Ricci Flow on Hermitian manifolds. Wang and Lê [14] studied the
Anti-Complexified Ricci Flow on almost Kähler manifolds.
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In this paper, we focus on three kinds of non-Kähler geometries: almost Hermitian geometry,
almost Kähler geometry and Hermitian geometry. We discuss how to construct the second order
curvature flows in certain “canonical” sense. Basically, we show that the geometric flows defined
by Streets and Tian in above three geometries have some “canonical” uniqueness in certain sense.

Let (g, J, ω) be an almost Hermitian structure. Let T = T (g, J, ω) be a tensor defined from
(g, J, ω). Notice that (g,−J,−ω) is also an almost Hermitian structure. We say that T is of
even type, if T (g, J, ω) = T (g,−J,−ω), for example Ric(X,Y ). We say that T is of odd type, if
T (g, J, ω) = −T (g,−J,−ω), for example Ric(JX, Y ). We say that T scales as rk, if T (rkg, J, rkω) =
T (g, J, ω).

Let T be a 2-tensor. Consider the J action on T given by J∗T (X,Y ) = T (JX, JY ). We denote

T (1,1)(X,Y ) :=
1

2
(T (X,Y ) + T (JX, JY )),

T (0,2)+(2,0)(X,Y ) :=
1

2
(T (X,Y )− T (JX, JY )).

Consider the transposition action on T given by tT (X,Y ) = T (Y,X). We denote

T sym(X,Y ) :=
1

2
(T (X,Y ) + T (Y,X)),

T skew(X,Y ) :=
1

2
(T (X,Y )− T (Y,X)).

For tensors A,B, we denote by A ∗ B any linear combination of g-operations on A ⊗ B. By a
g-operation we mean any composite of raising or lowering indices and taking traces.

Let (gt, Jt, ωt) be a family of almost Hermitian structures. For simplicity of writing we drop the
subscript t immediately and define

∂

∂t
g = h,

∂

∂t
J = K,

∂

∂t
ω = η.

Notice that every two of (h,K, η) determines the third one. We may focus on the pair (h,K).

We construct the geometric flows under the following natural assumption.
Assumption (A)
(1) (h,K) is tensorial in (g, J, ω) and is a differential operator with respect to (g, J, ω).
(2) (h,K) is a second order system with respect to (g, J).
(3) h is of even type, and K is of odd type.
(4) h scales as r0 and K scales as r−2.
(5) Modulo gauge transformation, the symbol of the system (h,K) is identity, where the gauge
transformation is generated by a vector field defined from (g, J, ω,D), where D is a fixed linear
connection.

For Assumption (A), (1) is clearly natural. Since we only consider the second order flows, we
require (2). For (3), we hope that the flows should be invariant if we replace (g, J) by (g,−J). We
require (4) since we hope the flows should be invariant under parabolic rescaling, i.e., (gt, Jt) 7→
(r2gr2t, Jr2t). The only essential assumption is (5), which ensures short-time existence by De Turck’s
trick. This is indeed the case for the Ricci Flow. So we regard Assumption (A) as a natural and
basic assumption to generalize the Kähler Ricci Flow to non-Kähler case.

Most non-Kähler geometric flows I mentioned above satisfy Assumption (A), including Streets
and Tian’s series of works, the Hermitian Curvature Flow [26], the Symplectic Curvature Flow [27],
the Almost Hermitian Curvature Flow [27], the Pluriclosed Flow [24], and the flow introduced by
Vezzoni [31], the flow introduced by the author [4], the Chern Ricci Flow studied by Gill, Tosatti
and Weinkove [10][30]. In the Hermitian setting, the flows above satisfy condition (5’) introduced
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below instead of (5). But we may take a gauge transformation using the Lee form to obtain con-
dition (5), see Remark 5.7.

Under Assumption (A), we classify the second order curvature flows in the following non-Kähler
geometries.

In almost Hermitian geometry, we have the following result.

Theorem 1.1. In almost Hermitian geometry, under Assumption (A), the geometric flows are of
the following form.

∂

∂t
g = −2Ric+ aLθ♯g +Q1

∂

∂t
J = △J +N +R+ aLθ♯J +Q2,

where a ∈ R, Q1, Q2 are of the form DJ ∗DJ and satisfy the algebraic, necessary conditions

Q1 is symmetric,

Q2 is (0, 2) + (2, 0),

Q
(0,2)+(2,0)
1 = Q

sym

2 J.

(−2Ric,△J +N +R) is the second order term which guarantees the system will have a “good”
symbol, where Ric is the Ricci curvature with respect to the Levi-Civita connection D, △ is the
rough Laplacian with respect to the Levi-Civita connection D,

g(N (X), Y ) = gabg(DaJ(JX),DbJ(Y )),

g(R(X), Y ) = Ric(JX, Y ) +Ric(X,JY ),

θ(X) = gijDJ(ei, Jej ,X).

The gauge term is then (aLθ♯g, aLθ♯J).
We notice that the Almost Hermitian Curvature Flow in [27] is in the family above.

In almost Kähler geometry, we need to require dη = 0. One natural option is η = P , where P is
the Chern form up to a factor. It is known that in almost Kähler setting the Chern connection is
the unique Hermitian connection (see also the Appendix). Then we have the following result.

Theorem 1.2. The only geometric flow in almost Kähler geometry satisfying Assumption (A) and
∂
∂tω = P is the Symplectic Curvature Flow defined in [27].

∂

∂t
ω = P

∂

∂t
g = △J +N +R.

Notice that in [27], Streets and Tian mentioned that one may modify the Symplectic Curvature
Flow by adding some first order terms. However, here we rule out this possibility. This theorem
tells us that the Symplectic Curvature Flow is the unique way to generalize the Ricci Flow on
almost Kähler manifolds.

In Hermitian geometry, we should require the integrability of J is preserved. We would like to
fix the complex structure J . In this case, the system is not gauge invariant, so we assume that:
(5’) the symbol of h is the identity with respect to g (not modulo gauge transformation).

Notice that we may add the gauge term Lθ♯J to obtain condition (5) from (5’), see remark 5.7.
3



Theorem 1.3. In Hermitian geometry, if we assume ∂
∂tJ = 0, under (1)(2)(3)(4) in Assumption

(A) and (5’) above, the geometric flows are of the following form

∂

∂t
ω = S +Q

∂

∂t
J = 0,

where Q = a1B
1J + a2B

2J + a3(B
5)(1,1)J + a4(B

6)symJ .

Here S(X,Y ) = gijg(Ω(ei, Jej ,X), Y ), Ω is the curvature with respect to the Chern connection.
And the definition of Bi is given in section 4.

To establish the above results, first we derive the algebraic necessary conditions and the analytic
sufficient conditions for deforming almost Hermitian structures. Then to find the suitable tensors
satisfying these conditions, we classify the lower order tensors in the corresponding geometry,
more precisely, the first order tensors, the second order tensors and the gauge terms. Finally, by
calculating the symbols, we find out the desired tensors.

We organize the paper as follows. In Section 2, we recall some preliminaries in almost Hermitian
geometry and fix some notations. In Section 3, we derive the algebraic necessary conditions and the
analytic sufficient conditions for deforming almost Hermitian structures, which provide the main
restrictions in constructing the curvature flows. In Section 4, we classify the lower order tensors
in almost Hermitian geometry, almost Kähler geometry and Hermitian geometry. In Section 5, we
calculate the symbols of the second order tensors and then classify the second order curvature flows
in almost Hermitian , almost Kähler and Hermitian geometries. In the Appendix, we recall two
basic facts about Hermitian connections.

