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Abstract
Our purpose is to motivate an analytical characterization aimed at predict-

ing patterns for general reaction-diffusion systems, depending on the spatial
distribution involved in the reaction terms. It is shown that there must be
a pattern concentrating around the local minimum of the chemical potential
distribution for small diffusion coefficients. A multiple concentrating result
is also established to illustrate the mechanisms leading to emergent spatial
patterns. The results of this paper were proved by using a general variational
technique. This enables us to consider nonlinearities which grow either super
quadratic or asymptotic quadratic at infinity.
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1 Introduction and main result

In this paper we describe a unified abstract setting for strongly indefinite singular
limit problems. As applications a special attention is paid to concentrating patterns
of reaction-diffusion systems.

General reaction-diffusion systems have been used to study mechanisms lead-
ing to emergent spatial patterns. They arise naturally in a variety of models from
theoretical physics, chemistry and biology (see for example [20, 26] and refer-
ences therein). A reaction-diffusion system consists of two or more coupled non-
linear partial differential equations (PDEs), which describe reactions and diffusion
of chemicals or morphogens.
∗Corresponding author, email address: xutian@amss.ac.cn
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In its most general form a reaction-diffusion model describing the time varia-
tion of two chemical concentrations U and V due to reaction and diffusion can be
written in the form

(1.1)

{
∂tU = DU∆xU + f(U, V )

∂tV = DV ∆xV + g(U, V )

where DU and DV are the diffusion coefficients setting the pace of diffusion for
chemicals U and V , respectively. The dynamics of the model is determined by
the reaction kinetics f(U, V ) and g(U, V ), which are nonlinear functions of the
concentrations. Specifically for a positive diffusion coefficients, let us consider the
first equation in (1.1) as an example, DU∆xU is the diffusion term which specifies
that U will increase in proportion to the Laplacian of U . When the quantity of U
is higher in neighboring areas, U will increase (this follows the Fick’s first law).
The nonlinear terms, f and g, are the reaction terms modeling chemical reaction
with a replenishment or diminishment. These terms can be derived from chemical
reaction formulae by using the law of mass action and other physical conditions.
The parameters within f and g will generally govern the patterns in the model.

Alan Turing showed in 1952 that a simple system of coupled reaction-diffusion
equations could give rise to finite wavelength spatial patterns due to a mechanism
called diffusion-driven instability [27]. These so-called Turing patterns and other
related chemical systems have ever since been under intensive theoretical studies
and similar pattern forming mechanisms have been connected to various physical
systems. Due to the large applicability of pattern generating mechanisms in several
research fields, understanding the relationship between reaction-diffusion param-
eters and specific patterns becomes essential. So, the present work is intended as
an attempt to motivate an analytic characterization aimed at predicting patterns for
general reaction-diffusion systems, depending on the spatial distribution involved
in the reaction terms. We will illustrate these ideas with some general pattern-
generating reaction-diffusion systems involving variational structure.

For such, we will consider the following 2M -component reaction-diffusion
system

(1.2)

{
∂tu = ε2∆xu− u− V (x)v + ∂vH(u, v)

∂tv = −ε2∆xv + v + V (x)u− ∂uH(u, v)

in spatial domain RN , where (u, v) : R × RN → RM × RM models the con-
centration field of different chemicals. In such system the function V : RN → R
determines a relative spatial distribution of a chemical potential, and the nonlinear
part (determined by the function H : RM × RM → R) gives a external physico-
chemical force. It is worth noting that, in the second equation of (1.2), the diffusion
coefficient is negative, which represents the phenomenon referred as the uphill dif-
fusion (occurs during phase separation, a situation where the transport of particles
in a medium occurs towards regions of higher concentration). This type of prob-
lems arises in a wide variety of applications. Specifically, the important feature of
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these systems for our purpose is the competition between different temporal growth
rates and spatial ranges of diffusion for different chemicals in the system. For ex-
ample the very simple 2-component equations for the concentrations u(t, x) and
v(t, x) of two reaction and diffusion chemicals, the expressions (1.2) have been
interpreted in terms of the interaction of an inhibitor u and an activator v (see for
example Murrary [23]). The function H models the nonlinear response of intense
electromagnetic waves propagating in various types of media. And this nonlin-
earity leads to equations for the envelope of the waves, in the form of ”nonlinear
Schrödinger” type equations.

It turns out that in the coupled system (1.2), the nonlinear function H is op-
erated in such a way that different spatial modes of the electromagnetic fields are
excited and parameters can be adjusted so that spatial patterns will appear. Hence,
here in this context, we will focus on the asymptotic behavior of the solutions to
(1.2) with small diffusion coefficients (that is the performance of these solutions
as ε → 0). This presents a sort of concentricity of the patterns generated by the
reaction-diffusion process and its dependence on the parameters and the spatial
distributions.

There is not much work on solutions of systems similar to (1.2). Brézis and
Nirenberg [5] considered the 2-component system

(1.3)

{
∂tu = ∆xu− v5 + f(x)

∂tv = −∆xv − u3 + g(x)
in (0, T )× Ω,

where Ω ⊂ RN is a bounded domain and f, g ∈ L∞(Ω). Subject to the boundary
conditions u(t, x) = v(t, x) = 0 on (0, T ) × ∂Ω and u(0, x) = v(x, T ) = 0 on
Ω, the authors obtained a solution (u, v) with u ∈ L4 and v ∈ L6 of (1.3) by using
Schauders fixed point theorem. In [8], Clément, Felmer and Mitidieri considered
the problem (unbounded Hamiltonian systems)

(1.4)

{
∂tu = ∆xu+ |v|q−2v

∂tv = −∆xv − |u|p−2u
in (−T, T )× Ω,

where Ω is a smoothly bounded domain in RN , and N
N+2 < 1

p + 1
q < 1. By

variational arguments, they proved that there exists T0 > 0 such that for each
T > T0, (1.4) has at least one positive solution satisfying the 0-boundary condition:
u(t, ·)|∂Ω = 0 = v(t, ·)|∂Ω for all t ∈ (−T, T ), and the periodicity condition:
u(−T, ·) = u(T, ·), v(−T, ·) = v(T, ·). Moreover, by passing to the limit as
T →∞, they showed that (1.4) has at least one positive solution defined on R×Ω
satisfying the 0-boundary condition and

lim
t→∞

u(t, x) = lim
t→∞

v(t, x) = 0 uniformly in x ∈ Ω.

For later developments, we mention that Bartsch and Ding [3] investigate the fol-
lowing 2M -component (infinite dimensional Hamiltonian control [18, 24]) system

(1.5)

{
∂tu = ∆xu− V (x)u+ ∂vH(t, x, u, v)

∂tv = −∆xv + V (x)v − ∂uH(t, x, u, v)
in R× RN .
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The authors established a proper variational framework and proved the existence
and multiplicity of solutions of homoclinic type to (1.5) under appropriate condi-
tions on the nonlinearities (see also [12, 14]).

The model (1.2) is different from the above mentioned ones and we are inter-
ested in finding the pattern generalizing (mechanisms) dependence on the varying
parameters and the spatial distributions of chemical potentials (to our best knowl-
edge, we are not aware of an earlier work where such topic is considered). To
give a better description of our framework, a few words regarding terminology are
necessary. Let us first introduce for r ≥ 1 the Banach space

Br(R× RN ,R2M ) := W 1,r
(
R, Lr(RN ,R2M )

)
∩ Lr

(
R,W 2,r(RN ,R2M )

)
equipped with the norm

(1.6) ‖z‖Br :=

(∫∫
R×RN

(
|z|r + |∂tz|r + |∆xz|r

)
dxdt

)1/r

.

In the sequel, when no confusion can arise, we will use Br for short. First we
formulate the hypotheses on the potential V as

(V ) V is locally Hölder continuous and max |V | < 1.

In order to get asymptotic results, it is necessary to put some restrictions on H . It
is required that the nonlinear function H : RM × RM → R has the form H(ξ) =

G(|ξ|) :=
∫ |ξ|

0 g(s)s ds. We shall make the following assumptions on g under
consideration.

(H1) g ∈ C[0,∞) ∩ C1(0,∞) such that g(0) = 0, g′(s) ≥ 0, g′(s)s = o(s) as
s→ 0, and

g′(s) ≤ Cs(4−N)/N for all s ≥ 1, some C > 0.

(H2) The function s 7→ g(s) + g′(s)s is increasing on [0,∞).

(H3) (i) There exists β > 2 such that 0 < βG(s) ≤ g(s)s2 if s 6= 0;

(ii) there exist α > 0 and p ∈ (2, 2(N + 2)/N) such that g(s) ≤ αsp−2

for all s ≥ 1.

Probably (H2) can be replaced by other hypotheses on the growth of ∇2H(ξ) at
both the origin and the infinity, however, we find the monotonicity is essentially re-
lated with our proofs. Assumption (H3) is a super quadratic condition on G. Such
an assumption can be replaced by the following asymptotic quadratic condition.
With the notation Ĝ(s) := 1

2g(s)s2 −G(s), we introduce

(H ′3) (i) There exists b > 1 + sup |V | such that g(s)→ b as s→∞;

(ii) Ĝ(s) > 0 if s > 0 and Ĝ(s)→ +∞ as s→∞.
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Let us mention that our listed above assumptions admit elements of

1. H(ξ) = c|ξ|p with p ∈ (2, 2(N + 2)/N) for the super quadratic case,

2. H(ξ) = b
2 |ξ|

2
(
1− 1

ln(e+|ξ|)
)

for the asymptotically quadratic case,

as well as finite summations of them.
Involving the assumptions introduced above, our result comes as follows.

Theorem 1.1. Assume that (V ), (H1), (H2) and either (H3) or (H ′3) are satisfied.
If Λ ⊂ RN is an open bounded set such that

(1.7) c := min
Λ
V < min

∂Λ
V,

then for ε > 0 small problem (1.2) has a solution z̃ε = (uε, vε) ∈ Br(R ×
RN ,R2M ) for all r ≥ 2 such that

(i) there exists a family of points {yε} in Λ with limε→0 V (yε) = c such that

lim inf
ε→0

ε−N
∫
R

∫
Bερ(yε)

|z̃ε|2 dxdt > 0 for every ρ > 0

and
lim
R→∞
ε→0

‖z̃ε(t, ·)‖L∞(RN\BεR(yε)) = 0 for every t ∈ R;

(ii) the transition sequence wε(t, x) = z̃ε(t, εx + yε) converges in B2(R ×
RN ,R2M ), as ε→ 0, to a ground state solution of{

∂tu = ∆xu− u− c v + ∂vH(u, v) ,

∂tv = −∆xv + v + c u− ∂uH(u, v) .

The important point to note here is no restriction on the global behavior of V
is required other than (V ), particularly, the behavior of V outside Λ is irrelevant.
Due to this observation, we have an immediate consequence of our Theorem 1.1:

Corollary 1.2. Assume that (V ), (H1), (H2) and either (H3) or (H ′3) are satisfied.
If there exist mutually disjoint bounded domains Λj , j = 1, ..., k, and constants
c1 < c2 < · · · < ck such that

(1.8) cj = min
Λj

V < min
∂Λj

V,

then for ε > 0 small problem (1.2) has at least k solutions z̃jε = (ujε, v
j
ε) ∈

Br(R× RN ,R2M ) (j = 1, ..., k) for all r ≥ 2 such that
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(i) for each Λj there exists a family of points {yjε} in Λj with limε→0 V (yjε) =
cj such that

lim inf
ε→0

ε−N
∫
R

∫
Bερ(yjε)

|z̃jε |2 dxdt > 0 for every ρ > 0

and
lim
R→∞
ε→0

‖z̃jε(t, ·)‖L∞(RN\BεR(yjε))
= 0 for every t ∈ R;

(ii) each transition sequence wjε(t, x) = z̃jε(t, εx+yjε) converges respectively in
B2(R× RN ,R2M ), as ε→ 0, to a ground state solution of{

∂tu = ∆xu− u− cjv + ∂vH(u, v)

∂tv = −∆xv + v + cju− ∂uH(u, v).

Our results provides a natural and intrinsic characterization of the pattern gen-
eralizing dependence on the varying parameters and the spatial distributions of
chemical potentials. The theorems express that there must be a pattern concen-
trating around the local minimum of the chemical potential distribution for small
diffusion coefficients, moreover, it is the emergence of such local minimum that
guarantees the existence of such concentrating phenomenon. Furthermore, if there
exists distinguished regions of local minima, there will exist multiple patterns with
different shapes concentrating separately in the very region the local minimum lies
in.

Mathematically, problems like (1.2) with small coefficient is referred as singu-
lar perturbation problems. Such problems are generally characterized by dynamics
operating on multiple scales. The researches of singular perturbation problems in-
volving variational methods goes back to the semi-classical analysis on nonlinear
Schrödinger equation arising in the non-relativistic quantum mechanics:

(1.9) ~2∆w − V (x)w + f(w) = 0 w ∈ H1(Rn) .

Initiated by Rabinowitz [25], the existence of positive solutions of (1.9) for small
~ > 0 is proved whenever

lim inf
|x|→∞

V (x) > inf
x∈Rn

V (x) .

And these solutions concentrate around the global minimum points of V when ~→
0, as was shown by Wang [28]. It should be pointed out that M. Del Pino and P.
Felmer in [10] firstly succeeded in proving a localized version of the concentration
behaviour of semi-classical solutions. In [10], assuming inf V = V0 > 0 and
(1.7) for some bounded domain Λ, the authors showed the existence of a single-
peak solution which concentrates around the minimum points of V in Λ. Their
approach depends on a penalization argument and Mountain-pass theorem. Note
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that, since the Schrödinger operator −∆ + V is bounded from below, techniques
based on the Mountain-pass theorem are well applied to the investigation. See also
[1, 2, 6, 7, 9, 11, 16] and their references for further related results.