Acknowledgements: The author wishes to express his gratitude to his advisor Gang Tian,
for suggesting the author to study the problems in the non-Kähler geometric flow, especially the
Symplectic Curvature Flow, and encouraging the author all the time and many helpful discussions.
The author would also like to thank Jeffrey Streets for his helpful comments and suggestions.

2. Preliminaries

Let M be a manifold, J be a section of End(TM). We say that J is an almost complex structure,
if J2 = −1. We say that an almost complex structure J is integrable, if J is induced by holomorphic
coordinates. By the theorem of Newlander-Nirenberg [15], J is integrable if and only if NJ = 0,
where

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X,JY ]

is the Nijenhuis tensor.
We say that (g, J, ω) is an almost Hermitian structure if the following conditions hold.

(1) g is a Riemannian metric.
(2) J is an almost complex structure.
(3) (g, J) is compatible, i.e., g(JX, JY ) = g(X,Y ).
(4) We define ω(X,Y ) = g(JX, Y ).

Moreover (g, J, ω) is Hermitian if J is integrable, and (g, J, ω) is almost Kähler if dω = 0.
Furthermore (g, J, ω) is Kähler if J is integrable and dω = 0.

We fix some notations first.
Notations:
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Let (g, J, ω) be an almost Hermitian structure.
(1) Let D denote the Levi-Civita connection and D is extended to tensor fields. For instance,

DJ(X,Y ) = (DXJ)Y = DX(JY )− J(DXY ).

(2) We implicitly identify TM and T ∗M by using g, i.e., for instance,

DJ(X,Y,Z) = g(DJ(X,Y ), Z).

Notice that in this notation, ω = J .
(3) Usually, we use i instead of ei =

∂
∂xi for short. We use orthonormal basis at one point, and often

we assume it is normal. The same index means to take (real) trace with respect to g. For com-
plex trace, we mean that ωijTij, and it equals to T (i, Ji), where i goes over all the orthonormal basis.

Remark 2.1. Since g is parallel with respect to our connection, the notation (2) is safe if we
do tensor calculation in a fixed geometric structure. But we should take care if we calculate the
evolution equations.

Remark 2.2. We say that T is (1, 1) ((0, 2) + (2, 0)), if T (0,2)+(2,0) = 0 (T (1,1) = 0). Then by our
identification, in almost Hermitian setting,

T is (1, 1) ⇐⇒ TJ = JT,

T is (0, 2) + (2, 0) ⇐⇒ TJ = −JT.

Proof. We only prove the second identity. By definition,

〈(TJ + JT )X,Y 〉 = T (JX, Y )− T (X,JY ) = 2T (1,1)(JX, Y ).

�

For contraction, we have the following lemma.

Lemma 2.3. In the following cases, the tensors will vanish.
(a) Taking trace of a skew 2-tensor.
(b) Taking complex trace of a symmetric 2-tensor.
(c) Either taking trace or complex trace of a (0, 2) + (2, 0) 2-tensor.

Proof. We only prove (c). Since {ei} is a orthonormal basis and J is isometry, {Jei} is also a
orthogonal basis. So to take trace, we may replace i by Ji. By definition, we have

T (i, i) = T (Ji, Ji) = T (JJi, i) = −T (i, i),

T (i, Ji) = T (Ji, i) = T (JJi, Ji) = −T (i, Ji).

�

We come back to preliminaries. Let (g, J, ω) be an almost Hermitian structure. Let ∇ be the
corresponding Chern connection, i.e.

∇g = 0, ∇J = 0, Tor∇ is (0, 2) + (2, 0) for the first two variables,

where Tor∇(X,Y ) = ∇XY −∇YX − [X,Y ] is the torsion of ∇. From [9] or Appendix, we see

g(∇XY,Z) = g(DXY,Z) +
1

2
DJ(X,JY,Z)

+
1

4
(DJ(JY,Z,X) +DJ(JZ,X, Y )−DJ(Y,Z, JX) −DJ(Z,X, JY )).

And in almost Kähler setting,

g(∇XY,Z) = g(DXY,Z) +
1

2
DJ(X,JY,Z).
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Let Ω denote the curvature of ∇, i.e.

Ω(X,Y,Z,W ) = g(∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W ).

And we also define the Riemannian curvature Rm in the same manner. Define

P (X,Y ) = Ω(X,Y, i, Ji), S(X,Y ) = Ω(i, Ji,X, Y ), Ric(X,Y ) = Rm(i,X, Y, i).

Notice that − 1
4πP is Chern form, i.e., [− 1

4πP ] = c1, where c1 is the first Chern class of T 1,0M .
And S is a (1, 1) form.

Remark 2.4. Here P differs a minus from P in [27] since the definition of curvature differs a
minus.

Denote ρ′(X,Y ) = Rm(JX, Y, i, Ji), s′ = Rm(i, Ji, j, Jj). Let θ denote the Lee form, i.e.,
θ = DJ(i, Ji, ·).

Now we recall some basic identities in Riemannian geometry.
(1) Symmetries of Rm.
(2) 1st and 2nd Bianchi identity:

1st : Rm(X,Y,Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ) = 0.

2nd : DRm(X,Y,Z,W, V ) +DRm(Y,Z,X,W, V ) +DRm(Z,X, Y,W, V ) = 0.

(3) Ricci identity: For example, let T be a 2-tensor, then

D2T (X,Y,Z,W ) −D2T (Y,X,Z,W ) = (Rm(X,Y )T )(Z,W )

= −T (Rm(X,Y,Z),W )− T (Z,Rm(X,Y,W )).

Then we consider some basic identities in almost Hermitian geometry. For the following material,
one may refer to [9].

Let (g, J, ω) be an almost Hermitian structure.

Lemma 2.5. DJ is skew and (0, 2) + (2, 0) with respect to the last two components.

DJ(X,Y,Z) = −DJ(X,Z, Y )

DJ(X,JY, JZ) = −DJ(X,Y,Z)

Proof. By our notation, DJ = Dω, so the first identity holds. For the second one, fix a point p,
suppose X,Y,Z are in a normal frame at p, then

0 = DXg(Y,Z) = DX(g(JY, JZ)) = g(DXJ(Y ), JZ) + g(JY,DXJ(Z))

= DJ(X,Y, JZ) +DJ(X,Z, JY ) = DJ(X,Y, JZ)−DJ(X,JY,Z).

Then we finish the proof. �

Lemma 2.6. (Hermitian condition) Let (g, J, ω) be an almost Hermitian structure. Then

NJ = 0 ⇐⇒ DJ(JX, Y, Z)−DJ(JY,X,Z) +DJ(X,JY,Z) −DJ(Y, JX,Z) = 0

⇐⇒ DJ(JX, JY,Z) = DJ(X,Y,Z)

Proof. The first identity is from the definition of NJ and DXY −DY X = [X,Y ]. For the second
identity, adding the following identities together,

DJ(JX, Y, Z) −DJ(JY,X,Z) +DJ(X,JY,Z) −DJ(Y, JX,Z) = 0

DJ(JZ,X, Y )−DJ(JX,Z, Y ) +DJ(Z, JX, Y )−DJ(X,JZ, Y ) = 0

−DJ(JY,Z,X) +DJ(JZ, Y,X) −DJ(Y, JZ,X) +DJ(Z, JY,X) = 0,

we obtain one direction and the other direction is obvious. �
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Lemma 2.7. (almost Kähler condition) Let (g, J, ω) be an almost Hermitian structure. Then

dω = 0 ⇐⇒ DJ(X,Y,Z) +DJ(Y,Z,X) +DJ(Z,X, Y ) = 0

=⇒ DJ(JX, JY,Z) = −DJ(X,Y,Z)

Proof. The first identity is directly obtained from definition since DXY − DY X = [X,Y ] and
DJ = Dω. For the second identity, adding the following identities together,

DJ(JX, JY, JZ) +DJ(JY, JZ, JX) +DJ(JZ, JX, JY ) = 0

−DJ(JX, Y, Z) −DJ(Y,Z, JX) −DJ(Z, JX, Y ) = 0

DJ(X,JY,Z) +DJ(JY,Z,X) +DJ(Z,X, JY ) = 0

DJ(X,Y, JZ) +DJ(Y, JZ,X) +DJ(JZ,X, Y ) = 0

and by Lemma 2.5, we obtain the desired result. �

In almost Hermitian setting, modulo first order terms, △J is (0, 2) + (2, 0).

Lemma 2.8. Let (g, J, ω) be an almost Hermitian structure. Then

(△J)(1,1) = −N , where N (X,Y ) = DJ(i, j, JX)DJ(i, j, Y ).

So △J +N is (0, 2) + (2, 0).

Proof.

△J(JX, JY ) = Di(DJ(i, JX, JY ))−DJ(i, j, JY )DJ(i, j,X) −DJ(i, JX, j)DJ(i, j, Y )

= −Di(DJ(i,X, Y )) + 2DJ(i, j, JX)DJ(i, j, Y )

= −△(X,Y ) + 2N (X,Y ).

So we finish the proof. �

3. Deformation Conditions in Almost Hermitian Setting

First, we derive some algebraic conditions for the deformation of almost Hermitian structures,
which is necessary.

Lemma 3.1. Let (g, J) be a family of almost Hermitian structures, ∂
∂tg = h, ∂

∂tJ = K. Then
(h,K) satisfies the following algebraic conditions.

(a) h is symmetric,

(b) K is (0, 2) + (2, 0),

(c) KsymJ = h(0,2)+(2,0).

Proof. Condition (a) is obvious. For (b),

0 =
∂

∂t
J2 = KJ + JK.

For (c),

0 =
∂

∂t
(g(JX, JY )− g(X,Y ))

= h(JX, JY )− h(X,Y ) + g(KX,JY ) + g(JX,KY )

= −2h(0,2)+(2,0)(X,Y ) +K(JX, Y ) +K(Y, JX)

= −2h(0,2)+(2,0)(X,Y ) + 2(KsymJ)(X,Y ).

�

7



Remark 3.2. Similarly, we have

η(0,2)+(2,0) = Kskew,

η(1,1) = h(1,1)J.

Lemma 3.3. Let (g, J) be an almost Hermitian structure. Then (LXg, LXJ) satisfies the necessary
condition of a deformation of (g, J).

Proof. Let φt be the 1-parameter transformation groups generated by X, gt = φ∗
t g, Jt = φ∗

tJ ,
then

∂

∂t

∣
∣
∣
t=0

gt = LXg,
∂

∂t

∣
∣
∣
t=0

Jt = LXJ.

Then the result follows from Lemma 3.1. �

Next, we consider the analytic condition to deform almost Hermitian structures. We only consider
the second order flows. And to ensure the short-time existence (on compact manifolds), we assume
(h,K) satisfies the following conditions,
(1) (h,K) is of second order with respect to (g, J),
(2) Modulo gauge transformation, the symbol of the linearization of (h,K) is |ξ|2Id, i.e., there
exists a vector field X, s.t,

h+ LXg = gij∂i∂jg +O(∂g, ∂J),

K + LXJ = gij∂i∂jJ +O(∂g, ∂J).

Remark 3.4. In the Ricci flow, X = gab(Γk
ab−Γ

k
ab)

∂
∂xk , where Γ is the Christoffel symbol of a fixed

background linear connection.

Remark 3.5. If (h,K) satisfies both the algebraic condition and the analytic condition, then we
may apply the same method in [27] (see also [4]) to show that there exist a family of almost Hermitian
structures on a compact manifold for a short while, with given initial data.

Remark 3.6. There are other second order “canonical” curvature flows being constructed, but not
satisfying our analytic condition, see [14].

Remark 3.7. Naturally, we also require that our flow should coincide with the Kähler Ricci flow
if the initial data is Kähler. But in fact, in Kähler setting, the Kähler Ricci flow is the unique flow
satisfies the conditions above. So this requirement is vacant.

From the above discussion, we see to classify the second order curvature flows, we just need to
do the following two steps.
Step 1: Classify the tensors up to order 2, as well as gauge terms. More precisely, we need to
classify the tensors of the following type,

first order terms: ∂J ∗ ∂J, second order terms: ∂2J, ∂2g, gauge terms: X.

Step 2: Calculate the symbols of the second order terms and the gauge terms, and then find the
suitable tensors to satisfy the analytic condition.

Remark 3.8. We only consider the quadratic terms of ∂J , for the consideration of scaling property.

4. Classification of Lower Order Tensors

We only consider the natural tensors, i.e., defined from (g, J, ω). For the classification, we mean
that we give a list of tensors which satisfy some conditions, and all the tensors satisfying this
condition are the linear combination of the tensors in the list. For a 2-tensor T , “modulo the
transposition action” means that we regard T and tT as the same tensor. And “modulo the J

action” means that we regard T and J ∗ T as the same tensor.
8



We only consider Levi-Civita connection since the difference between two connections also gives
a tensor.

First, we consider the first order tensors. We require h is of even type and K is of odd type. So
we only consider tensors of even or odd type. For instance, we don’t consider tensors like g + ω.
So the zero order tensors are only g and ω. And to take contraction, we can only use g and ω.

We notice that in almost Hermitian setting, last two variables of DJ is (0, 2) + (2, 0). So it will
vanish if we either take trace or complex trace in last two positions.

Lemma 4.1. Consider 2-tensors of even type of form DJ ∗DJ . We take twice trace or complex
trace of DJ(·, ·, ·)DJ(·, ·, ·), then there are two positions remaining for the variables. Modulo the
transposition and J action, the tensors described above can be classified as follows,

B1(X,Y ) = DJ(X, i, j)DJ(Y, i, j),

B2(X,Y ) = DJ(i,X, j)DJ(i, Y, j),

B3(X,Y ) = DJ(i,X, j)DJ(j, Y, i),

B4(X,Y ) = DJ(X, i, j)DJ(i, Y, j),

B5(X,Y ) = DJ(i,X, i)DJ(j, Y, j),

B6(X,Y ) = DJ(X,Y, i)DJ(j, i, j),

B7(X,Y ) = DJ(i,X, Y )DJ(j, i, j),

B8(X,Y ) = DJ(JX, i, j)DJ(Y, Ji, j),

B9(X,Y ) = DJ(i, JX, j)DJ(Ji, Y, j),

B10(X,Y ) = DJ(i, JX, Y )DJ(j, Ji, j).

Furthermore B1, B3, B5 are symmetric, B2, B9 are symmetric and (1, 1), B7, B10 are skew and
(0, 2) + (2, 0), and tB8 = J∗B8.