There are at least three difficulties in extending the quoted results (on the ellip-
tic case) to the system (1.2). Firstly, no uniqueness results seem to be known for
the ”limit problem”{

∂tu = ∆xu− u− v + ∂vH(u, v)

∂tv = −∆xv + v + u− ∂uH(u, v)
in R× RN

and this is in some cases a crucial assumption in the single elliptic equation case
(compare e.g. with [9, Assumption (f5)], [11, Assumption (f4)]). Secondly, as
we will see in Section 3, the variational structure of system (1.2) is of strongly
indefinite type (the energy functional is neither bounded from above nor from be-
low, even on subspaces of finite dimension or codimension). Differ from the single
elliptic equation case, the quadratic part of the energy functional has no longer a
positive sign. At a technical level, this causes some difficulties; for instance, the
penalization arguments as used in [10, 11] can not be applied to our problem; we
have to provide a more delicate analysis. Moreover, from a conceptual point view,
in the case of a system we also have to face the fact that the method based on the the
Mountain-pass theorem breaks down. As a consequence, we need a deep insight
into the linking structure of strongly indefinite functional. This difficulty was by-
passed in [3, 12, 14], where a direct approach was proposed. In these papers either
the case V (x) ≡ 1 or the periodic case V is Tj-periodic in xj for j = 1, · · · , N
are considered.

We mention that in the papers [21, 22] the Hamiltonian elliptic type system-
s are considered. Such systems also have the indefinite character of the energy
functional, by a reduction argument, the authors showed multiple spike-layered so-
lutions concentrating around the local minimum points of the potential functions.
However in this context, when the parabolic system is considered, we have to face
the t-Anisotropic Sobolev spaces Br(R × RN ,R2M ) and the interpolation space
between B2(R×RN ,R2M ) and L2(R×RN ,R2M ) (see the functional settings in
Section 3). At this point, it is not clear whether the the cut-off method as used in
[21, 22] can be applied to our problem.

The rest of the paper is devoted to the proof of Theorem 1.1 and Corollary
1.2. In the next section, we briefly introduce an abstract critical point theorem
which can be applied to the study of indefinite functionals. The specific proof of
the abstract critical point theorem will be presented in Section 4. Section 3 falls
naturally into two parts which devotes to give a full proof of Theorem 1.1: the first
part constitutes sufficient preparation to apply the abstract theorem; the second part
provides the delicate analysis on the concentrating solutions to system (1.2). Due
to the strongly indefiniteness, we have to recover a compactness condition at some
certain minimax levels. All we do is to build a modification of the energy functional
associated to (1.2). In such a way, the functional is proved to satisfy a compactness
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condition defined in Section 2. And then, for ε sufficiently small, a critical point
associate to the modified functional is indeed a solution to the original system (1.2)
thanks to some priori estimates of parabolic equations. The modification of the
functional corresponds to a penalization technique ”outside Λ”, and this is why no
other global assumptions are required for V . Finally, in the Appendix we collect
some embedding and regularity results which are used in this paper.

2 An abstract critical point theorem

Before stating the main results of this section we shall introduce some notations
and definitions. We denote by E a real Hilbert space, by 〈·, ·〉 the scalar product
in E, by ‖ · ‖ the norm in E. The dual of E is denoted by E∗. By Ck(E,R) for
k ≥ 1 we denote the space of k-times Frechét differentiable functionals from E
to R. We shall denote by L (E) the space of bounded linear maps from E to E,
endowed with the uniform operator norm, and by Ls(E) the same space endowed
with the strong operator topology. The adjoint of A in L (E) is denoted by A∗,
and by self-adjoint we mean A = A∗. The space Ew is the space E endowed
with its weak topology. We denote weak convergence of a sequence in E with the
symbol ⇀. Let G be a Lie group and let T : G → U(E) be a representation of
G on the group of the unitary linear transformations on E. We set G = T (G) and
sometimes, when no ambiguity is possible, we will use G instead of G to stand for
the Lie group.

Definition 2.1. A subset M ⊂ E is called G -invariant if g(M) = M for every
g ∈ G . A functional Φ on E is called G -invariant if Φ ◦ g = Φ for every g ∈ G . A
map h from E to E is called G -equivariant if h ◦ g = g ◦ h for every g ∈ G .

Let {Aε}ε>0 ⊂ L (E) be a family of G -equivariant self-adjoint operators.
Let {Ψε}ε>0 ⊂ C2(E,R) be a G -invariant family, and set ψε := ∇Ψε : E →
E. Considering a given splitting E = X ⊕ Y of E into G -invariant orthogonal
subspaces X and Y with associated bounded projections PX and P Y , we write
zX := PXz and zY := P Y z for z ∈ E. In the sequel, we are interested in finding
critical points of the functionals

Φε : E → R, Φε(z) :=
1

2

(
‖zX‖2 − ‖zY ‖2

)
+

1

2
〈Aεz, z〉 −Ψε(z)

for ε small. Let A0 ∈ L (E) be a G -equivariant self-adjoint operator and Ψ0 be a
G -invariant C2 functional, and set ψ0 := ∇Ψ0 : E → E. Consider

Φ0 : E → R, Φ0(z) :=
1

2

(
‖zX‖2 − ‖zY ‖2

)
+

1

2
〈A0z, z〉 −Ψ0(z),

as singular limit functional.
Since we are interested in the situation when ε is small, by setting E = [0, 1],

we will be concerned with {Φε}ε∈E := {Φ0} ∪ {Φε}ε∈(0,1]. Now we collect some
hypotheses on {Φε}ε∈E which we will impose in the various results:
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(A1) There exists θ ∈ (0, 1) such that supε∈(0,1] ‖Aε‖ ≤ θ.

(A2) Aε → A0 in Ls(E) as ε→ 0.

(N1) For each ε ∈ E , Ψε is non-negative and convex, and ψε : Ew → Ew is
sequentially continuous.

(N2) For each z ∈ E, ψε(z)→ ψ0(z) in E as ε→ 0.

(N3) There exists κ ∈ C(R+,R+) (R+ = [0,∞)), independent of ε, such that∣∣Ψ′′ε(z)[v, w]
∣∣ ≤ κ(‖z‖) · ‖v‖ · ‖w‖

for z, v, w ∈ E and ε ∈ E .

(N4) For all ε ∈ E and z ∈ E \ {0}, Ψ̂ε(z) := 1
2Ψ′ε(z)z − Ψε(z) > 0, and

Ψ̂ε : Ew → R is sequentially lower semi-continuous.

(N5) Given arbitrarily ε ∈ E , for every z ∈ E \ {0} and w ∈ E it holds that(
Ψ′′ε(z)[z, z]−Ψ′ε(z)z

)
+ 2
(
Ψ′′ε(z)[z, w]−Ψ′ε(z)w

)
+ Ψ′′ε(z)[w,w] > 0 .

Remark 2.2. Condition (A2) and (N2) are quite natural in singular perturbation
problems. Both are satisfied in the scaled equations when the parameter varies.
Condition (N3) and (N4) are rather harmless, also (N5) holds under rather gen-
eral assumptions on the nonlinearity. They are technical assumptions which are
deeply related to the proof of our results, and they will be easily checked if growth
conditions on the nonlinearity are given.

We shall emphasis here the functionals Φε for ε ∈ E are ”strongly indefinite”,
that is X and Y are both infinite-dimensional, as it occurs in the study of solutions
of unbounded Hamiltonian systems. Recall that a sequence {zn} ⊂ E is called to
be a (PS)c-sequence for functional Φ ∈ C1(E,R) if Φ(zn)→ c and Φ′(zn)→ 0,
and is called to be (C)c-sequence for Φ if Φ(zn)→ c and (1 + ‖zn‖)Φ′(zn)→ 0.
It is clear that if {zn} is a (PS)c-sequence with {‖zn‖} bounded then it is also
a (C)c-sequence. We remark that if Φ is G -invariant then {gnzn} is also a (C)c-
sequence (resp. (PS)c-sequence) for any {gn} ⊂ G provided {zn} is a (C)c-
sequence (resp. (PS)c-sequence).

Definition 2.3. A G -invariant functional Φ ∈ C1(E,R) is said to satisfy the G -
weak (C)c-condition if for each (C)c-sequence {zn} there exists correspondingly
{gn} ⊂ G such that {gnzn} possesses a subsequence converge weakly to a point
in E \ {0}.

Next, we will be concerned with the functionals {Φε}ε∈E satisfying the as-
sumptions mentioned above.

Theorem 2.4. Suppose the family {Φε}ε∈E satisfies (A1)-(A2), (N1)-(N5) and
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(I1) there exist ρ, τ > 0, both independent of ε ∈ E , such that Φε

∣∣
BXρ
≥ 0

and Φε

∣∣
SXρ
≥ τ where BX

ρ := Bρ ∩ X = {z ∈ X : ‖z‖ ≤ ρ} and

SXρ := ∂BX
ρ = {z ∈ X : ‖z‖ = ρ};

(I2) for any e ∈ X \ {0} set Ee = R+e ⊕ Y , either supz∈Ee Φ0(z) = +∞ or
Φ0(z)→ −∞ as z ∈ Ee and ‖z‖ → ∞ (here R+ = [0,∞)).

If Φε satisfies the G -weak (C)c-condition for each c ∈ R \ {0} and ε 6= 0 and

c0 = inf
e∈X

sup
z∈Ee

Φ0(z) < +∞

is a critical value for Φ0, then

(1) for all ε small, Φε admits a critical value

cε = inf
e∈X

sup
z∈Ee

Φε(z) ;

(2) cε is the ground state energy of Φε and cε ≤ c0 + o(1) as ε→ 0.

The proofs of Theorem 2.4 is quite technical and self-contained, so we will
first give the applications to the singular perturbation problem of reaction-diffusion
system and then show the proofs in Section 4.

Remark 2.5. Theorem 2.4 is the first unified abstract result concerned with strong-
ly indefinite singular limit problem. The assumptions (I1) and (I2) are geomet-
rical assumptions, which imply a linking structure of the strongly indefinite func-
tionals. (I2) generalizes the requirements in [13, 15] when treating nonlinear Dirac
equations, which allows to deal with a larger class of nonlinearities including the
asymptotic quadratic ones.

Remark 2.6. In Theorem 2.4 the assumption c0 is a critical value of Φ0 is not
difficult to verify in application. In fact the singular limit equation is, after the
scaling transform, a autonomous equation such that the corresponding functional
Φ0 is invariant under actions of some Lie group containing G as a proper subgroup.
Then the existence and characterization of c0 can be derived from standard varia-
tional methods ( [12], see also Section 3). The second conclusion in Theorem 2.4
seems to be optimal and essential in the study of singular perturbation problem (for
Schrödinger equations see [10, 16] and references therein). and for Dirac equations
see [13, 15])

Remark 2.7. As we mentioned above, Φ0 is G -invariant but we can not expect Φ0

to satisfy the G -weak (C)c-condition since there exists another Lie group G ′ such
that G $ G ′ and Φ0 is G ′-invariant. As a matter of fact, in the applications, one
will see that Theorem 2.4 is nontrivial since we are dealing with the situation Φ0

does not satisfy the G -weak (C)c-condition as Φε for ε > 0. And hence, the proof
is not simply passing to the limit as ε vanishes.
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3 Applications to singular perturbation problem of non-
linear reaction-diffusion systems

Now we consider the reaction-diffusion system (1.2) where V , H satisfy the as-
sumptions (V ), (H1), (H2) and (H3) (or (H ′3)). Making the change of variable
x→ εx, (1.2) becomes

(3.1)

{
∂tu = ∆xu− u− Vε(x)v +Hv(u, v)

−∂tv = ∆xv − v − Vε(x)u+Hu(u, v)

where ∆x denotes the Laplacian acts on the space variable x and Vε(x) = V (εx).
Setting

J =

(
0 −I
I 0

)
, J0 =

(
0 I
I 0

)
and A = J0(−∆x + 1),

and let L := J ∂t +A. Then (3.1) can be rewritten as

J ∂tz = −Az − Vε(x)z + g(|z|)z for z = (u, v),

or in a more abstract representation

(3.2) Lz + Vε(x)z = g(|z|)z for z = (u, v).

In this way, (3.1) can be regarded as an infinite dimensional Hamiltonian system.
Here and subsequently, we fix the potential V and a bounded nonempty open set
Λ ⊂ RN such that

(3.3) c = min
Λ
V < min

∂Λ
V.

Without loss of generality we can assume that the boundary of Λ is smooth, and
that 0 ∈ Λ.

3.1 Functional settings

We initially introduce some functional spaces we shall need in the sequel. If 1 ≤
q ≤ ∞ we set Lq := Lq(R × RN ,R2M ), and by | · |q we denote the usual norm
defined on Lq. Denoted by (·, ·)2 the usual L2-inner product.

Now we consider L acts on the Hilbert space L2 := L2(R × RN ,R2M ). It is
quite standard to see that L is a self-adjoint operator with domain

D(L) = B2 := W 1,2
(
R, L2(RN ,R2M )

)
∩ L2

(
R,W 2,2(RN ,R2M )

)
.

Let σ(L) and σe(L) be respectively the spectrum and essential spectrum of L, we
have the following result (cf. [12, Lemma 8.7]).
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Proposition 3.1. σ(L) = σe(L) ⊂ R \ (−1, 1), moreover, σ(L) is symmetric with
respect to 0.

As a direct consequence of Proposition 3.1, the space L2 possesses the orthog-
onal decomposition:

(3.4) L2 = L+ ⊕ L−, z = z+ + z−,

so that L is positive definite (resp. negative definite) in L+ (resp. L−). In order to
construct the energy functionals whose critical points are the solutions of (3.2) we
introduce E := D(|L|1/2) be equipped with the inner product

〈z1, z2〉 =
(
|L|1/2z1, |L|1/2z2

)
2

and the induced norm ‖z‖ = 〈z, z〉1/2, where |L| and |L|1/2 denote respectively the
absolute value of L and the square root of |L|. As an interpolation space between
B2 and L2, E (being a Hilbert space) has the decomposition

E = E+ ⊕ E−, where E± = E ∩ L±

which is orthogonal with respect to both (·, ·)2 and 〈·, ·〉. We write z = z+ +z− for
z ∈ E according to this decomposition and introduce the following bilinear form

a(z1, z2) =
〈
z+

1 , z
+
2

〉
−
〈
z−1 , z

−
2

〉
for z1, z2 ∈ E.

The bilinear form a(·, ·) is symmetric and continuous inE. Observe that if z1, z2 ∈
B2

a(z1, z2) =

∫
R

∫
RN

Lz1 · z2 dxdt.

Under the assumption (H1), we see that there are positive constants c1, c2 such that

|∇H(z)| ≤ c1|z|+ c2|z|(N+4)/N for any z ∈ R2M .

Remark that E is continuously embedded in Lr for r ∈ [2, 2(N + 2)/N ] if N ≥ 2,
and compactly embedded in Lrloc for r ∈ [1, 2(N + 2)/N) if N ≥ 2 (cf. [12,
Lemma 8.5]). Standard arguments show that the functional

Jε(z) =
1

2
a(z, z) +

1

2

∫
R

∫
RN

Vε(x)|z|2 dxdt−
∫
R

∫
RN

G(|z|) dxdt, z ∈ E

is 2-times Frechét differentiable and that its critical points correspond to the solu-
tions of (3.2) (see Lemma A.5 in Appendix).

Since σ(L) ⊂ R \ (−1, 1), one has

(3.5) |z|22 ≤ ‖z‖2 for all z ∈ E.

The decomposition of E induces also a natural decomposition of Lr, hence there
is dr > 0 such that

(3.6) dr|z±|rr ≤ |z|rr for all z ∈ E.
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It is to be expected that critical points of Jε can be found by applying Theorem
2.4, and that the asymptotic behaviour (which can be characterized by concentra-
tion phenomenon) of these critical points will follow subsequently. However, one
may find the abstract theorem can not apply directly to Jε due to the lack of G -
weak (C)c-condition. In what follows, let us initially give a modification of Jε
which guarantees that the assumptions in the abstract theorem are all satisfied.

Choose s0 > 0 be the value at which g(s0) + g′(s0)s0 = 1−|V |∞
2 . Let us

consider g̃ ∈ C[0,∞) ∩ C1(0,∞) such that

d

ds

(
g̃(s)s

)
=


g(s) + g′(s)s if s ≤ s0,

1− |V |∞
2

if s > s0.

Such g̃ exists thanks to our assumptions (H1) and (H2). Define

f(x, s) = χΛ(x)g(s) +
(
1− χΛ(x)

)
g̃(s),

where Λ ⊂ RN is the bounded domain fixed to satisfy (3.3) and χΛ denotes its
characteristic function. One should keep in mind here that Λ has to be rescaled
when we consider the rescaled system (3.1). Write

F (x, s) =

∫ s

0
f(x, τ)τ dτ and F̂ (x, s) =

1

2
f(x, s)s2 − F (x, s).

It is standard to check that (H1) and (H2) implies F : [0,∞) → [0,∞) is a
Caratheodory function satisfying

(F1) fs(x, s) > 0 exists every where, and f(x, s)s = o(s) uniformly in x as
s→ 0;

(F2) 0 ≤ f(x, s)s ≤ g(s)s for all x ∈ RN and s ≥ 0;

(F3) 0 < 2F (x, s) ≤ f(x, s)s2 ≤ 1−|V |∞
2 s2 for all x 6∈ Λ and s > 0;

(F4) (i) if (H3) is satisfied, then 0 < βF (x, s) ≤ f(x, s)s2 for all x ∈ Λ and
s > 0;

(ii) if (H ′3) is satisfied, then F̂ (x, s) > 0 for all s > 0;

(F5) d
ds

(
f(x, s)s

)
≥ 0 for all x and s > 0;

(F6) either (H3) or (H ′3) is satisfied, F̂ (x, s)→∞ as s→∞ uniformly in x.

For simplicity of notation, we let fε(x, s) and Fε(x, s) stand for f(εx, s) and
F (εx, s) respectively. Now, let us define the modified functional Φε : E → R
as

Φε(z) =
1

2
a(z, z) +

1

2

∫
R

∫
RN

Vε(x)|z|2 dxdt−
∫
R

∫
RN

Fε(x, |z|) dxdt

=
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫
R

∫
RN

Vε(x)|z|2 dxdt−Ψε(z).
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Then, we see that Φε ∈ C2(E,R) and critical points of Φε correspond to solutions
of

Lz + Vε(x)z = fε(x, |z|)z.

Taking the singular limit into account, we find that the limit system is

Lz + V0 z = g(|z|)z,

where V0 := V (0) and that the associated functional is

Φ0(z) =
1

2
a(z, z) +

V0

2

∫
R

∫
RN
|z|2 dxdt−

∫
R

∫
RN

G(|z|) dxdt

=
1

2

(
‖z+‖2 − ‖z−‖2

)
+
V0

2

∫
R

∫
RN
|z|2 dxdt−Ψ0(z).

To apply the abstract theorem stated in the preceding section we now analyze
the relevant properties of the variational functionals involved. As introduced above
we have E = E+ ⊕ E−, and let Aε denote the self-adjoint operator defined by
z 7→ |L|−1Vε(·)z for z ∈ E. Analogously, A0 can be defined by z 7→ |L|−1V0z. It
is all clear we have Φε and Φ0 are in the forms that we introduced in Section 2, so
our strategy is to check all the assumptions appeared in Theorem 2.4 are satisfied.

3.1.1 The group action

Denote by ? the action of G := R on E that arises from translation: for z ∈ E and
g ∈ G define (g?z)(t, x) = z(t−g, x). From the fact V and H̃ are independent of
t that we have Φε is G -invariant for all ε > 0. Moreover, if denote by ?̄ the action
of G ′ := R×RN on E by (g′?̄z)(t, x) = z(t− g1, x− g2) for g′ = (g1, g2) ∈ G ′,
we soon have Φ0 is invariant under the action of G ′.

3.1.2 The quadratic part

Recall the definitions of Aε, A0 ∈ L (E). By virtue of (3.5), we easily have

‖Aε‖ = sup
{
〈Aεz, z〉 : u ∈ E, ‖z‖ = 1

}
= sup

{(
Vε(·)z, z

)
2

: z ∈ E, ‖z‖ = 1
}

≤ |V |∞ · sup
{

(z, z)2 : z ∈ E, ‖z‖ = 1
}

≤ |V |∞ < 1.

This guarantees the condition (A1). To check (A2), that is the convergency of
{Aε} in the strong operator topology of L (E), let us remark that Vε(x) → V0

uniformly on bounded sets of x as ε → 0. Therefore, for each z ∈ E we deduce
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that
‖Aεz −A0z‖ = sup

‖w‖=1
〈(Aε −A0)z, w〉

= sup
‖w‖=1

(
(Vε(·)− V0)z, w

)
2

≤ sup
‖w‖=1

∣∣(Vε(·)− V0)z
∣∣
2
· |w|2

≤
∣∣(Vε(·)− V0)z

∣∣
2

= o(1)

as ε→ 0. And thus we obtain (A2).

3.1.3 The nonlinear part

The required properties (see (N1)-(N5)) of the nonlinear part will be checked
based on (F1)-(F6). Recall the notation E := [0, 1]. Firstly, by (F2), we observe
that

G(|z|) =

∫ |z|
0

g(s)s ds ≥
∫ |z|

0
fε(x, s)s ds = Fε(x, |z|),

which implies Ψ0(z) ≥ Ψε(z) ≥ 0 for all z ∈ E. Note that d
ds

(
g(s)s

)
≥ 0 and

d
ds

(
fε(x, s)s

)
≥ 0 for all x ∈ RN , we have Ψ′′ε(z)[w,w] ≥ 0 for z, w ∈ E and

ε ∈ E .
Recall the assumptions we have required on H (see (H1), (H3) or (H ′3)). Also

recall the embeddings E ↪→ Lr for r ∈ [2, 2(N+2)/N). It holds that if zn ⇀ z in
E then {zn} is bounded in Lr and converges to z in Lrloc, for r ∈ [1, 2(N +2)/N).
Moreover, recall we have assumed that 0 ∈ Λ, we infer that χΛ(εx) → 1 a.e.
on RN as ε → 0. Therefore it is easy to check (N1) and (N2) are satisfied for
Ψε, ε ∈ E . One should keep in mind here that the map |L|−1 : E∗ → E is the
isomorphism induced from the Riesz representation theorem.

(N3) is much more obvious. Indeed, the modified nonlinearities satisfy

|fε(x, s)| ≤
∣∣χΛ(εx)g(s)

∣∣+
∣∣(1− χΛ(εx))g̃(s)

∣∣
≤ |g(s)|+ |g̃(s)|

for all z ∈ R2M . Therefore, by (H1) and the embedding E ↪→ L2(N+2)/N , we
have ∣∣Ψ′′ε(z)[v, w]

∣∣ ≤ C1‖v‖ · ‖w‖+ C2‖z‖4/N · ‖v‖ · ‖w‖

and (N3) is satisfied.
It remains to prove (N4) and (N5). The verification for Ψ0 is similar to and

simpler than that for Ψε, ε > 0, so we only check the latter. First note that (F3)
and (F4) implies

F̂ (x, s) :=
1

2
f(x, s)s2 − F (x, s) > 0 for all x ∈ RN and s > 0.
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An easy calculation shows

Ψ̂ε(z) =

∫
R

∫
RN

1

2
fε(x, |z|)|z|2 − Fε(x, |z|) dxdt > 0

provided z 6= 0, and the sequentially lower semi-continuity comes from Fatou’s
lemma. Next, to see that (N5) holds, we remark that

Ψ′ε(z)w =

∫
R

∫
RN

fε(x, |z|)z · w dxdt

and

Ψ′′ε(z)[v, w] =

∫
R

∫
RN

fε(x, |z|)v · w + ∂sfε(x, |z|)|z|
z · v
|z|
· z · w
|z|

dxdt

for any z, v, w ∈ E. Then, we deduce that

(3.7)

(
Ψ′′ε(z)[z, z]−Ψ′ε(z)z

)
+ 2
(
Ψ′′ε(z)[z, w]−Ψ′ε(z)w

)
+ Ψ′′ε(z)[w,w]

=

∫
R

∫
RN

fε(x, |z|)|w|2 + ∂sfε(x, |z|)|z|
(
|z|+ z · w

|z|

)2
dxdt

And by (F1), we soon obtain (N5) from the above formula.

3.1.4 The geometric structure and G -weak compactness

Recall the assumption (H1) and the definition of F , we remark that there exists
C > 0 such that

(3.8) |G(|z|)| ≤ 1− |V |∞
4

|z|2 + C|z|2(N+2)/N

and

(3.9) |F (x, |z|)| ≤ 1− |V |∞
4

|z|2 + C|z|2(N+2)/N

for all (x, z) ∈ R× R2M . Hence, we have:

Lemma 3.2. There are ρ, τ > 0, both independent of ε ∈ E , such that Φε|B+
ρ
≥ 0

and Φε|S+
ρ
≥ τ where

B+
ρ := Bρ ∩ E+ = {z ∈ E+ : ‖z‖ ≥ ρ},

S+
ρ := ∂B+

ρ = {z ∈ E+ : ‖z‖ = ρ}.
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Proof. For convenience set 2∗ = 2(N + 2)/N . Notice that |z|2∗ ≤ C‖z‖ for
z ∈ E by the embedding E ↪→ L2∗ . The conclusion follows easily because, for
z ∈ E+,

Φ(z) =
1

2
‖z‖2 +

1

2

∫
R

∫
RN

Vε(x)|z|2 dxdt−Ψε(z)

≥ 1

2
‖z‖2 − |V |∞

2
|z|22 −

(
1− |V |∞

4
|z|22 + C|z|2∗2∗

)
≥ 1− |V |∞

4
‖z‖2 − C ′‖z‖2∗

with C,C ′ > 0 independent of ε.

The preceding lemma shows (I1) is satisfied for the family {Φε}ε∈E . The
proof of (I2) will be separated into the following two lemmas.

Lemma 3.3. For the super quadratic nonlinearity, that is (H3) is satisfied, for
e ∈ E+ \ {0}, Φ0(z) → −∞ provided z ∈ Ee and ‖z‖ → ∞ (recall Ee :=
R+e⊕ E−).

Lemma 3.4. For the asymptotically quadratic nonlinearity, that is (H ′3) is satis-
fied, either supz∈Ee Φ0(z) = +∞ or Φ0(z)→ −∞ as z ∈ Ee and ‖z‖ → ∞.

Proof of Lemma 3.3. First remark that (H1) and (H3)(i) implies that for any δ > 0
there exists cδ > 0 such that

G(|z|) ≥ cδ|z|β − δ|z|2 for all z ∈ R2M .

Let e ∈ E+ \ {0}, by virtue of (3.6), we have for z = se+ v ∈ Ee

Φ0(z) =
1

2
‖se‖2 − 1

2
‖v‖2 +

1

2

∫
R

∫
RN

Vε(x)|se+ v|2 dxdt−Ψ0(se+ v)

≤ s2

2
‖e‖2 − 1

2
‖v‖2 +

|V |∞
2
|se+ v|22 + δ|se+ v|22 − cδ|se+ v|ββ

≤ 1 + |V |∞ + 2δ

2
s2‖e‖2 − 1− |V |∞ − 2δ

2
‖v‖2 − cδsβ|e|ββ.

By noting that β > 2, let δ be chosen small enough, we have the assertion proved.

Proof of Lemma 3.4. Let us first assume supz∈Ee Φ0(z) = C <∞. It is clear that
C > 0 (by Lemma 3.2). Suppose contrarily, for some sequence {zn} ⊂ Ee with
‖zn‖ → ∞, there exists C0 > 0 such that Φ0(zn) ≥ −C0 for all n. Then, setting
vn = zn/‖zn‖, we have ‖vn‖ = 1, vn ⇀ v, v−n ⇀ v−, v+

n → v+ ∈ R+e and

(3.10) − C0

‖zn‖
≤ Φ0(zn)

‖zn‖
≤ 1

2
‖v+
n ‖2 −

1

2
‖v−n ‖2 +

|V |∞
2
|vn|22.
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Remark that v+ 6= 0. Indeed, if not, it follows from (3.10) that

1− |V |∞
2

‖v−n ‖2 ≤
1 + |V |∞

2
‖v+
n ‖2 +

C0

‖zn‖
→ 0 as n→∞,

which is a contradiction.
First, a direct calculation shows for λ > 0

d

dλ
Φ0(λvn) =

1

λ
Φ0(λvn)(λvn) =

1

λ

(
2Φ0(λvn)− 2Ψ̂0(λvn)

)
≤ 2C

λ
− 2

λ

∫∫
R×RN

Ĝ(λ|vn|) dxdt.