Proof. We identify (X,Y ), (Y,X), (JY, JX) and (JY, JX). And we frequently use Lemma 2.5
implicitly. First, we consider the case that the variables are X, Y , then we need to take twice trace
or twice complex trace in remaining four positions. Suppose X is in the first position, i.e.

DJ(X, ·, ·)DJ(·, ·, ·).

There are three ways to pose Y ,

DJ(X, ·, ·)DJ(Y, ·, ·), DJ(X, ·, ·)DJ(·, Y, ·), DJ(X,Y, ·)DJ(·, ·, ·).

We obtain B1, B4, B6 respectively. If X (and Y ) is not in the first position, we may assume X

is in the second position. There are two positions for Y ,

DJ(·,X, ·)DJ(·, Y, ·), DJ(·,X, Y )DJ(·, ·, ·).

If we take twice trace of DJ(·,X, ·)DJ(·, Y, ·), it gives B2, B3 and B5. And if we take twice
complex trace of DJ(·,X, ·)DJ(·, Y, ·), it gives B9. We obtain B7 from DJ(·,X, Y )DJ(·, ·, ·). Next,
we consider the case that the variables are JX and Y . Then we need to take once trace and once
complex trace in the remaining four positions. If JX is in the first position, we only need to
consider

DJ(JX, ·, ·)DJ(Y, ·, ·),

since other cases are reduced to the above situation. Then we obtain B8. If JX is in the second
position, we only need to consider

DJ(·, JX, Y )DJ(·, ·, ·),
9



for the same reason. Then we obtain B10. From the definition, we can easily obtain the identities
of the transposition and J action of B1 to B10. �

Lemma 4.2. The functions of form DJ ∗DJ can be classified as follows,

E1 = DJ(i, j, k)DJ(i, j, k) = |DJ |2,

E2 = DJ(i, j, k)DJ(j, i, k),

E3 = DJ(i, i, j)DJ(k, k, j) = |θ|2,

E4 = DJ(i, j, k)DJ(Ji, Jj, k).

Proof. We just take trace or complex trace of B1 to B10 to obtain the desired functions. Notice
that for a symmetric 2-tensor, it will vanish if we take complex trace. And for B7 and B10, they
vanish either we take trace or complex trace. For B4,

DJ(k, i, j)DJ(i, Jk, j) = DJ(k, i, j)DJ(i, k, Jj) = −DJ(i, k, Jj)DJ(k, i, j).

So the complex trace of B4 vanishes. The similar reason hold for B6, B8, B9. Then we obtain
E1 (from B1, B2), E2 (from B3, B4), E4 (from B5, B6), E3 (from B8, B9). �

To summarize

Lemma 4.3. Modulo the transposition and J action, the 2-tensors of form DJ∗DJ can be classified
as follows,

Even type : Bi, 1 ≤ i ≤ 10, Eig, 1 ≤ i ≤ 4,

Odd type : BiJ, 1 ≤ i ≤ 10, Eiω, 1 ≤ i ≤ 4.

Functions of form DJ ∗DJ can be classified as Ei, 1 ≤ i ≤ 4.

Now we consider the second order tensors. To begin with, we consider the tensors in terms of
∂2g, but without ∂2J . They are tensors in terms of the Riemannian curvature, more precisely, they
are of the form Rm ∗ J ∗ · · · ∗ J

︸ ︷︷ ︸

mth

, for any m ≥ 0.

Lemma 4.4. Modulo the transposition and J action, the 2-tensors in terms of the Riemannian
curvature can be classified as follows,

Even type: Ric(X,Y ), ρ′(JX, Y ), Rg, s′g.

Odd type: Ric(JX, Y ), ρ′(X,Y ), Rω, s′ω.

The functions in terms of the Riemmanian curvature are given by R and s′.

Proof. We only consider the case that the tensor is of even type, and Rm is not totally contracted.
From the symmetries of the Riemmanian curvature, we see there are three possibilities, modulo the
transposition and J action,

Ric(X,Y ) = Rm(X, i, i, Y ), Rm(JX, i, Ji, Y ), ρ′(X,Y ) = Rm(JX, Y, i, Ji).

But from Bianchi identity,

Rm(JX, i, Ji, Y ) = −Rm(JX, Ji, Y, i) −Rm(JX, Y, i, Ji)

= −Rm(JX, i, Ji, Y )−Rm(JX, Y, i, Ji).

So

Rm(JX, i, Ji, Y ) = −
1

2
ρ′(X,Y ).

Then we can obtain the result. �
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Now we consider the tensors in terms of ∂2J , more precisely, they are of the formD2J∗J ∗ · · · ∗ J
︸ ︷︷ ︸

mth

,

for any m ≥ 0.. Notice that if we take trace or complex trace in two positions of D2J , it will reduce
to the first order terms. For instance,

D2J(X,Y, i, Ji) = DX(DJ(Y, i, Ji)) −DJ(Y, i,DX (Ji)) = −DJ(Y, i, j)DJ(X, i, j).

Lemma 4.5. Modulo the transposition action and J action, modulo the lower order terms and
Riemannian curvature terms, the 2-tensors in terms of ∂2J can be classified as follows

Odd type: △J(X,Y ), D2J(X, i, Y, i),

Even type: △J(JX, Y ), D2J(JX, i, Y, i).

There is no functions in terms of ∂2J .

Proof. Notice that modulo the Riemannian curvature, the first two components of D2J(·, ·, ·, ·)
is symmetric. And modulo the lower order terms in DJ , the last two components of D2J(·, ·, ·, ·) is
skew and (0, 2) + (2, 0). So suppose the tensors are of odd type, and D2J is not totally contracted,
then the tensors are classified as

△J(X,Y ), D2J(X, i, Y, i).

Now we consider the contraction of above tensors. From Lemma 2.8, we see modulo lower order
tensors, △J is (0, 2)+ (2, 0). And notice that △J = △ω is skew. So either taking trace or complex
trace of △J will vanish. For D2J(j, i, j, i) and D2J(j, i, Jj, i), notice that, modulo the Riemannian
curvature and modulo the lower order terms, the i, j in the first two positions commutes and i, j

in the last two positions anti-commutes. So they also vanish. Hence there is no functions in terms
of ∂2J . �

We finish the classification of the lower order tensors in almost Hermitian setting. Now we
consider two special cases. We only state the results which can be reduced from the results in the
setting of almost Hermitian . First, we consider almost Kähler setting.

We notice that in almost Kähler setting, every two variables of DJ is (0, 2) + (2, 0). So it will
vanish if we either take trace or complex trace in any two positions. And if we take trace or complex
trace in any two of the last three positions of D2J , it will reduce to the first order terms.

Lemma 4.6. In almost Kähler setting, the 2-tensors of form DJ ∗DJ can be classified as

B1, B2, |DJ |2g, B1J, B2J, |DJ |2ω.

Furthermore, both B1 and B2 are symmetric and (1, 1).
The functions of form DJ ∗DJ can be classified as |DJ |2.

Proof. We just need to show the list in Lemma 4.1 can be reduced to B1, B2. From Lemma 2.7,
we see B5, B6, B7, B10 vanish, and B8, B9 are reduced to B1, B2. So we only need express B3, B4

in terms of B1, B2. In fact,

DJ(X, i, j)DJ(i, Y, j) = −DJ(X, i, j)(DJ(Y, j, i) +DJ(j, i, Y ))

= DJ(X, i, j)DJ(Y, i, j) −DJ(X, j, i)DJ(j, Y, i).

So B4 = 1
2B

1. And

DJ(i,X, j)DJ(j, Y, ) = −DJ(i,X, j)(DJ(Y, i, j) +DJ(i, j, Y ))

= −DJ(Y, i, j)DJ(i,X, j) +DJ(i,X, j)DJ(i, Y, j).

So B3 = −1
2B

1 + B2. And it is to see, in the almost Kähler setting, both B1 and B2 are
symmetric and (1, 1). So we finish the proof. �
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Lemma 4.7. In almost Kähler setting, 2-tensors in terms of ∂2J can be classifies as follows

△J(X,Y ), △J(JX, Y ).

Proof. Notice that D2J(X, i, Y, i) is reduced to the first order terms. (In fact, it vanishes.) �

Lemma 4.8. In almost Kähler setting, the second order functions are classified as R, |DJ |2.

The following lemma gives the proof.

Lemma 4.9. In almost Kähler setting, We have the following identity.

s′ + 2R+ |DJ |2 = 0.

Proof. First we have

Rm(i, j, Jk, l) +Rm(i, j, k, Jl) = D2J(i, j, k, l) −D2J(j, i, k, l).

To see this, suppose i, j, k, l are in a local normal coordinate chart. Then

DiDj(Jk) = Di(DJ(j, k) + JDjk) = D2J(i, j, k) + JDiDjk

So

Rm(i, j, Jk, l) = 〈DiDj(Jk)−DjDi(Jk), l〉

= D2J(i, j, k, l) −D2J(j, i, k, l) − 〈DiDjk, Jl〉+ 〈DjDik, Jl〉

= D2J(i, j, k, l) −D2J(j, i, k, l) −Rm(i, j, k, Jl)

So we obtain the identity. (One may also show it directly from Ricci identity.)
Now let k = j, l = Ji, we see

Rm(i, j, Jj, Ji) −R = D2J(i, j, j, Ji) −D2J(j, i, j, Ji).

From dω = 0,

−D2J(j, i, j, Ji) = −Dj(DJ(i, j, Ji)) +DJ(i, j, k)DJ(j, i, k)

= Dj(DJ(j, Ji, i) +DJ(Ji, i, j)) + trB3

= Dj(−DJ(j, i, Ji) −DJ(i, i, Jj)) +
1

2
|DJ |2

= −D2J(j, j, i, Ji) − |DJ |2 −D2J(j, i, i, Jj) − |θ|2 +
1

2
|DJ |2.

Since DJ(i, i,X) = 0, we have

Rm(i, j, Jj, Ji) −R = −△J(i, Ji)−
1

2
|DJ |2.

From Lemma 2.8, we see

△J(i, Ji) = −|DJ |2.

And from the identity in (4.4), we see

Rm(i, j, Jj, Ji) = −
1

2
s′

So we finish the proof. �

In the case of dimension 4, we can reduce the tensors further in almost Kähler setting. The
author learned the well-known result below from R. Bryant in mathoverflow[2].
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Lemma 4.10. Let (M,g, J, ω) be an almost Kähler manifold with dimR M = 4. Let p ∈ M . Then
in any local coordinate chart of p, there exists a local unitary frame, i.e.,

g =







1
1

1
1







, J =







1
−1

1
−1







,

such that at p,

B1 =







4a2

4a2

0
0







, B2 =







2a2

2a2

2a2

2a2







,

where a2 = 1
8 |DJ |2. In particular, B2 = 1

4 |DJ |2g.

Proof. We can choose a local coframe {ηi}, i = 1, 2, 3, 4, s.t.

g = η21 + η22 + η23 + η24 , ω = η1 ∧ η2 + η3 ∧ η4.

Notice that ω is self-dual. Let

κ = η1 ∧ η3 + η4 ∧ η2, λ = η1 ∧ η4 + η2 ∧ η3.

Then (ω, κ, λ) forms a pointwise basis for the self-dual 2-forms. First we claim DXω is self-dual.
In fact, in general, we have

DX(∗α) = ∗DXα.

This is from

DX(∗α) ∧ β = DX(∗α ∧ β)− ∗α ∧DXβ = DX(〈α, β〉dV )− 〈α,DXβ〉dV

= 〈DXα, β〉dV = ∗DXα ∧ β.

So set

Dω = α⊗ κ+ β ⊗ λ+ γ ⊗ ω,

where α, β, γ are 1-forms. But notice that

DXω ∧ ω = DX(dV ) = 0,

so γ = 0. Hence we have

0 = dω = α ∧ κ+ β ∧ λ.

Let

α = a1η1 + a2η2 + a3η3 + a4η4.

Then

β = a2η1 − a1η2 + a4η3 − a3η4.

If α(p) = 0, then there is nothing to prove. If α(p) 6= 0, then we may choose

a1(p) = a > 0, a2(p) = a3(p) = a4(p) = 0.

Hence at p,

DJ = aη1 ⊗ (η1 ∧ η3 + η4 ∧ η2)− aη2 ⊗ (η1 ∧ η4 + η2 ∧ η3).

So at p,

D1J = aκ, D2J = −aλ, D3J = D4J = 0.
13



Therefore at p,

B1 =







4a2

4a2

0
0







, B2 =







2a2

2a2

2a2

2a2







.

Taking trace, we see a2 = 1
8 |DJ |2. �

Remark 4.11. If DJ 6= 0 at p, we can choose a local unitary frame such that the above result
holds in a neighborhood of p, not only at p.

Remark 4.12. From the proposition above, we see 1
2B

1 − B2 ≤ 0. So the Symplectic Curvature
Flow is “slower” than Ricci Flow in g.

Now we consider Hermitian setting.

Lemma 4.13. In Hermitian setting, the 2-tensors of form DJ ∗DJ can be classified as

Bi, 1 ≤ i ≤ 3, 5 ≤ i ≤ 7, Eig, 1 ≤ i ≤ 3, BiJ, 1 ≤ i ≤ 3, 5 ≤ i ≤ 7, Eiω, 1 ≤ i ≤ 3.

Furthermore B1, B2 are symmetric and (1, 1), B3 is symmetric and (0, 2)+(2, 0), B5 is symmetric,
B6 is (1, 1) and B7 is skew and (0, 2) + (2, 0).
The functions of type DJ ∗DJ can be classified as Ei, 1 ≤ i ≤ 3.

Proof. By taking advantage of Lemma 2.6, the tensors in the list of Lemma 4.1 are reduced to
the result above. �

Next, we consider the gauge terms. More precisely, we consider the vector fields defined from
(g, J, ω,D), where D is a fixed background linear connection. Naturally, we require the vector field
is of first order and of even type. First, we have “canonical” gauge.

Lemma 4.14. Let X be a first order vector field defined from (g, J, ω), then X can be classified as

θ♯ = DJ(i, Ji), Jθ♯.

Proof. We just need take once trace or once complex trace of DJ . It will vanish if we contract
the last two components, so we have the result above. �

Now, we consider the vector field in terms of D, i.e., Dg and DJ . Notice that

DJ −DJ = (D −D) ∗ J.

So we only need to classify the vector field in terms of Dg. Notice that the last two components
of Dg is symmetric, so we have the following result.

Lemma 4.15. The gauge terms in (∂g, J) can be classified as

X1
♭
= gijDg(i, j, ·), X2

♭
= gijDg(·, i, j), X0

♭
= gijJk

j Dg(i, k, J ·).

Remark 4.16. In Ricci Flow, the gauge term is X = X1 −
1
2X2.

We can calculate Lθ♯J as follows.