Meanwhile, for δ > 0 small, we infer

(3.11)

∫∫
R×RN

Ĝ(λ|vn|)

≥
∫∫
{(t,x)∈R×RN : |vn|≥δ}

Ĝ(λ|vn|) dxdt

≥ G̃δ(λ) · meas
{

(t, x) ∈ R× RN : |vn| ≥ δ
}
,

where G̃δ(λ) := inf
{
Ĝ(|z|) : z ∈ R2M , |z| ≥ λδ

}
. We claim that meas

{
(t, x) ∈

R × RN : |vn| ≥ δ
}
≥ r0 with some r0 > 0 for all n provided δ is fixed small

enough. Indeed, if such r0 does not exist, we then have vn ⇀ 0 in Ee. However,
this contradicts with the fact v+ 6= 0. Now, from (3.11) and (H ′3)(ii), we deduce
that G̃δ(λ)→ +∞ as λ→∞ and

d

dλ
Φ0(λvn) ≤ 2C

λ
− 2r0

G̃δ(λ)

λ

≤ 2C

λ
− 3C

λ

= −C
λ

for all n and λ ≥ λ0, some λ0 > 0 large. Thus we have

Φ0(zn) = Φ0(‖zn‖vn) =

∫ ‖zn‖
0

d

dλ
Φ0(λvn)

≤ Φ0(λ0vn) +

∫ ‖zn‖
λ0

−C
λ
dλ

≤ C − C
∫ ‖zn‖
λ0

1

λ
dλ→ −∞

as n→∞, which is absurd.
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The next lemma will be devoted to show the G -weak compactness of the mod-
ified functional Φε for each ε > 0. We remark that, by virtue of (F4)(i),

(3.12) F̂ (x, s) ≥ β − 2

2β
f(x, s)s2 ≥ β − 2

2
F (x, s) > 0

for all x ∈ Λ and s > 0 provided (H3)(i) is satisfied. This jointly with (H3)(ii)
yields (written σ = p/(p− 1))

(3.13)
(
f(x, s)s

)σ ≤ a1f(x, s)s2 ≤ a2F̂ (x, s)

for all |z| ≥ r1 and x ∈ Λ, where r1 is chosen small enough such that

(3.14) |f(x, s)| ≤ 1− |V |∞
4

for all s ≤ r1, x ∈ RN .

Lemma 3.5. For each ε > 0, c ∈ R\{0}, Φε satisfies the G -weak (C)c-condition.

Proof. We begin by proving any (C)c sequence of Φε is bounded in E. In fact, let
{zn} be a sequence such that

Φε(zn)→ c and (1 + ‖zn‖)Φ′ε(zn)→ 0

as n→∞, the representation of Φε implies that there is C > 0 such that

(3.15) C ≥ Φε(zn)− 1

2
Φ′ε(zn)zn =

∫
R

∫
RN

F̂ε(x, |zn|) dxdt > 0

and

(3.16)

o(1) = Φε(zn)(z+
n − z−n )

= ‖zn‖2 +

∫
R

∫
RN

Vε(x)zn · (z+
n − z−n ) dxdt

−
∫
R

∫
RN

fε(x, |zn|)zn · (z+
n − z−n ) dxdt.

Case 1. The super quadratic nonlinearity
By the definition of F and (3.16), we soon obtain

(3.17)

‖zn‖2 − |V |∞
∫
R

∫
RN
|zn| · |z+

n − z−n | dxdt

≤
∫
R

∫
RN

fε(x, |zn|)|zn| · |z+
n − z−n | dxdt+ o(1)

≤
∫
R

∫
Λε

fε(x, |zn|)|zn| · |z+
n − z−n | dxdt

+
1− |V |∞

2

∫
R

∫
RN
|zn| · |z+

n − z−n | dxdt+ o(1),
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where Λε := {x ∈ RN : εx ∈ Λ}. Thus, from (3.13) and (3.14), we easily check
that

1− |V |∞
4

‖zn‖2

≤
∫∫
{(t,x)∈R×Λε: |zn|≥r1}

fε(x, |zn|)|zn| · |z+
n − z−n | dxdt+ o(1)

≤
(∫∫

{(t,x)∈R×Λε: |zn|≥r1}

(
fε(x, |zn|)|zn|

)σ
dxdt

)1/σ

|z+
n − z−n |p + o(1).

It follows from (3.13), (3.15) and E embeds continuously into Lp, we find

1− |V |∞
4

‖zn‖2 ≤ C1‖zn‖+ o(1).

Then {zn} is bounded in E as desired.

Case 2. The asymptotically quadratic nonlinearity
Assume contrarily that ‖zn‖ → ∞ as n → ∞ and set vn = zn/‖zn‖. Then

|vn|22 ≤ C2 and |vn|22∗ ≤ C3, where 2∗ := 2(N + 2)/N . It follows from (3.5) and
(3.16) that

o(1) = ‖zn‖2
(
‖vn‖2 +

∫
R

∫
RN

Vε(x)vn · (v+
n − v−n ) dxdt

−
∫
R

∫
RN

fε(x, |zn|)vn · (v+
n − v−n ) dxdt

)
≥‖zn‖2

((
1− |V |∞

)
−
∫
R

∫
RN

fε(x, |zn|)vn · (v+
n − v−n ) dxdt

)
.

And thus

(3.18) lim inf
n→∞

∫
R

∫
RN

fε(x, |zn|)vn · (v+
n − v−n ) dxdt ≥ ` := 1− |V |∞.

To get a contradiction, let us first set

d(r) := inf
{
F̂ (x, s) : x ∈ RN , and s > r

}
,

Ωn(ρ, r) :=
{

(t, x) ∈ R× RN : ρ ≤ |zn(t, x)| ≤ r
}
,

and

crρ := inf

{
F̂ (x, s)

s2
: x ∈ RN , and ρ ≤ s ≤ r

}
.

By (F6), d(r)→∞ as r →∞ and by definition

F̂ε
(
x, |zn(t, x)|

)
≥ crρ|zn(t, x)|2 for all (t, x) ∈ Ωn(ρ, r).
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From (3.15), we have

C ≥
∫∫

Ωn(0,ρ)
F̂ (εx, |zn|) dxdt+ crρ

∫∫
Ωn(ρ,r)

|zn|2 dxdt

+ d(r) · meas{Ωn(r,∞)}.

Remark that the above estimate shows meas{Ωn(r,∞)} ≤ C/d(r)→ 0 as r →∞
uniformly in n, and for any fixed 0 < ρ < r∫∫

Ωn(ρ,r)
|vn|2 dxdt =

1

‖zn‖2

∫∫
Ωn(ρ,r)

|zn|2 dxdt ≤
C

crρ‖zn‖2
→ 0

as n→∞.
Now let us choose 0 < δ < `/3. By (F1) there is ρδ > 0 such that

fε(x, s) <
δ

C2

for all x ∈ RN and s ∈ [0, ρδ]. Consequently,∫∫
Ωn(0,ρδ)

fε(x, |zn|)|vn| · |v+
n − v−n | dxdt ≤

δ

C2
|vn|22 ≤ δ

for all n. Recall that, by (H1), (H ′3)(i) and the definition of F , there exists C̃ > 0
such that 0 ≤ f(x, z) ≤ C̃ for all (x, z). Using Hölder inequality we can take rδ
so large that ∫∫

Ωn(rδ,∞)
fε(x, |zn|)|vn| · |v+

n − v−n | dxdt

≤ C̃
∫∫

Ωn(rδ,∞)
|vn| · |v+

n − v−n | dxdt

≤ C̃ · meas{Ωn(rδ,∞)}1/(N+2) · |vn|2 · |v+
n − v−n |2∗

≤ C̃ ′ · meas{Ωn(rδ,∞)}1/(N+2) ≤ δ

for all n. Moreover, there is n0 such that∫∫
Ωn(ρδ,rδ)

fε(x, |zn|)|vn| · |v+
n − v−n | dxdt

≤ C̃
∫∫

Ωn(ρδ,rδ)
|vn| · |v+

n − v−n | dxdt

≤ C̃ · |vn|2
(∫∫

Ωn(ρδ,rδ)
|vn|2 dxdt

)1/2

≤ δ

for all n ≥ n0. Therefore, for n large enough, we have∫
R

∫
RN

fε(x, |zn|)|vn| · |v+
n − v−n | dxdt ≤ 3δ < `,
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which is impossible. Hence, the boundedness of {zn} is verified.

The next step is concerned with the G -weak compactness of the (C)c-sequence
{zn}, c 6= 0. Keep in mind that ε > 0 is now fixed (which implies Λε is a bounded
domain in RN ), let us choose ϕ ∈ C∞c (RN ) such that Λε ⊂ suppϕ and

ϕ(x) =

{
1 x ∈ Λε,

0 x 6∈ N1(Λε),

where N1(Λε) := {x ∈ RN : dist(x,Λε) < 1}. Denote by z′n = ϕ · zn, we have
{z′n} is a bounded sequence in E since {zn} is bounded. We claim that there exist
{gn} ⊂ G := R and t0, δ0 > 0 such that

(3.19)
∫ gn+t0

gn−t0

∫
N1(Λε)

|z′n|2 dxdt ≥ δ0 for all n ≥ 1.

Then, from the compact embeddingE ↪→ L2
loc, we have the new sequence {gn?zn}

possesses a subsequence converge weakly to a point in E \ {0} (here we used the
inequality |zn| ≥ |z′n|).

To prove (3.19), let us assume by contradiction that

lim
n→∞

sup
g∈R

∫ g+r

g−r

∫
N1(Λε)

|z′n|2 dxdt = 0 for any r > 0.

Since Λε is bounded, jointly with the definition of z′n, we see that {z′n} is vanishing.
By Lion’s concentration compactness principle [19], we have |z′n|q → 0 for all
q ∈ (2, 2(N + 2)/N). By virtue of (3.14), (3.16) and the definition of F , we have

1− |V |∞
4

‖zn‖2

≤
∫∫
{(t,x)∈R×Λε: |zn|≥r1}

fε(x, |zn|)|zn| · |z+
n − z−n | dxdt+ o(1)

≤
∫∫
{(t,x)∈R×N1(Λε): |z′n|≥r1}

fε(x, |z′n|)|z′n| · |z+
n − z−n | dxdt+ o(1).

Remark that the above estimate holds for both super and asymptotic quadratic non-
linearities, moreover, there must exist C0 > 0 and p0 ∈ (2, 2(N + 2)/N) such that

|f(x, s)| ≤ C0s
p0−2 for all x ∈ RN and s ≥ r1.

Indeed, one may choose p0 = p for the super quadratic nonlinearity and p0 = q
for any q ∈ (2, 2(N + 2)/N) for the asymptotic quadratic nonlinearity. Then,
by Hölder inequality and the fact |z′n|q → 0 for all q ∈ (2, 2(N + 2)/N), we
have zn → 0 in E as n → ∞ which implies Φε(zn) → 0. This contradicts our
assumption: {zn} is a (C)c-sequence with c 6= 0.
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3.1.5 The autonomous limit system

What remains is to check under the assumptions (H1), (H2) and either (H3) or
(H ′3), the functional Φ0 admits a critical value

c0 = inf
e∈E+\{0}

sup
z∈Ee

Φ0(z) <∞

where Ee = R+e⊕ E−.
In what follows, let us consider the autonomous system

(3.20)

{
∂tu = ∆xu− u− µv +Hv(u, v)

−∂tv = ∆xv − v − µu+Hu(u, v)

for µ ∈ (−1, 1). Remark that H(ξ) =
∫ |ξ|

0 g(s)s ds for ξ ∈ R2M , it is evident that
(3.20) can be rewritten as

Lz + µz = g(|z|)z

for z = (u, v). The solutions to (3.20) are critical points of the G ′-invariant energy
functional

Tµ :=
1

2

(
‖z+‖2 − ‖z−‖2

)
+
µ

2

∫
R

∫
RN
|z|2 dxdt−Ψ0(z)

defined for z = z+ + z− ∈ E = E+ ⊕E−. It is obvious, for the case µ = V0, we
have TV0

coincide with Φ0. For notation convenience, let us denote

Kµ :=
{
z ∈ E \ {0} : T ′µ(z) = 0

}
and γµ := inf

{
Tµ(z) : z ∈ Kµ

}
.

We state, in the two following propositions, some known results about the existence
of solutions of (3.20) that will be used in the sequel.

Proposition 3.6. Let (H1) and (H3) hold. Then the super quadratic nonlinear
system (3.20) has a nontrivial solution z which lies in Br(R × RN ,R2M ) for all
r ≥ 2.

Proposition 3.7. Let (H1) and (H ′3) hold. Then the asymptotic quadratic nonlin-
ear system (3.20) has a nontrivial solution z which lies in Br(R × RN ,R2M ) for
all r ≥ 2.

Proposition 3.6 and Proposition 3.7 are obtained just collecting the results in
[12] (see e.g. Theorem 8.1 and Theorem 8.6). The proofs of the above two propo-
sitions can be done, by applying the linking theorems associate with the strongly
indefinite functionals.

For fixed v ∈ E+, let φv : E− → R be defined by φv(w) = Tµ(v + w). We
infer

(3.21) φv(w) ≤ 1 + |µ|
2
‖v‖2 − 1− |µ|

2
‖w‖2.
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Moreover, we have, for any w, z ∈ E−,

(3.22)
φ′′v(w)[z, z] = −‖z‖2 − µ

∫
R

∫
RN
|z|2 dxdt−Ψ′′0(v + w)[z, z]

≤ −(1− |µ|)‖z‖2.

This is due to the fact that Ψ0 is convex. A direct consequence of (3.21) and (3.22),
there exists a unique bounded C1 mapping Jµ : E+ → E− such that

Tµ

(
v + Jµ(v)

)
= max

w∈E−
Tµ(v + w).

We omit the proof for the boundedness and C1 property of Jµ since a specific
proof under more abstract settings will be presented in Section 4.

Let us consider a new functional defined by

Rµ : E+ → R, Rµ(v) = Tµ

(
v + Jµ(v)

)
.

We remark that critical points of Rµ and Tµ are in one-to-one correspondence via
the injective map v 7→ v + Jµ(v) from E+ into E (this will also be proved in
Section 4). Denoted by

Γµ =
{
ν ∈ C([0, 1], E+) : ν(0) = 0, Rµ(ν(1)) < 0

}
,

and consider the minimax schemes

d1
µ = inf

ν∈Γµ
max
t∈[0,1]

Rµ(ν(t)) and d2
µ = inf

v∈E+\{0}
max
t≥0

Rµ(tv),

we have the following useful result.