Lemma 4.17. Let (g, J) be an almost Hermitian structure, then

LZJ(X,Y ) = DJ(Z,X, Y )−DZ(JX, Y )−DZ(X,JY ).

Lθ♯J(X,Y ) = −D2J(JX, i, Ji, Y )−D2J(X, i, Ji, JY )

−DJ(JX, i, j)DJ(i, j, Y )−DJ(X, i, j)DJ(i, j, JY ) +DJ(j,X, Y )DJ(i, Ji, j).

14



Proof. For the first one,

LZJ(X) = [Z, JX] − J [Z,X] = DZ(JX) −DJXZ − JDZX + JDXZ

= DJ(Z,X) −DZ(JX) + JDZ(X).

So we obtain the first identity. For the second one,

Dθ♯(X,Y ) = g(DX(DJ(i, Ji)), Y ) = D2J(X, i, Ji, Y ) +DJ(i, j, Y )DJ(X, i, j),

then we finish the proof. �

5. Classification of Second Order Curvature Flows

To classify the second order curvature flows, we just need to find the suitable tensor satisfying
the conditions in Section 3. We have discussed the algebraic condition in Section 4. Now we
consider the analytic condition which means we need to calculate the symbols of the second order
tensors. The result of symbol calculations in non-Kähler geometry is well-known in literature. For
the convenience of readers, we still do calculations here.
Proof of Theorem 1.1: First, we consider the evolution of J , δJ = K. From our classification result
Lemma 4.4 and Lemma 4.5, and considering the parity of the type of J , we see the candidates of
the second order terms are

△J(X,Y ), D2J(X, i, Y, i), D2J(JX, i, JY, i), D2J(Y, i,X, i), D2J(JY, i, JX, i),

Ric(JX, Y ), Ric(X,JY ), ρ′(JX, Y ), ρ′(X,JY ), RJ, s′J.

Here △J and ρ′(J ·, ·) are skew and R is symmetric, so we don’t need to consider their transpo-
sition. Considering algebraic condition, the tensors of evolution terms should be (0, 2) + (2, 0) and
from Lemma 4.17 we see D2J(X, i, Y, i)+D2J(JX, i, JY, i) is just Lθ♯J modulo lower order terms.
So our candidates of the second order terms are in fact

△J, t(Lθ♯J), R, (ρ′(J ·, ·))(0,2)+(2,0) .

Now we calculate their symbols.

Lemma 5.1. In local coordinate chart,

Rmijkl =
1

2
(∂i∂kglj − ∂i∂lgjk − ∂j∂kgli + ∂j∂lgik) +O(∂g).

(D2J)lijk = ∂i∂jJ
l
k +

1

2
J
p
kg

lq(∂i∂jgqp + ∂i∂pgqj − ∂i∂qgjp)

−
1

2
J l
pg

pq(∂i∂jgqk + ∂i∂kgqj − ∂i∂qgjk) +O(∂g, ∂J).

Proof. In any local coordinate chart,

Rmijkl = ∂iΓjkl − ∂jΓikl +O(∂g)

=
1

2
(∂i∂jglk + ∂i∂kglj − ∂i∂lgjk)−

1

2
(∂j∂iglk + ∂j∂kgli − ∂j∂lgik) +O(∂g)

=
1

2
(∂i∂kglj − ∂i∂lgjk − ∂j∂kgli + ∂j∂lgik) +O(∂g).

(D2J)lijk = (Di(DjJ(k)))
l +O(∂g, ∂J)

= ∂i∂jJ
l
k + J

p
k∂iΓ

l
jp − J l

p∂iΓ
p
jk +O(∂g, ∂J)

= ∂i∂jJ
l
k +

1

2
J
p
kg

lq(∂i∂jgqp + ∂i∂pgqj − ∂i∂qgjp)

−
1

2
J l
pg

pq(∂i∂jgqk + ∂i∂kgqj − ∂i∂qgjk) +O(∂g, ∂J).
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To calculate the symbols of our candidates, we notice that symbol is also tensorial, so we just
need to calculate the symbols of Rm and D2J , and then use the corresponding manner to take
trace to get the desired symbols. To calculate the symbols of the linearization operators of Rm and
D2J , what we need to do is to replace the second derivative terms by their deformation terms, and
replace “∂i” by ξi, where ξ is a 1-form. Finally, we simplified the tensors we obtained. We denote
σ to be the symbol of the linearization operator of a tensor. Then for instance

σ : gij∂i∂jgab 7→ gijξiξjhab = |ξ|2hab.

Since symbol is also tensorial, we also use the Riemannian metric to identify TM and T ∗M . We

may use orthonormal frame to reduce the calculation, and notice that J j
i = −J i

j . Then we obtain
the following results.

Lemma 5.2.

σ(Rm)ijkl =
1

2
(ξiξkhlj − ξiξlhjk − ξjξkhli + ξjξlhik),

σ(D2J)ijkl = ξiξjKkl +
1

2
(ξiξjJ

p
khlp + ξiξpJ

p
khlj − ξiξlJ

p
khjp

+ξiξjJ
p
l hpk + ξiξkJ

p
l hpj − ξiξpJ

p
l hjk).

Lemma 5.3.

σ(△J)ab = |ξ|2K(a, b) +
1

2
(|ξ|2h(Ja, b) + h(ξ, b)ξ(Ja) − h(ξ, Ja)ξ(b)

+|ξ|2h(Jb, a) + h(ξ, Jb)ξ(a) − h(ξ, a)ξ(Jb)),

σ(t(Lθ♯J))ab = K(a, ξ)ξ(b) +
1

2
ξ(b)ξ(Ja)trh+ h(Jξ, a)ξ(b)

−K(Ja, ξ)ξ(Jb) +
1

2
ξ(Jb)ξ(a)trh− h(Jξ, Ja)ξ(Jb),

σ(R)ab =
1

2
(h(b, ξ)ξ(Ja) + h(Ja, ξ)ξ(b) − |ξ|2h(Ja, b) − ξ(Ja)ξ(b)trh

+h(Jb, ξ)ξ(a) + h(a, ξ)ξ(Jb) − |ξ|2h(a, Jb) − ξ(a)ξ(Jb)trh),

σ((ρ′(J ·, ·))(0,2)+(2,0))ab = h(a, Jξ)ξ(b) − h(b, Jξ)ξ(a) − h(Ja, Jξ)ξ(Jb) + h(Jb, Jξ)ξ(Ja).

For the gauge terms, the candidates are

Lθ♯J, LX1
J, LX2

J, LX3
J.

We have calculated σ(t(Lθ♯J)). For other symbols, by definition, we have

Lemma 5.4.

X1
k

= gklgij∂igjl +O(g),

X2
k

= gklgij∂lgij +O(g),

X0
k

= gjkJ l
jg

abJ i
b∂agil +O(g, J).

From the Lemma 4.17, we have

Lemma 5.5.

(LX1
J)ba = −Jk

a g
blgpq∂k∂pgql + Jb

kg
klgpq∂a∂pgql +O(∂g, ∂J),

(LX2
J)ba = −Jk

a g
blgpq∂k∂lgpq + Jb

kg
klgpq∂a∂lgpq +O(∂g, ∂J),

(LX0
J)ba = −Jk

a g
bpJ l

pg
ijJ

q
j ∂k∂igql + gblgijJ

q
j ∂a∂igql +O(∂g, ∂J).
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Then the symbols of the above tensors are

Lemma 5.6.

σ(LX1
J)ab = −ξ(Ja)h(ξ, b) − ξ(a)h(ξ, Jb),

σ(LX2
J)ab = −ξ(Ja)ξ(b)trh− ξ(a)ξ(Jb)trh,

σ(LX0
J)ab = −ξ(Ja)h(Jξ, Jb) + ξ(a)h(Jξ, b).

We consider the symbol of K with respect to J first. We assume there is no Lθ♯J in K. Then
we only need to consider △J and tLθ♯J . Notice that the symbol with respect to J of △J is already
good and we cannot compensate the symbol with respect to J in tLθ♯J by using Lθ♯J (other gauge
terms only involving ∂g), so we can only choose △J to be the symbol term of K. As for the symbol
of K with respect to h, we see that to compensate terms of |ξ|2hJ in the symbol of △J , we must

have △J +R, and notice that △J +R+LXJ gives us desirable symbol. As for (ρ′(J ·, ·))(0,2)+(2,0) ,
we can’t compensate h(Ja, Jξ)ξ(Jb) by using gauge terms. To sum up, modulo “canonical” gauge,
the second order terms of K can be only chosen as △J + R, and the gauge term is also unique,
that is X = X1 −

1
2X2.

Next, we consider deformation of g. We notice that as in the Ricci Flow −2Ric + LXg gives
a good symbol. And from the discussion above, the gauge terms are already chosen, so what we
can do is just to find some “canonical” second order tensors whose symbols compensate each other
both in g and J . But if it happens, it just gives the first order tensors. So modulo canonical gauge,
h is also unique, that is −2Ric. So we finish the proof of Theorem 1.1. �

Proof of Theorem 1.2: In almost Kähler setting, we require η = P . From Remark 3.2, we have
Kskew = P (0,2)+(2,0), h(1,1) = −P (1,1)J. And from the calculations in [27], we obtain

h(1,1) = −2Ric(1,1) +
1

2
B1 −B2

Kskew = △J +N .

So we have the freedom to choose the symmetric part of K. For the first order terms, from
Lemma 4.6, we see there is no such (0, 2) + (2, 0) and symmetric tensors in almost Kähler setting.
For the second order terms, first we notice that the canonical gauge vanishes, and from Lemma 4.4
notice that (ρ′J)sym is (1, 1), we see the only candidate is R. So we just need to investigate it from
the consideration of symbol. Comparing to almost Hermitian condition, we have a extra condition
dω = 0. So we need to check what new symbol identities we can obtain from this condition. Notice
that

dω = 0 ⇔ DJ(i, j, k) +DJ(j, k, i) +DJ(k, i, j) = 0.

Considering symbol, we obtain

σ(DJ)(i, j, k) + σ(DJ)(j, k, i) + σ(DJ)(k, i, j) = 0.

By direct calculation, we have

σ(DJ)(i, j, k) = ξ(i)K(j, k) +
1

2
(h(Jj, k)ξ(i) + h(Jk, j)ξ(i)

+h(i, k)ξ(Jj) + h(i, Jk)ξ(j) − h(i, Jj)ξ(k) − h(i, j)ξ(Jk)).
17



So

0 = ξ(i)K(j, k) +
1

2
(h(Jj, k)ξ(i) + h(Jk, j)ξ(i)

+h(i, k)ξ(Jj) + h(i, Jk)ξ(j) − h(i, Jj)ξ(k) − h(i, j)ξ(Jk))

+ξ(j)K(k, i) +
1

2
(h(Jk, i)ξ(j) + h(Ji, k)ξ(j)

+h(j, i)ξ(Jk) + h(j, Ji)ξ(k) − h(j, Jk)ξ(i) − h(j, k)ξ(Ji))

+ξ(k)K(i, j) +
1

2
(h(Ji, j)ξ(k) + h(Jj, i)ξ(k)

+h(k, j)ξ(Ji) + h(k, Jj)ξ(i) − h(k, Ji)ξ(j) − h(k, i)ξ(Jj)).

By simplified the identity above, we have

ξ(i)K(j, k) + ξ(j)K(k, i) + ξ(k)K(i, j) + h(k, Jj)ξ(i) + h(i, Jk)ξ(j) + h(j, Ji)ξ(k) = 0

To consider the symbol of the second order 2-tensors, we just need to take tensor product with
ξ and take trace or complex trace. Since we consider the symbol of K, we require it is of odd type.
We have

ξ(l)ξ(i)K(j, k) + ξ(l)ξ(j)K(k, i) + ξ(l)ξ(k)K(i, j)

+h(k, Jj)ξ(i)ξ(l) + h(i, Jk)ξ(j)ξ(l) + h(j, Ji)ξ(k)ξ(l) = 0.

Considering the symmetries, we have the following cases to take trace or complex trace.
Let l = i, j = a, k = b, we obtain

|ξ|2K(a, b) + ξ(a)K(b, ξ) + ξ(b)K(ξ, a) + |ξ|2h(Ja, b) + ξ(a)h(ξ, Jb) + ξ(b)h(a, Jξ) = 0.

Let l = Ji, j = Ja, k = b, we obtain

−ξ(Ja)K(b, Jξ) + ξ(b)K(ξ, a) + h(ξ, b)ξ(Ja) + h(Ja, ξ)ξ(b) = 0.

Let i = j, k = a, l = b, we obtain

ξ(b)K(ξ, a) + ξ(b)K(a, ξ) + h(a, Jξ)ξ(b) + h(ξ, Ja)ξ(b) = 0.

Let i = Jj, k = Ja, l = b, we obtain

K(ξ, a)ξ(b) −K(a, ξ)ξ(b) + h(Ja, ξ)ξ(b) − h(Jξ, a)ξ(b) − trhξ(Ja)ξ(b).

Recall Lemma 5.3, we see that, in σ(△J) and σ(R), the terms involving |ξ|2 are in fact,
|ξ|2(hJ)(0,2)+(2,0). To cancel this term, the only possibly useful identity is the first one, but when
consider the (0, 2) + (2, 0) part, it gives nothing. So for the consideration of symbol, the choice is
unique. So we finish the proof of Theorem 1.2. �

Proof of Theorem 1.3: In Hermitian case, we require δJ = K = 0. Consider the second order
terms in h, it should satisfy h(0.2)+(2,0) = 0 and σ(h) itself is Id, not modulo gauge. From our
classification results, the candidates are

Ric(X,Y ) +Ric(JX, JX), Rm(JX, Y, i, Ji) −Rm(X,JY, i, Ji),

D2J(JX, i, Y, i) +D2J(JY, i,X, i) −D2J(X, i, JY, i) −D2J(Y, i, JX, i).
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Notice that J is fixed, so it is always integrable. So the deformation condition is just that h is
(1, 1). From Lemma 5.2, the symbols of the candidates are computed as follows.

σ(Ric(X,Y ) +Ric(JX, JY ))ab

=
1

2
(ξ(a)h(b, ξ) + ξ(b)h(a, ξ) − ξ(a)ξ(b)trh− |ξ|2h(a, b)

+ξ(Ja)h(Jb, ξ) + ξ(Jb)h(Ja, ξ) − ξ(Ja)ξ(Jb)trh − |ξ|2h(Ja, Jb))

=
1

2
(ξ(a)h(b, ξ) + ξ(b)h(a, ξ) + ξ(Ja)h(Jb, ξ) + ξ(Jb)h(Ja, ξ) − ξ(Ja)ξ(Jb)trh − ξ(a)ξ(b)trh)

−|ξ|2h(a, b).