Lemma 3.8. For the autonomous system (3.20), assume (H1), (H2) and either
(H3) or (H ′3), there holds:

(1) γµ > 0 is attained, and γµ = d1
µ = d2

µ;

(2) if µ1 > µ2, then γµ1 > γµ2 .

Proof. To show (1), let {zn} ⊂ Kµ such that Tµ(zn) → γµ. Clearly {zn} is a
(C)γµ-sequence, and hence is bounded.

Claim. inf{‖z‖ : z ∈ Kµ} > 0.

Indeed, for z ∈ Kµ we have

0 = ‖z‖2 + µ

∫
R

∫
RN

z · (z+ − z−) dxdt−Ψ0(z)(z+ − z−).

Using (H1), for δ > 0 small,

(1− |µ|)‖z‖2 ≤ Ψ0(z)(z+ − z−) ≤ δ|z|22 + Cδ|z|2
∗

2∗
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where 2∗ = 2(N + 2)/N . This implies ‖z‖2 ≤ C ′δ‖z‖2
∗

or equivalently C ′′δ ≤
‖z‖2∗−2, and hence the claim is proved.

It is quite standard to check γµ ≥ 0, and if γµ = 0 we soon have

(3.23) (1−|µ|)‖zn‖2 ≤ Ψ0(zn)(z+
n −z−n ) =

∫
R

∫
RN

g(|zn|)zn ·(z+
n −z−n ) dxdt,

and

(3.24) o(1) = Tµ(zn) = Tµ(zn)− 1

2
T ′µ(zn)zn =

∫
R

∫
RN

Ĝ(|zn|) dxdt.

For the super quadratic nonlinearity, argue similarly as Lemma 3.5 (see Case 1),
we have

1− |µ|
4
‖zn‖2

≤
(∫∫

{(t,x)∈R×Λε: |zn|≥r1}

(
g(|zn|)|zn|

)σ
dxdt

)1/σ

|z+
n − z−n |p + o(1)

≤C
(∫

R

∫
RN

Ĝ(|zn|) dxdt
)1/σ

‖zn‖+ o(1).

Together with (3.24), we deduce ‖zn‖ → 0 as n→∞which is a contradiction. For
the asymptotic quadratic nonlinearity, it follows from (3.23) and infn≥1 ‖zn‖ > 0
that {zn} is non-vanishing. Since Tµ is G ′-invariant, up to a translation, we can
assume zn ⇀ z0 ∈ Kµ. Since, by assumption (H ′3), Ĝ(|z|) ≥ 0 for all z ∈ R2M ,
one has (by Fauto’s lemma)

∫∫
Ĝ(|z0|) dxdt = 0. This contrary to that z0 6= 0.

The proof above gives that {zn} is an non-vanishing sequence in Kµ such that
Tµ(zn) → γµ. By the concentration-compactness principle and the G ′-invariance
of Tµ. a standard argument shows γµ is attained.

By noting that γµ is also the ground state energy of Rµ, it is not difficult to
check that γµ ≤ d1

µ ≤ d2
µ. To prove d2

µ ≤ γµ we note that: for v ∈ E+ \ {0},
the function t 7→ Rµ(tv) has at most one nontrivial critical point t = t(v) > 0
which (if exists) will be the maxima point (this fact will be proved in Lemma 4.6
in Section 4). So, denoted by

Mµ :=
{
t(v)v : v ∈ E+ \ {0}, t(v) <∞

}
,

we have Mµ 6= ∅ due to γµ is attained. Meanwhile, we notice

d2
µ = inf

v∈Mµ

Rµ(v).

Remark that, for z ∈ Kµ with Tµ(z) = γµ, we soon have Rµ(tz+)→ −∞ thanks
to Lemma 3.3 and Lemma 3.4 and z+ ∈ Mµ with R(z+) = γµ. Therefore, we
deduce d2

µ ≤ R(z+) = γµ.
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Finally (2) comes directly because, let z ∈ Kµ1 be such that Tµ1(z) = γµ1 ,
we obtain z+ is a critical point of Rµ1 and γµ1 = Rµ1(z+) = maxt≥0 Rµ1(tz+).
Let τ > 0 be such that Rµ2(τz+) = maxt≥0 Rµ2(tz+), we deduce

γµ1 = Rµ1(z+) = max
t≥0

Rµ1(tz+)

≥ Rµ1(τz+) = Tµ1

(
τz+ + Jµ1(τz+)

)
≥ Tµ1

(
τz+ + Jµ2(τz+)

)
= Tµ2

(
τz+ + Jµ2(τz+)

)
+
µ1 − µ2

2

∣∣τz+ + Jµ2(τz+)
∣∣2
2

= Rµ2(τz+) +
µ1 − µ2

2

∣∣τz+ + Jµ2(τz+)
∣∣2
2

≥ γµ2 +
µ1 − µ2

2

∣∣τz+ + Jµ2(τz+)
∣∣2
2
,

which ends the proof.

Remarkably, the definition of Jµ implies

Rµ(te) = Tµ

(
te+ Jµ(te)

)
= max

w∈E−
Tµ(te+ w)

and therefore

sup
t≥0

Rµ(te) = sup
t≥0

max
w∈E−

Tµ(te+ w) = sup
z∈Ee

Tµ(z).

By taking infimum with respect to e ∈ E+ \ {0}, we have

γµ = inf
e∈E+\{0}

sup
z∈Ee

Tµ(z).

And therefore, for the case µ = V0, we have Φ0 admits the critical value

c0 = inf
e∈E+\{0}

sup
z∈Ee

Φ0(z) <∞

as required.

3.2 Proof of Theorem 1.1

From the arguments in the preceding subsection, applying Theorem 2.4, we obtain
the following proposition:

Proposition 3.9. Assume (V ), (H1), (H2) and either (H3) or (H ′3). For all ε > 0
small, the modified functional Φε admits a critical value which can be character-
ized by

cε = inf
e∈E+\{0}

sup
z∈Ee

Φε(z).

Moreover, cε is the ground state for each Φε and cε ≤ c0 + o(1) as ε→ 0 with

c0 = inf
e∈E+\{0}

sup
z∈Ee

Φ0(z).
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Next, we shall devote to show the concentration phenomenon with additionally
assuming

c = min
x∈Λ

V (x) < min
x∈∂Λ

V (x).

It is worth pointing out that the method of proving Proposition 3.9 carries more
information on the ranges of cε. In fact the proof strongly depended on the as-
sumption that 0 ∈ Λ, and however, the value of V (0) is irrelevant. Let {xε} be
a family of points in Λε so chosen that Vε(xε) = c, and consider the associated
equation

(3.25) Lz + V̂ε(x)z = fε(x+ xε, |z|)z

with energy functional Φ̂ε : E → R being written as

Φ̂ε(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫
R

∫
RN

V̂ε(x)|z|2 dxdt

−
∫
R

∫
RN

Fε(x+ xε, |z|) dxdt

where V̂ε(x) = V
(
ε(x+ xε)

)
. Noting that let zε ∈ E be the solution to

Lz + Vε(x)z = f(x, |z|)z

with energy Φε(zε) = cε and set wε(t, x) = zε(t, x + xε), it is a simple matter
to see that wε solves (3.25) with Φ̂ε(wε) = Φε(zε) = cε. Remark that V̂ε(x) →
Vε(xε) = c uniformly on bounded sets of x as ε → 0, it is clear that Theorem 2.4
works for the new family {Φ̂ε}ε>0 ∪ {Tc}. Summarizing, we have the following
characterization on the ranges of cε.

Lemma 3.10. Let cε be given in Proposition 3.9. There holds

lim sup
ε→0

cε ≤ γc.

Thanks to the above observation, there is no loss of generality in assuming
V0 := V (0) = c. For ease of notations, let us denote

Kε :=
{
z ∈ E \ {0} : Φ′ε(z) = 0

}
, Lε :=

{
z ∈ Kε : Φε(z) = cε

}
,

and
A :=

{
x ∈ Λ : V (x) = V0

}
.

Then we have:

Lemma 3.11. Under the assumptions of Theorem 1.1, for all ε > 0 small and zε ∈
Lε, the time-dependent process |zε(t, ·)| possesses a (global) maximum xε ∈ Λε
such that

lim
ε→0

V (εxε) = cε.

Moreover, by setting wε(t, x) = zε(t, x+xε), we must have |wε| decays uniformly
at infinity and {wε} converges in B2(R× RN ,R2M ) to a ground state solution to

Lz + c z = g(|z|)z.
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Proof. Our proof starts with the observation that the family {zε}ε>0 is bounded
(see an argument of Lemma 3.5). In what follows, the proof will be divided into
six steps.

Step 1. {zε} is non-vanishing.
Suppose contrarily that

sup
(t,x)∈R×RN

∫ t+R

t−R

∫
BR(x)

|zε|2 dxdt→ 0 as ε→ 0

for all R > 0. Then, by Lion’s concentration compactness principle [19], we have
|zε|q → 0 for all q ∈ (2, 2(N + 2)/N). Noting that, as argued in Lemma 3.5, there
must exist C0 > 0 and p0 ∈ (2, 2(N + 2)/N) such that

|f(x, s)| ≤ C0s
p0−2 for all x ∈ RN and s ≥ r1

for r1 > 0 fixed small enough. We soon have

1− |V |∞
4

‖zε‖2 ≤
∫∫
{(t,x)∈R×RN : |zε|≥r1}

fε(x, |zε|)|zε| · |z+
ε − z−ε | = o(1),

which implies Φε(zε)→ 0, a contradiction.
Step 2. {χΛε

· zε} is non-vanishing, that is: there exist (tε, xε) ∈ R × Λε and
constants R, δ > 0 such that∫ tε+R

tε−R

∫
BR(xε)

|χΛε
· zε|2 ≥ δ.

Indeed, if {χΛε
· zε} vanishes, by virtue of Step 1 we have {(1 − χΛε

) · zε} is
non-vanishing. Then there exist (tε, xε) ∈ R× (RN \ Λε) and constants R, δ > 0
such that ∫ tε+R

tε−R

∫
BR(xε)

|zε|2 ≥ δ.

Let us denote by wε(t, x) = zε(t, x+ xε), then wε satisfies

(3.26) Lwε + V̂ε(x)wε = fε(x+ xε, |wε|)wε

where V̂ε(x) := V
(
ε(x + xε)

)
. Additionally, wε ⇀ w 6= 0 in E and wε → w in

Lqloc for q ∈ [1, 2(N+2)/N). Remark that {χΛε
·zε} vanishes implies χΛε

·zε ⇀ 0
in Lq for all q ∈ (2, 2(N + 2)/N). Now assume without loss of generality that
V (εxε) → V∞, using ψ ∈ C∞c (R × RN ,R2M ) as a test function in (3.26), one
gets

0 = lim
ε→0

∫
R

∫
RN

(
Lwε + V̂ε(x)wε − fε(x+ xε, |wε|)wε

)
· ψ dxdt

=

∫
R

∫
RN

(
Lw + V∞w − (1− χ∞)g̃(|w|)w

)
· ψ dxdt
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where χ∞ is either a characteristic function of a half-space of RN provided

lim sup
ε→0

dist(xε, ∂Λε) < +∞

or χ∞ ≡ 0 (since Λ is an open set with smooth boundary, this can be see by the
fact χΛ(ε(· + xε)) converges pointwise a.e. on RN to χ∞(·) and xε ∈ RN \ Λε).
Hence w solves

(3.27) Lw + V∞w = (1− χ∞)g̃(|w|)w.

However, using the test function w+ − w− in (3.27), we have (with (F3))

0 = ‖w‖2 + V∞

∫
R

∫
RN

w · (w+ − w−) dxdt

−
∫
R

∫
RN

(1− χ∞)g̃(|w|)w · (w+ − w−) dxdt

≥‖w‖2 − |V |∞‖w‖2 −
1− |V |∞

2
‖w‖2

=
1− |V |∞

2
‖w‖2.

Therefore, we have w = 0 a contradiction.
Step 3. Let xε ∈ RN and R, δ > 0 be such that∫

R

∫
BR(xε)

|χΛε
· zε|2 dxdt ≥ δ.

Then εxε → A .
First, by virtue of Step 2, we can conclude such xε do exist and we can choose

xε ∈ Λε (i.e. εxε ∈ Λ). Suppose that, up to a subsequence, εxε → x0 ∈ Λ as
ε → 0. Again, set wε(t, x) = zε(t, x + xε), we have wε ⇀ w 6= 0 in E and w
satifies

(3.28) Lw + V (x0)w = f∞(x, |w|)w,

where f∞(x, s) = χ∞g(s) + (1 − χ∞)g̃(s) and χ∞ is either a characteristic
function of a half-space of RN provided

lim sup
ε→0

dist(xε, ∂Λε) < +∞

or χ∞ ≡ 1 (this is because xε ∈ Λε). Denote by S∞ the associate energy func-
tional to (3.28):

S∞ :=
1

2

(
‖z+‖2 − ‖z−‖2

)
+
V (x0)

2
|z|22 −Ψ∞(z),

where
Ψ∞(z) :=

∫
R

∫
RN

F∞(x, |z|) dxdt.
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By noting that Ψ∞(z) ≤ Ψ0(z) (thanks to the definition of g̃), we have

S∞(z) ≥ TV (x0)(z) = TV0
(z) +

V (x0)− V0

2
|z|22 for all z ∈ E.

Remark that Ψ∞ is convex, and furthermore, as argued in the preceding subsection,
for z ∈ E \ {0} and w ∈ E we have(

Ψ′′∞(z)[z, z]−Ψ′∞(z)z
)

+ 2
(
Ψ′′∞(z)[z, w]−Ψ′∞(z)w

)
+ Ψ′′∞(z)[w,w] > 0.

Let us define (as in proving Lemma 3.8) h∞ : E+ → E− and I∞ : E+ → R by

S∞
(
v + h∞(v)

)
= max

z∈E−
S∞(v + z),

I∞(v) = S∞
(
v + h∞(v)

)
.

Since we already havew 6= 0 is a critical point of S∞, we then inferw+ is a critical
point of I∞ and I∞(w+) = maxt≥0 I∞(tw+) (the proof is similar to the case in
Lemma 3.8). Let τ > 0 be such that RV0

(τw+) = maxt≥0 RV0
(tw+), we deduce

(3.29)

S∞(w) = I∞(w+) = max
t≥0

I∞(tw+)

≥ I∞(τw+) = S∞
(
τw+ + h∞(τw+)

)
≥S∞

(
τw+ + JV0

(τw+)
)
≥ TV0

(
τw+ + JV0

(τw+)
)

+
V (x0)− V0

2

∣∣τw+ + JV0
(τw+)

∣∣2
2

= RV0
(τw+) +

V (x0)− V0

2

∣∣τw+ + JV0
(τw+)

∣∣2
2

≥ γV0
+
V (x0)− V0

2

∣∣τw+ + JV0
(τw+)

∣∣2
2
.

On the other hand, by Fatou’s lemma, we find

lim inf
ε→0

cε = lim inf
ε→0

(
Φε(zε)−

1

2
Φ′ε(zε)zε

)
= lim inf

ε→0

∫
R

∫
RN

F̂ε(x, |zε|) dxdt

= lim inf
ε→0

∫
R

∫
RN

F̂ε(x+ xε, |wε|) dxdt

≥
∫
R

∫
RN

F̂∞(x,w) dxdt

= S∞(w)− 1

2
S′∞(w)w = S∞(w),

where F̂∞(x, s) := 1
2f∞(x, s)s2−F∞(x, s) for (x, s) ∈ RN ×R+. Therefore, to-

gether with (3.29), we have lim infε→0 cε ≥ γV0
and lim infε→0 cε > γV0

provided
V (x0) 6= V0. Recall we have assumed that V0 = c, and from the fact cε ≤ γc+o(1)
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as ε → 0, we soon conclude that cε → γV0
, and moreover, x0 ∈ A and χ∞ ≡ 1

(that is f∞(x, s) ≡ g(s)).
Step 4. Let wε be defined in Step 3, then wε → w in E.
It suffices to prove that there is a subsequence {wεj} such that wεj → w in E.

Recall that, as the argument shows, w is a ground state solution to

(3.30) Lw + V0w = g(|w|)w

and
lim
ε→0

∫
R

∫
RN

F̂ε(x+ xε, |wε|) dxdt =

∫
R

∫
RN

Ĝ(|w|) dxdt.

Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if s ≤ 1,
η(s) = 0 if s ≥ 2. Define w̃j(t, x) = η(2|(t, x)|/j)w(t, x) (here, and in the
sequel, by |(t, x)| we mean the Euclid norm on R× RN ). One has

(3.31) ‖w̃j − w‖ → 0 and |w̃j − w|q → 0 as j →∞

for q ∈ [2, 2(N + 2)/N ]. Set Bd :=
{

(t, x) ∈ R× RN : |(t, x)| ≤ d
}

for d > 0.
We have that there possesses a subsequence {wεj} such that: for any δ > 0 there
exists rδ > 0 satisfying

lim sup
j→∞

∫∫
Bj\Br

|wεj |q dxdt ≤ δ

for all r ≥ rδ (see an argument of [12, Lemma 5.7]). Here we shall use

q =

{
p for the super quadratic case,

2 for the asymptotically quadratic case,

where p ∈ (2, 2(N + 2)/N) is the constant in condition (H2). Denote vj =
wεj − w̃j , we remark that {vj} is bounded in E and

(3.32)
lim
j→∞

∣∣∣∣ ∫
R

∫
RN

Fεj (x+ xεj , |wεj |)− Fεj (x+ xεj , |vj |)

− Fεj (x+ xεj , |w̃j |) dxdt
∣∣∣∣ = 0

and

(3.33)
lim
j→∞

∣∣∣∣ ∫
R

∫
RN

[
fεj (x+ xεj , |wεj |)wεj − fεj (x+ xεj , |vj |)vj

− fεj (x+ xεj , |w̃j |)w̃j
]
· ϕdxdt

∣∣∣∣ = 0

uniformly in ϕ ∈ E with ‖ϕ‖ ≤ 1 (analysis similar to that in the proof of [12,
Lemma 7.10]). Using the decay of w and the fact that V̂εj (x) → V0, Fεj (x +
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xεj , |w|) → G(|w|) as j → ∞ uniformly on any bounded set of x, one checks
easily the following∫

R

∫
RN

V̂εj (x)wεj · w̃j dxdt→
∫
R

∫
RN

V0 · |w|2 dxdt,∫
R

∫
RN

Fεj (x+ xεj , |w̃j |) dxdt→
∫
R

∫
RN

G(|w|) dxdt.

Recall that wεj solves

(3.34) Lwεj + V̂εj (x)wεj = fε(x+ xε, |wεj |)wεj ,

denote Φ̂ε to be the associate energy functional of (3.34), we obtain

Φ̂εj (vj) = Φ̂εj (wεj )− S∞(w)

+

∫
R

∫
RN

Fεj (x+ xεj , |wεj |)− Fεj (x+ xεj , |vj |)

− Fεj (x+ xεj , |w̃j |) dxdt+ o(1)

= o(1)

as j →∞, which implies that Φ̂εj (vj)→ 0. Similarly,

Φ̂′εj (vj)ϕ =

∫
R

∫
RN

[
fεj (x+ xεj , |wεj |)wεj − fεj (x+ xεj , |vj |)vj

− fεj (x+ xεj , |w̃j |)w̃j
]
· ϕdxdt+ o(1)

= o(1)

as j →∞ uniformly in ‖ϕ‖ ≤ 1, which implies Φ̂′εj (vj)→ 0. Therefore,

(3.35) o(1) = Φ̂εj (vj)−
1

2
Φ̂′εj (vj)vj =

∫
R

∫
RN

F̂εj
(
x+ xεj , |vj |) dxdt.

Owning to (F6) and the regularity result (see Corollary A.4 and Lemma A.5), one
has {|vj |∞} is bounded and for any fixed r > 0 there holds∫

R

∫
RN

F̂εj
(
x+ xεj , |vj |

)
dxdt ≥ Cr

∫∫
{(t,x)∈R×RN : |vj |≥r}

|vj |2 dxdt

for some constant Cr depends only on r. Hence∫∫
{(t,x)∈R×RN : |vj |≥r}

|vj |2 dxdt→ 0
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as j → ∞ for any fixed r > 0. Notice {|vj |∞} is bounded, as a consequence, we
get

(1− |V |∞)‖vj‖2 ≤‖vj‖2 +

∫
R

∫
RN

V̂εj (x)vj · (v+
j − v

−
j )

= Φ̂′εj (vj)(v
+
j − v

−
j )

+

∫
R

∫
RN

fεj
(
x+ xεj , |vj |

)
vj · (v+

j − v
−
j )

≤ o(1) +
1− |V |∞

2
‖vj‖2

+ C∞

∫∫
{(t,x)∈R×RN : |vj |≥r}

|vj | · |v+
j − v

−
j |

≤ o(1) +
1− |V |∞

2
‖vj‖2 ,

that is, ‖vj‖ → 0 as j →∞. Together with (3.31) we get wεj → w in E.
Step 5. wε → w in B2(R× RN ,R2M ) as ε→ 0.
To prove this, we only need to show that |L(wε−w)|2 → 0 as ε→ 0 (this can

be seen from that |Lz|2 for z ∈ B2 defines a equivalent norm on B2). By (3.30)
and (3.34), we obtain

L(wε − w) = fε
(
x+ xε, |wε|

)
wε − g(|w|)w −

(
V̂ε(x)wε − V0w

)
.

Using the result in Step 4 and the uniform L∞ estimate, it is easy to check that
|L(wε − w)|2 → 0 as ε→ 0.

Step 6. wε(t, x)→ 0 as |(t, x)| → ∞ uniformly for all small ε.
To show this, let us remark that: for wε = (w1

ε , w
2
ε) : R× RN → R2M solves

(3.34), if denoted by ŵε(t, x) =
(
w1
ε(t, x), w2

ε(−t, x)
)
, it is clear that ŵε satisfies

a equation of the form

∂tŵε −∆xŵε + ŵε = f̂ε(t, x) in R× RN .

By virtue of Lemma A.5, we have f̂ε ∈ Lq for all q ≥ 2. According to Step 5 and
the interpolation theory, we have wε → w in Br(R×RN ,R2M ) for all q ≥ 2. So,
an easy calculation shows f̂ε → f̂0 in Lq for some f0 and all q ≥ 2. Then an trivial
application of Corollary A.4 shows that |ŵε(t, x)| → 0 as |(t, x)| → ∞, which
yields the uniformly decay property of {wε} as required.

Now, by collecting all the results proved in Step 1-6, we have the lemma
proved.

Now, we are ready to prove our main results.

Proof of Theorem 1.1. We follow the notation used in Lemma 3.11 and define

z̃ε(t, x) = zε(t, x/ε) and yε = εxε.
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Then z̃ε = (ũ, ṽ) is a solution of
∂tu = ε2∆xu− u− V (x)v + f(x, |z|)v
−∂tv = ε2∆xv − v − V (x)u+ f(x, |z|)u

z = (u, v) ∈ B2(R× RN ,R2M )

for ε small. Since yε is the maximum point, and due to the fact

lim
R→∞
ε→0

‖zε(t, ·)‖L∞(RN\BR(xε)) = 0,

we have

(3.36) lim
R→∞
ε→0

‖z̃ε(t, ·)‖L∞(RN\BεR(yε)) = 0.

Noting that yε → A as ε→ 0, the assumption

min
Λ
V < min

∂Λ
V

and (3.36) implies: for ε > 0 sufficiently small, there holds |z̃ε(t, x)| < s0 provid-
ed x 6∈ Λ (here s0 > 0 is so chosen that g(s0) + g′(s0)s0 = 1−|V |∞

2 ). Therefore,
by the definition of F , we have F (x, |z̃ε|) = H(z̃ε) when ε > 0 is small enough.
Note that we have actually proved that z̃ε is a solution to (3.1) for all small ε, and
consequently the proof of the theorem is thereby completed by combing (3.36)
with Lemma 3.11.

4 Proof of the abstract theorem

In this section, we devote to prove Theorem 2.4, and assume in the proofs that all
the hypotheses in Theorem 2.4 hold. Observe that Ψε(z) ≥ 0 for all z ∈ E and
that (N1) yields

Ψ′′ε(z)[w,w] ≥ 0 for any w ∈ E.

This can be seen by the fact Ψε ∈ C2(E,R) and Ψε is convex for each ε ∈ E .
Note that by (I1) we have Φε(0) ≥ 0, which means Ψε(0) = 0. And condition
(N3) implies

(4.1) Ψε(z) =

∫ 1

0

∫ t

0
Ψ′′ε(sz)[z, z] dsdt ≤ C(κ, ‖z‖)‖z‖2, ∀z ∈ E

where C(κ, ‖z‖) > 0 is a constant depending only on the function κ and ‖z‖.
Consider ε ∈ E being fixed, we define the nonlinear functional φv : Y → R by

φv(w) = Φε(v + w) for v ∈ X.
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Notice that (A1) and (A2) implies supε∈E ‖Aε‖ ≤ θ < 1, we infer

(4.2) φv(w) ≤ 1 + θ

2
‖v‖2 − 1− θ

2
‖w‖2.

Moreover, by taking derivatives, we have

(4.3)
φ′′v(w)[z, z] = −‖z‖2 + 〈Aεz, z〉 −Ψ′′ε(v + w)[z, z]

≤ −(1− θ)‖z‖2

for any w, z ∈ Y .
As a consequence of (4.2) and (4.3), φv is strictly concave and φv(w) → −∞

as ‖w‖ → ∞. It follows from the weak upper semi-continuity of φv that there is
unique strict maximum point hε(v) for φv, which we can easily confirm to be the
only critical point of φv on Y . The uniquely defined map hε : X → Y can be seen
as a reduction of Φε on X satisfying

(4.4) Φε

(
v + hε(v)

)
= φv

(
hε(v)

)
= max

w∈Y
φv(w) = max

w∈Y
Φε(v + w).

It follows from (4.4)

0 ≤Φε

(
v + hε(v)

)
− Φε(v)

= − 1

2
‖hε(v)‖2 +

1

2
〈Aε(v + hε(v)), v + hε(v)〉 −Ψε

(
v + hε(v)

)
− 1

2
〈Aεv, v〉+ Ψε(v)

≤ − 1

2
‖hε(v)‖2 +

θ

2
‖hε(v)‖2 +

θ

2
‖v‖2 +

θ

2
‖v‖2 + Ψε(v)

for v ∈ X . Hence

‖hε(v)‖2 ≤ 2θ

1− θ
‖v‖2 +

2

1− θ
Ψε(v)

and the boundedness of Ψε (see (4.1)) implies that of hε. If v ∈ X and g ∈ G , we
have by invariance of Φε and by (4.4)

Φε

(
gv + hε(gv)

)
= Φε

(
v + g−1hε(gv)

)
≤ Φε

(
v + hε(v)

)
= Φε

(
gv + ghε(v)

)
≤ Φε

(
gv + hε(gv)

)
.

Therefore, we conclude

Φε

(
gv + ghε(v)

)
= Φε

(
gv + hε(gv)

)
which together with (4.4) implies that g ◦ hε = hε ◦ g, i.e. hε is G -equivariant.

Next we define π : X × Y → Y by

π(v, w) = P Y ◦ R ◦ Φ′ε(v + w) = P Y ◦ ∇Φε(v + w)
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where P Y is the projection and R : E∗ → E denotes the isomorphism induced
from the Riesz representation theorem. Observe that, for every v ∈ X , we derive
from the definition of hε:

0 = φ′v
(
hε(v)

)
w = Φ′ε

(
v + hε(v)

)
w for any w ∈ Y.

This implies

(4.5) π
(
v, hε(v)

)
= 0 for v ∈ X.

Notice that ∂wπ(v, w) = P Y ◦ R ◦ Φ′′ε(v + w)
∣∣
Y

is a bounded linear operator on
Y . And from (4.3), we infer ∂wπ(v, w) is an isomorphism with

(4.6)
∥∥∂wπ(v, w)−1

∥∥ ≤ 1

1− θ
∀v ∈ X.

Therefore (4.5) and (4.6) together with the implicit function theorem yield the u-
niquely defined map hε : X → Y is C1 smooth with

h′ε(v) = −∂wπ
(
v, hε(v)

)−1 ◦ ∂vπ
(
v, hε(v)

)
, ∀v ∈ X

where ∂vπ(v, w) = P Y ◦ R ◦ Φ′′ε(v + w)
∣∣
X

.
Now set

Iε : X → R, Iε(v) = Φε

(
v + hε(v)

)
.