σ(Ric(JX, Y, i, Ji) −Ric(X,JY, i, Ji))ab

= ξ(Ja)h(b, Jξ) − ξ(b)h(Ja, Jξ) − ξ(a)h(Jb, Jξ) + ξ(Jb)h(a, Jξ)

= ξ(Ja)h(b, Jξ) − ξ(b)h(a, ξ) − ξ(a)h(b, ξ) + ξ(Jb)h(a, Jξ).

σ(D2J(JX, i, Y, i) +D2J(JY, i,X, i) −D2J(X, i, JY, i) −D2J(Y, i, JX, i))ab

= ξ(Ja)ξ(Jb)trh+ ξ(a)ξ(b)trh + ξ(Ja)K(b, ξ) + ξ(Jb)K(a, ξ) − ξ(a)K(Jb, ξ) − ξ(b)K(Ja, ξ)

+ξ(Ja)h(Jξ, b) + ξ(Jb)h(Jξ, a) − ξ(a)h(Jξ, Jb) − ξ(b)h(Jξ, Ja)

= ξ(Ja)ξ(Jb)trh+ ξ(a)ξ(b)trh + ξ(Ja)h(Jξ, b) + ξ(Jb)h(Jξ, a) − ξ(a)h(ξ, b) − ξ(b)h(ξ, a).

So we see that the “good” second order term is

−2Ric(1,1) − 2(D2J(J ·, i, ·, i))sym,(1,1) .

Since the “good” choice of symbol term is unique, from the calculation in [26], we see in fact
the symbol term above can be given from ∂

∂tω = S. The expression of Q is from Lemma 3.2 and
Lemma 4.13. So we finish the proof of Theorem 1.3. �

Remark 5.7. From [28], we see in Hermitian setting, modulo first order terms, △J + R is just
Lθ♯J . And in fact the above desired second order terms is the (1, 1) part of −2Ric − Lθ♯g, which
coincides with our result in almost Hermitian setting.

6. Appendix: Hermitian Connection

In this appendix, we review some basic results about Hermitian connection. For further study,
one may refer [9].

Let (g, J, ω) be an almost Hermitian structure. Let D be Levi-Civita connection and ▽ be a
linear connection. Let ▽ = D + A, i.e., g(▽XY,Z) = g(DXY,Z) + A(X,Y,Z), where A is a
3-tensor.

Lemma 6.1.

▽g = 0 ⇔ A(X,Y,Z) +A(X,Z, Y ) = 0.

▽J = 0 ⇔ A(X,JY,Z) +A(X,Y, JZ) +DJ(X,Y,Z) = 0.
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Proof.

∇g(X,Y,Z) = Xg(Y,Z) − g(∇XY,Z)− g(Y,∇XZ)

= Xg(Y,Z) − g(DXY,Z)−A(X,Y,Z) − g(Y,DXZ)−A(X,Z, Y )

= −A(X,Y,Z)−A(X,Z, Y ).

g(∇J(X,Y ), Z) = g(∇X(JY )− J∇XY,Z)

= g(DX (JY ), Z) +A(X,JY,Z) − g(JDXY,Z) +A(X,Y, JZ)

= DJ(X,Y,Z) +A(X,JY,Z) +A(X,Y, JZ).

�

If ▽g = ▽J = 0, then we say that ▽ is an Hermitian connection. In general, Hermitian
connection is not unique. Naturally, we assume A is defined from (g, J, ω). Since connection is of
first order, we require A is of first order. And since D is of even type, we require A is of even type.
In a word, we assume A = J ∗DJ .

Lemma 6.2. Let ▽ be an Hermitian connection.
In almost Hermitian setting,

A =
1

2
DJ(X,JY,Z) +

t

4
(DJ(JY,Z,X) +DJ(JZ,X, Y )−DJ(Y,Z, JX) −DJ(Z,X, JY )),

In Hermitian setting,

A =
1

2
DJ(X,JY,Z) −

t

2
(DJ(Y,Z, JX) +DJ(Z,X, JY )).

In almost Kähler setting,

A =
1

2
DJ(X,JY,Z).

Proof.
Suppose (g, J, ω) is an almost Hermitian structure. From our assumption and Lemma 2.5, we

have

A(X,Y,Z) = a1DJ(X,Y, JZ) + a2DJ(Y,Z, JX) + a3DJ(Z,X, JY )

+a4DJ(JX, Y, Z) + a5DJ(JY,Z,X) + a6DJ(JZ,X, Y ).

From Lemma 6.1, ∇ is Hermitian if and only if

0 = a1DJ(X,Y, JZ) + a2DJ(Y,Z, JX) + a3DJ(Z,X, JY )

+a4DJ(JX, Y, Z) + a5DJ(JY,Z,X) + a6DJ(JZ,X, Y )

+a1DJ(X,Z, JY ) + a2DJ(Z, Y, JX) + a3DJ(Y,X, JZ)

+a4DJ(JX,Z, Y ) + a5DJ(JZ, Y,X) + a6DJ(JY,X,Z).

−DJ(X,Y,Z) = a1DJ(X,JY, JZ) + a2DJ(JY,Z, JX) − a3DJ(Z,X, Y )

+a4DJ(JX, JY,Z) − a5DJ(Y,Z,X) + a6DJ(JZ,X, JY )

−a1DJ(X,Y,Z) + a2DJ(Y, JZ, JX) + a3DJ(JZ,X, JY )

+a4DJ(JX, Y, JZ) + a5DJ(JY, JZ,X) − a6DJ(Z,X, Y ).

To simplify the above equations, we have

0 = (a2 − a3)(DJ(Y,Z, JX) −DJ(Z,X, JY )) + (a5 − a6)(DJ(JY,Z,X) −DJ(JZ,X, Y )).

0 = (1− 2a1)DJ(X,Y,Z) + 2a4DJ(JX, JY,Z)

+(a2 + a5)(DJ(JY,Z, JX) −DJ(Y,Z,X)) + (a3 + a6)(DJ(JZ,X, JY )−DJ(Z,X, Y )).

Therefore, in almost Hermitian setting, a1 =
1
2 , a4 = 0, a2 = a3 = −a5 = −a6 = − t

4 .
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In Hermitian setting, from Lemma 2.6,

A(X,Y,Z) = (a1 − a4)DJ(X,Y, JZ) + (a2 − a5)DJ(Y,Z, JX) + (a3 − a6)DJ(Z,X, JY ),

and the equations are

0 = (a2 − a5 − a3 + a6)(DJ(Y,Z, JX) −DJ(Z,X, JY ))

0 = (1− 2a1 + 2a4)DJ(X,Y,Z).

Therefore, a1 − a4 =
1
2 , a2 − a5 = a3 − a6 = − t

2 .
In almost Kähler setting, from Lemma 2.7,

A(X,Y,Z) = (a1 + a4)DJ(X,Y, JZ) + (a2 + a5)DJ(Y,Z, JX) + (a3 + a6)DJ(Z,X, JY ),

and the equations are

0 = (a2 + a5 − a3 − a6)(DJ(Y,Z, JX) −DJ(Z,X, JY ))

0 = (1− 2a1 − 2a4)DJ(X,Y,Z) − (2a2 + 2a5)DJ(Y,Z,X) − (2a3 + 2a6)DJ(Z,X, Y ).

Therefore, a2 + a5 = a3 + a6, a1 + a4 = a2 + a5 +
1
2 . Then

A(X,Y,Z) =
1

2
DJ(X,Y, JZ).

�
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