We have Iε ∈ C1(X,R) is G -invariant. And we can conclude from the above
arguments that:

Proposition 4.1. Suppose (A1)-(A2), (N1) and (N3) are satisfied. Then Iε ∈
C1(X,R) for each ε ∈ E and critical points of Iε and Φε are in one-to-one cor-
respondence via the injective map v 7→ v + hε(v) from X to E. Moreover, if
{vn} ⊂ X is a (C)c-sequence of Iε, then {vn +hε(vn)} is a (C)c-sequence of Φε.

Remark 4.2. The second part of the above proposition may seen to be not so
obvious, however, by taking the derivative of Iε we have

I ′ε(v)w = Φ′ε
(
v + hε(v)

)(
w + h′ε(v)w

)
= Φ′ε

(
v + hε(v)

)
(w + y)

for all v, w ∈ X and y ∈ Y . And hence ‖I ′ε(v)‖X∗ =
∥∥Φ′ε

(
v + hε(v)

)∥∥
E∗ which

implies nothing but the second conclusion in Proposition 4.1. Let us mention here
that a reduction of a strongly indefinite functional to a functional on E+ is well
known under strong differentiability condition, see for example [21, 22]. In [21, 22]
a reduction in two steps has been performed: first to E+ and then to a Nehari
manifold on E+. However, since we are interested in the geometric situation (I2),
the so-called Nehari manifold is not defined for all direction in E+, this context
requires somewhat different arguments.
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In order to state our next result, we shall give another observation. Due to the
fact hε(v) is the unique critical point of φv on Y that, by setting z = w − hε(v)
for w ∈ Y and l(t) := Φε

(
v + hε(v) + tz

)
, we have l(1) = Φε(v + w), l(0) =

Φε

(
v + hε(v)

)
and l′(0) = 0. So, by l(1)− l(0) =

∫ 1
0 (1− s)l′′(s) ds, we deduce

Φε(v + w)− Φε

(
v + hε(v)

)
=

∫ 1

0
(1− s)Φ′′ε

(
v + hε(v) + sz

)
[z, z] ds

= −
∫ 1

0
(1− s)

(
‖z‖2 − 〈Aεz, z〉

)
ds

−
∫ 1

0
(1− s)Ψ′′ε

(
v + hε(v) + sz

)
[z, z] ds.

Consequently, we have

(4.7)
Φε

(
v + hε(v)

)
− Φε(v + w)

=
1

2
‖z‖2 − 1

2
〈Aεz, z〉+

∫ 1

0
(1− s)Ψ′′ε

(
v + hε(v) + sz

)
[z, z] ds

for all v ∈ X and w ∈ Y .

Lemma 4.3. Suppose (A1)-(A2) and (N1)-(N3). Then hε(v) → h0(v) in Y as
ε→ 0 for v ∈ X .

Proof. For ease of notations, set zε = v+hε(v), w = v+h0(v) and vε = zε−w.
It sufficient to show ‖vε‖ → 0 as ε→ 0.

Taking into account that

Φε(z) = Φ0(z) +
1

2
〈(Aε −A0)z, z〉 −

(
Ψε(z)−Ψ0(z)

)
, ∀z ∈ E

we infer

(4.8)

(
Φε(zε)− Φε(w)

)
+
(
Φ0(w)− Φ0(zε)

)
=

1

2
〈(Aε −A0)zε, zε〉 −

1

2
〈(Aε −A0)w,w〉+

(
Ψ0(zε)−Ψ0(w)

)
−
(
Ψε(zε)−Ψε(w)

)
.

Remark that

(4.9) Ψ0(zε)−Ψ0(w) = Ψ0(w)vε +

∫ 1

0
(1− s)Ψ′′0(w + svε)[vε, vε] ds,

(4.10) Ψε(zε)−Ψε(w) = Ψ′ε(w)vε +

∫ 1

0
(1− s)Ψ′′ε(w + svε)[vε, vε] ds,
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and by (4.7)

(4.11)
Φε(zε)− Φε(w)

=
1

2
‖vε‖2 −

1

2
〈Aεvε, vε〉+

∫ 1

0
(1− s)Ψ′′ε

(
zε − svε

)
[vε, vε] ds,

(4.12)
Φ0(w)− Φ0(zε)

=
1

2
‖vε‖2 −

1

2
〈A0vε, vε〉+

∫ 1

0
(1− s)Ψ′′0

(
w + svε

)
[vε, vε] ds.

We derived from (4.8)-(4.12) and the fact Ψε is convex for all ε ∈ E that

‖vε‖2 −
1

2
〈(Aε +A0)vε, vε〉

≤ 1

2
〈(Aε −A0)zε, zε〉 −

1

2
〈(Aε −A0)w,w〉+ Ψ′0(w)vε −Ψ′ε(w)vε

=
1

2
〈(Aε −A0)vε, vε〉+ 〈(Aε −A0)w, vε〉+ Ψ′0(w)vε −Ψ′ε(w)vε.

This implies

‖vε‖2 − 〈Aεvε, vε〉 ≤ 〈(Aε −A0)w, vε〉+ 〈ψ0(w)− ψε(w), vε〉 ,

and, from (A2) and (N2), we have

(1− θ)‖vε‖2 ≤ o(1)‖vε‖,

and thereby the proof is completed.

As a corollary of Lemma 4.3, we shall give a first relationship between Iε for
ε > 0 and I0 that is:

Corollary 4.4. Suppose (A1)-(A2) and (N1)-(N3) are satisfied. Iε(v) → I0(v)
as ε→ 0 for v ∈ X .

Proof. As in the proof of Lemma 4.3, we set zε = v + hε(v), w = v + h0(v) and
vε = zε − w for v ∈ X .

Recall the definition of Iε for ε ∈ E , by virtue of Lemma 4.3, we only need to
show that Ψε(zε)→ Ψ0(w) as ε→ 0. This can be seen by the fact

〈Aεzε, zε〉 = 〈A0w,w〉+ 〈(Aε −A0)w,w〉+O(‖vε‖)

and ‖vε‖ = o(1) as ε→ 0.

From (4.1), we have

(4.13) Ψε(zε) =

∫ 1

0
Ψ′ε(tzε)zε dt =

∫ 1

0

∫ t

0
Ψ′′ε(szε)[zε, zε] dsdt,
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(4.14) Ψ0(w) =

∫ 1

0
Ψ′0(tw)w dt =

∫ 1

0

∫ t

0
Ψ′′0(sw)[w,w] dsdt.

By virtue of (N3), we easily conclude the family {fε}, where

fε : [0, 1]→ R, fε(t) = Ψ′ε(tzε)zε,

is uniformly bounded and equicontinuous. Then, by Arzelà-Ascoli theorem, the
family {fε} is compact in C[0, 1]. Notice that zε → w in E as ε → 0, a standard
argument shows fε(t) → f0(t) pointwise on [0, 1] as ε → 0. Hence we have fε
converges to f0 in the C[0, 1] topology as ε shrinks. This together with (4.13) and
(4.14), we see that Ψε(zε) converges to Ψ0(w) as ε→ 0.

Next we shall give geometric structures of Iε for ε 6= 0. Recall that we assumed

(4.15) c0 = inf
e∈X\{0}

sup
z∈Ee

Φ0(z),

to be a critical value for Φ0, then our result will be:

Proposition 4.5. Under the assumptions of Theorem 2.4, for ε > 0 small enough,
Iε possesses the mountain-pass structure:

(1) Iε(0) = 0 and there exist r > 0 and τ > 0 (both independent of ε) such that
Iε|SXr ≥ τ .

(2) there exists v0 ∈ X (independent of ε) such that ‖v0‖ > r and Iε(v0) < 0.

Moreover,

(4.16) c′ε = inf
ν∈Γε

max
t∈[0,1]

Iε
(
ν(t)

)
is a critical value for Iε, where

Γε =
{
ν ∈ C([0, 1], X) : ν(0) = 0, Iε

(
ν(1)

)
< 0
}
.

Before giving the proof of Proposition 4.5, we shall give some equivalent char-
acterizations of the critical value of Φ0 defined in (4.15) which are essential in our
proofs. Set

c′0 = inf
ν∈Γ0

max
t∈[0,1]

I0

(
ν(t)

)
,

and
c′′0 = inf

e∈X\{0}
sup
t≥0

I0(te),

where Γ0 :=
{
ν ∈ C([0, 1], X) : ν(0) = 0, I0(ν(1)) < 0

}
.

Lemma 4.6. Suppose (A1)-(A2), (N1)-(N5) and (I1)-(I2) are satisfied. If c0 <
∞ is a critical value of Φ0, then c0 = c′0 = c′′0 .
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Proof. Obviously, by (I2) and c0 < ∞, it follows from the definition of I0 that
c′0 ≤ c′′0 ≤ c0. So, in what follows, we shall prove c0 ≤ c′0.

Claim 1. If v ∈ X \ {0} satisfies I ′0(v)v = 0, then I ′′0 (v)[v, v] < 0.

In order to verify Claim 1, we fist do some basic calculations. Recall that h0(v)
is the unique critical point of φv on Y for v ∈ X , we have

(4.17) −〈h0(v), y〉+
〈
A0

(
v + h0(v)

)
, y
〉
−Ψ′0

(
v + h0(v)

)
y = 0 ∀y ∈ Y.

Set z = v + h0(v) and w = h′0(v)v − h0(v), then

(4.18)

I ′0(v)v = ‖v‖2 −
〈
h0(v), h′0(v)v

〉
+
〈
A0

(
v + h0(v)

)
, v + h′0(v)v

〉
−Ψ′0

(
v + h0(v)

)(
v + h′0(v)v

)
= ‖v‖2 +

〈
A0

(
v + h0(v)

)
, v
〉
−Ψ′0

(
v + h0(v)

)
v

= ‖v‖2 − 〈h0(v), zY + y〉+
〈
A0

(
v + h0(v)

)
, z + y

〉
−Ψ′0

(
v + h0(v)

)
(z + y)

= Φ′0(z)(z + y)

for all y ∈ Y . Since (4.17) is valid for all v ∈ X , by taking derivative with respect
to v, we deduce

(4.19)
0 ≡ −

〈
−h′0(v)v, y

〉
+
〈
A0

(
v + h′0(v)v

)
, y
〉

−Ψ′′0
(
v + h0(v)

)[(
v + h′0(v)v

)
, y
]

for all y ∈ Y . So, choose y = zY + w = h′0(v)v in (4.19), we infer

I ′′0 (v)[v, v] = ‖v‖2 + 〈A0(z + w), v〉 −Ψ′′0(z)[z + w, v]

= ‖v‖2 − ‖zY + w‖2 − 〈A0(z + w), z + w〉
−Ψ′′0(z)[z + w, z + w]

= Φ′′0(z)[z + w, z + w].

Taking into account that Φ′0(z)z = I ′0(v)v = 0 (which follows from (4.18)), we
can conclude

I ′′0 (v)[v, v] = Φ′′0(z)[z + w, z + w]

= Φ′′0(z)[z, z] + 2Φ′′0(z)[z, w] + Φ′′0(z)[w,w]

= ‖zX‖2 − ‖zY ‖2 + 〈A0z, z〉 −Ψ′′0(z)[z, z]

+ 2
(
− 〈zY , w〉+ 〈A0z, w〉 −Ψ′′0(z)[z, w]

)
+
(
− ‖w‖2 + 〈A0w,w〉 −Ψ′′0(z)[w,w]

)
=
(
Ψ′0(z)z −Ψ′′0(z)[z, z]

)
+ 2
(
Ψ′0(z)w −Ψ′′0(z)[z, w]

)
−Ψ′′0(z)[w,w]− ‖w‖2 + 〈A0w,w〉

< 0

due to (N5) and z 6= 0.
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Let v ∈ X \ {0}, we find the function t 7→ I0(tv) has at most one nontrivial
critical point t = t(v) > 0 which (if exists) will be the maxima point. Denoted by

M =
{
t(v)v : v ∈ X \ {0}, t(v) < +∞

}
,

we have M 6= ∅ since c0 is a critical value of Φ0. We also observe that

c′′0 = inf
z∈M

I0(z),

moreover, by (I2) and M 6= ∅, we infer Γ0 6= ∅.

Claim 2. c′′0 = c0.

Let e ∈ M , then Φ′0
(
e + h0(e)

)∣∣
Ee

= 0 (recall Ee = R+e ⊕ Y ). Hence
c0 ≤ maxz∈Ee Φ0(z) = I0(e), which implies c0 ≤ c′′0 .

Claim 3. c′′0 ≤ c′0.

We only need to show that given ν ∈ Γ0 there exists t̄ ∈ [0, 1] such that
ν(t̄) ∈M . Assuming contrarily we have ν([0, 1]) ∩M = ∅. As a result of (I1),

I ′0(ν(t))ν(t) > 0 for t > 0 small.

Since the function t 7→ I ′0(ν(t))ν(t) is continuous and I ′0(ν(t))ν(t) 6= 0 for all
t ∈ (0, 1], we have

I ′0(ν(t))ν(t) > 0 for all t ∈ [0, 1].

Then we find by (N4)

I0(ν(t)) =
1

2
I0(ν(t))ν(t) + Ψ̂0

(
ν(t) + h0(ν(t))

)
≥ 1

2
I0(ν(t))ν(t) > 0

for all t ∈ (0, 1] which is absurd.
Combing Claim 1, Claim 2 and Claim 3, we have the assertion proved.

Proof of Proposition 4.5. Since we have Iε(v) ≥ Φε(v) for all v ∈ X , (1) follows
easily from (I1).

To check (2), let w = wX + wY ∈ E = X ⊕ Y be a critical point of Φ0 with
Φ0(w) = c0. Then, by virtue of Proposition 4.1, we have wY = h0

(
wX
)
. A direct

consequence of Lemma 4.6 is

c0 = I0

(
wX
)

= max
t≥0

I0

(
twX

)
,

and, by (I2), we can conclude there exists t0 > 0 (large enough) such that

I0

(
t0w

X
)
< −1.
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As a result of Corollary 4.4, we have

Iε
(
t0w

X
)

= I0

(
t0w

X
)

+ o(1)

≤ −1

2
+ o(1)

as ε→ 0. Therefore, there is ε0 > 0 such that Iε
(
t0w

X
)
< 0 for all ε ∈ (0, ε0].

As a consequence of the mountain-pass structure, we obtain a (C)c′ε-sequence
for Iε denoted by {vnε }∞n=1. By Proposition 4.1 and G -weak (C)c′ε-condition for
Φε, we conclude that there exists vε 6= 0 such that I ′ε(vε) = 0. Moreover, from
(N4), we have

(4.20)

c′ε = lim
n→∞

(
Iε(v

n
ε )− 1

2
I ′ε(v

n
ε )vnε

)
= lim

n→∞

(
Φε

(
vnε + hε(v

n
ε )
)
− 1

2
Φ′ε
(
vnε + hε(v

n
ε )
)(
vnε + hε(v

n
ε )
))

= lim
n→∞

(1

2
Ψ′ε
(
vnε + hε(v

n
ε )
)(
vnε + hε(v

n
ε )
)
−Ψε

(
vnε + hε(v

n
ε )
))

= lim
n→∞

Ψ̂ε

(
vnε + hε(v

n
ε )
)
≥ Ψ̂ε

(
vε + hε(vε)

)
= Iε(vε)−

1

2
I ′ε(vε)vε = Iε(vε) > 0.

Now set
c′′ε := inf

e∈X\{0}
sup
t≥0

Iε(te),

and recall we have already defined in Theorem 2.4 that

cε := inf
e∈X\{0}

sup
z∈Ee

Φε(z).

Let us repeat the proof of Claim 1 in Lemma 4.6, from which we can conclude:
let e ∈ X \ {0}, the function t 7→ Iε(te) has at most one nontrivial critical point
t = t(e) > 0 which (if exists) will be the maximum point.

Noting that (4.20) and vε ∈ X \ {0} is a critical point of Iε implies

c′′ε ≤ sup
t≥0

Iε(tvε) = Iε(vε) ≤ c′ε <∞.

And on the other hand, it is not difficult to check c′ε ≤ c′′ε . Hence we have c′ε = c′′ε .
Meanwhile, cε = c′′ε is much obvious since the definition of hε implies

Iε(te) = Φε

(
te+ hε(te)

)
= max

w∈Y
Φε(te+ w)

and therefore

sup
t≥0

Iε(te) = sup
t≥0

max
w∈Y

Φε(te+ w) = sup
z∈Ee

Φε(z).

By taking infimum with respect to e ∈ X \ {0}, we have cε = c′ε = c′′ε .
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Due to the above observation, if we have proved

(4.21) Iε(vε) ≥ c′′ε ,

then we can conclude Iε(vε) = c′ε immediately from (4.20).
In fact, let us set

Mε :=
{
t(v)v : v ∈ X \ {0}, 0 < t(v) <∞ such that I ′ε(t(v)v)v = 0

}
,

we infer that
c′′ε = inf

z∈Mε

Iε(z).

Since vε ∈Mε, (4.21) is obviously valid. And the proof is thereby completed.

As a by-product of the proof of Proposition 4.5 we have

Lemma 4.7. Let ε ∈ (0, ε0] be such that Proposition 4.5 is valid. Then cε = c′ε =
c′′ε characterize the ground state energy of Φε.

To complete our proof of Theorem 2.4, in what follows, we need to show the
asymptotic behaviour of the critical values found in Proposition 4.5.

Lemma 4.8. Let ε ∈ (0, ε0] be such that Proposition 4.5 is valid. Then cε ≤
c0 + o(1) as ε→ 0.

Proof. Again, Let w = wX + wY ∈ E = X ⊕ Y be the critical point of Φ0 such
that Φ0(w) = I0

(
wX
)

= c0. Set t0 > 0 such that I0

(
t0w

X
)
≤ −1. By virtue of

Lemma 4.6 and Lemma 4.7, it sufficient to prove

(4.22) Iε(tw
X) = I0(twX) + o(1) uniformly in t ∈ [0, t0]

as ε→ 0.
To this end, we only need to show the family {fε} ⊂ C[0, t0]

fε(t) := Iε(tw
X)

is uniformly bounded and equicontinuous. This can be seen from Corollary 4.4
that if {fε} is compact in the C[0, t0] topology then (4.22) is valid.

Clearly, fε ∈ C1 and the uniformly boundedness of {fε} and {f ′ε} on [0, t0]
comes easily from (A1)-(A2) and (N3). So, by Arzelà-Ascoli theorem, we have
{fε} is compact in the C[0, t0]. And therefore, by (4.22), we conclude

cε ≤ sup
t≥0

Iε(tw
X) = sup

t∈[0,t0]
Iε(tw

X) = sup
t∈[0,t0]

I0(twX) + o(1)

= sup
t≥0

I0(twX) + o(1) = I0(wX) + o(1)

= c0 + o(1)

as ε→ 0.
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Now, combining Proposition 4.5, Lemma 4.7 and Lemma 4.8 we summarize
the following result which together with Proposition 4.1 gives the complete proof
of Theorem 2.4.

Proposition 4.9. Under the assumptions of Theorem 2.4, for ε > 0 small, Iε pos-
sesses a nontrivial critical value which can be characterized by

cε = inf
e∈X\{0}

sup
t≥0

Iε(te).

Moreover, cε ≤ c0 + o(1) as ε→ 0.

A Appendix

We devote this appendix to some embedding results of t-Anisotropic Sobolev s-
paces and regularity results that were used in the text. For the following embedding
theorem, we refer the readers to [29, Theorem 1.4.1].

Definition A.1. A domain Ω ⊂ RN is said to have the property of uniform inner
cone, if there is a finite cone C such that every point x ∈ Ω is the vertex of a finite
cone Cx congruent with C.

We remark that Cx need not to be obtained from C by parallel translation, but
simply by rigid motion.

Before stating the embedding theorem, for given T1 < T2, 1 ≤ r < ∞ and
Ω ⊂ RN we define Q := (T1, T2)× Ω and

Br(Q) := W 1,r
(
(T1, T2), Lr(Ω)

)
∩ Lr

(
(T1, T2),W 2,r(Ω)

)
endowed with the usual norm

‖u‖Br(Q) =

(∫∫
Q

(
|u|r + |∂tu|r + |∇u|r +

∑
1≤i,j≤N

|∂2
iju|r

)
dxdt

)1/r

.

By Cα,α/2(Q), 0 < α < 1, we mean the space of all the functions on Q such that

‖u‖Cα,α/2(Q) := sup
(t,x)∈Q

|u(t, x)|+ sup
(t1,x1),(t2,x2)∈Q
(t1,x1)6=(t2,x2)

|u(t1, x1)− u(t2, x2)|
dα
(
(t1, x1), (t2, x2)

) <∞,

where d(·, ·) is the parabolic distance on R× RN defined by

d
(
(t1, x1), (t2, x2)

)
= max

{
|x1 − x2|, |t1 − t2|1/2

}
.

Theorem A.2 (t-Anisotropic Embedding Theorem). Let Ω ⊂ RN be a bounded
domain and 1 ≤ r <∞.
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(i) If Ω has the property of uniform inner cone, then, when r = (N + 2)/2,

Br(Q) ↪→ Lq(Q), 1 ≤ q <∞

and for any u ∈ Br(Q)

‖u‖Lq(Q) ≤ C(N, q,Q)‖u‖Br(Q), 1 ≤ q <∞;

when r < (N + 2)/2,

Br(Q) ↪→ Lq(Q), 1 ≤ q ≤ (N + 2)r

N + 2− 2r

and for any u ∈ Br(Q)

‖u‖Lq(Q) ≤ C(N, r,Q)‖u‖Br(Q), 1 ≤ q ≤ (N + 2)r

N + 2− 2r
.

(ii) If ∂Ω is appropriately smooth, then, when r > (N + 2)/2,

Br(Q) ↪→ Cα,α/2(Q), 0 < α ≤ 2− N + 2

r

and for any u ∈ Br(Q)

‖u‖Cα,α/2(Q) ≤ C(N, r,Q)‖u‖Br(Q), 0 < α ≤ 2− N + 2

r
.

Next we recall a regularity result which can be found in [17]. For this purpose
we set Bρ := {x ∈ RN : |x| < ρ} for any ρ > 0.

Theorem A.3 (Parabolic interior estimates). Let 1 < r < ∞, ρ > 0 and set
Qρ = (−ρ2, 0]×Bρ. If u ∈ Lr(Qρ) is a (weak) solution to

∂tu−∆u+ u = f in Qρ

with f ∈ Lr(Qρ). Then, for any 0 < σ < ρ,

‖u‖Br(Qσ,ρ) ≤ C(N, ρ, σ) ·
(
‖f‖Lr(Qρ) + ‖u‖Lr(Qρ)

)
,

where Qσ,ρ :=
(
− (ρ− σ)2, 0

]
×Bρ−σ.

Together with the embedding theorem, we have the following consequence.

Corollary A.4. Let N+2
2 < r < ∞,ρ > 0 and set Qρ = (−ρ2, 0] × Bρ. If

u ∈ Lr(Qρ) is a (weak) solution to

∂tu−∆u+ u = f in Qρ

with f ∈ Lr(Qρ). Then, for any 0 < σ < ρ,

‖u‖Cα,α/2(Qσ,ρ) ≤ C(N, r, ρ, σ) ·
(
‖f‖Lr(Qρ) + ‖u‖Lr(Qρ)

)
,

where 0 < α ≤ 2− N+2
r .
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Next, recall

Br = W 1,r
(
R, Lr(RN ,R2M )

)
∩ Lr

(
R,W 2,r(RN ,R2M )

)
for r ≥ 1

denotes the Banach space equipped with the norm ‖ · ‖Br defined in (1.6) and
Lr := Lr(R × RN ,R2M ) is equipped with the usual Lr norm. The operator L is
defined by L = J ∂t+A in Section 3. In order that the above mentioned regularity
results are applicable to the present text, we shall give the following fundamental
result in the study of the system in the form of (3.1). Recall E := D(|L|1/2) is
the Hilbert space equipped with the norm ‖ · ‖ where L = J ∂t + A. Denote
M2M×2M (R) by the space of all 2M × 2M real matrixes equipped with the usual
vector norm.

Lemma A.5. LetM ∈ L∞
(
R×RN ,M2M×2M (R)

)
andH : R×RN×R2M → R

satisfy

(A.1) |∇zH(t, x, z)| ≤ |z|+ c|z|p−1

for some c > 0 and p ∈
(
2, 2(N + 2)/N

)
. If z ∈ E is a weak solution to

(A.2) Lz +M(t, x)z = ∇zH(t, x, z),

then z ∈ Br for all r ≥ 2 and

‖z‖Br ≤ C
(
‖M‖∞, ‖z‖, c, p, r

)
.

Proof. Since the proof is quite similar to the proof of Lemma 8.6 on page 149 in
[12], we just give a sketch here. Remark that, from [4], we have the following
embedding result:

(A.3) Br ↪→ Lq is continuous for r > 1 and 0 ≤ 1

r
− 1

q
≤ 2

N + 2
.

Set

ϕ(r) :=

{
(N + 2)r/(N + 2− 2r) if 1 < r < N+2

2 ,

∞ if r ≥ N+2
2 .

Then Br ↪→ Lq for 1 < r ≤ q < ϕ(r) and also for q = ϕ(r) if ϕ(r) <∞.
Now let z ∈ E be a weak solution of (A.2) and set w = −M(t, x)z +

∇zH(t, x, z). We rewrite (A.2) as

z = L−1w = L−1
(
−M(t, x)z +∇zH(t, x, z)

)
.

Define χz : R× RN → R by

χz(t, x) =

{
1 if |z(t, x)| < 1,
0 if |z(t, x)| ≥ 1.

and let
w1(t, x) = −M(t, x)z +∇zH

(
t, x, χz(t, x) · z(t, x)

)
46



and
w2(t, x) = ∇zH

(
t, x, (1− χz(t, x)) · z(t, x)

)
.

Then w = w1 + w2 and it follows from the assumptions on M and H that

|w1(t, x)| ≤ C1|z(t, x)|

with C1 depending on ‖M‖∞ and

|w2(t, x)| ≤ C2|z(t, x)|p−1

with C2 depending on the constant c in (A.1). Since E embeds continuously into
Lq for q ∈ [2, r1] where r1 = 2(N + 2)/N , we have w1 ∈ Lr for r ∈ [2, r1] and
w2 ∈ Lr for r ∈ [1, q1] where q1 = r1/(p− 1). Here we used that

meas
{

(t, x) ∈ R× RN : |z(t, x)| ≥ 1
}
≤
∫∫

R×RN
|z|2 ≤ ‖z‖2 <∞.

Now use the fact L : Br → Lr is an isomorphism for r > 1, we obtain{
z1 := L−1w1 ∈ Br for r ∈ [2, r1],

z2 := L−1w2 ∈ Br for r ∈ [1, q1].

Case 1. Let us consider q1 ≥ (N+2)
2 which may occur only when N ≤ 3.

In this situation, we have z2 ∈ Lq for all q ≥ q1 as a consequence of (A.3).
By interpolation we get z2 ∈ Lq for all q ≥ 2. Noting that r1 > q1, we similarly
obtain z1 ∈ Lq for all q ≥ 2.

Case 2. Let us consider q1 <
N+2

2 . In this case we define inductively rk+1 =
ϕ(qk) and qk+1 = rk+1/(p − 1). Suppose z1 ∈ Br for r ∈ [2, rk] and z2 ∈ Br

for r ∈ [2, qk]. Then we deduce that z1 ∈ Lr for r ∈ [2, ϕ(rk)] and z2 ∈ Lr for
r ∈ [2, ϕ(qk)]. So z = z1+z2 ∈ Lr for r ∈ [2, rk+1] since ϕ(rk) > rk+1 = ϕ(qk).
We claim that there exists k0 ≥ 1 such that qk0 ≥ (N + 2)/2. Then we can go
back to Case 1 and obtain z ∈ Lq for all q ≥ 2.

In order to proof the claim, by induction, we observe that

rk =
2(N + 2)(p− 2)

(p− 1)k−1
(
N(p− 2)− 4

)
+ 4

.

Since 2 < p < 2(N + 2)/N = 2 + 4/N , we see that there exists k0 > 1 such that
rk0 > 0 and either rk0+1 = ∞ or rk0+1 < 0. This implies that qk0 ≥ (N + 2)/2
as required.
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