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Abstract

In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the

vertex number, edge number, and minimum degree of graphs which generalized Ore’s

theorem. One year later, Moon and Moser gave an analogous result for Hamilton

cycles in balanced bipartite graphs. In this paper we present the spectral analogues

of Erdős’ theorem and Moon-Moser’s theorem, respectively. Let Gk
n be the class of

non-Hamiltonian graphs of order n and minimum degree at least k. We determine the

maximum (signless Laplacian) spectral radius of graphs in Gk
n
(for large enough n), and

the minimum (signless Laplacian) spectral radius of the complements of graphs in Gk
n.

All extremal graphs with the maximum (signless Laplacian) spectral radius and with

the minimum (signless Laplacian) spectral radius of the complements are determined,

respectively. We also solve similar problems for balanced bipartite graphs and the

quasi-complements.
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plement; quasi-complement
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1 Introduction

For a graph G, we denote by n(G) the order of G, by e(G) the edge number of G, by δ(G)

the minimum degree of G and by ω(G) the clique number of G. For two disjoint graphs

G1 and G2, the union of G1 and G2, denoted by G1 + G2, is defined as V (G1 + G2) =

V (G1)∪V (G2) and E(G1+G2) = E(G1)∪E(G2); and the join of G1 and G2, denoted by

G1∨G2, is defined as V (G1∨G2) = V (G1)∪V (G2), and E(G1∨G2) = E(G1+G2)∪{xy :
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x ∈ V (G1), y ∈ V (G2)}. The union of k disjoint copies of the same graph G is denoted by

kG.

Let G be a graph, A be the adjacency matrix of G and D be the degree matrix of G.

Let Q = A+D be the signless Laplacian matrix of G. The spectral radius of G, denoted

by ρ(G), is the largest value of eigenvalues of A. The signless Laplacian spectral radius of

G, denoted by q(G), is the largest value of eigenvalues of Q.

A graph G is Hamiltonian (traceable) if it contains a Hamilton cycle (Hamilton path),

i.e., a cycle (path) containing all vertices of G. Determining whether a given graph is

Hamiltonian or not is an old problem in graph theory. This problem was proved to be an

NP-hard problem [17]. For a long time, graph theorists have been interested in finding

sufficient conditions of Hamilton cycles.

1.1 Hamiltonicity and traceability of graphs

In extremal graph theory, a natural problem on Hamilton cycles is, how many edges can

guarantee the existence of a Hamilton cycle in a graph of order n? Ore [25] showed that

the condition e(G) ≥
(n−1

2

)
+ 2 is the answer.

Theorem 1.1 (Ore [25]). Let G be a graph of order n. If

e(G) >

(
n− 1

2

)
+ 1,

then G is Hamiltonian.

Note that the graph obtained from Kn−1 by adding a pendent edge has
(n−1

2

)
+ 1

edges but is non-Hamiltonian. This example shows the condition in Theorem 1.1 is the

best possible. However, the extremal graph has a vertex of degree 1, and is trivially non-

Hamiltonian. In 1962, Erdős [10] generalized Ore’s theorem by imposing minimum degree

as a new parameter.

Theorem 1.2 (Erdős [10]). Let G be a graph of order n. If δ(G) ≥ k, where 1 ≤ k ≤
(n− 1)/2, and

e(G) > max

{(
n− k

2

)
+ k2,

(⌈(n+ 1)/2⌉
2

)
+

⌊
n− 1

2

⌋2}
,

then G is Hamiltonian.

By Dirac’s theorem [9] which states that every graph of order n ≥ 3 is Hamiltonian

if δ(G) ≥ n/2, we can see the condition k ≤ (n − 1)/2 in Theorem 1.2 is reasonable.

Furthermore, by simple computation, we know that if n ≥ 6k − 2, then
(n−k

2

)
+ k2 ≥
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(n−l
2

)
+ l2, where l = ⌊(n − 1)/2⌋. So Theorem 1.2 implies that every graph of order

n ≥ 6k − 2 with δ(G) ≥ k and e(G) >
(
n−k
2

)
+ k2, is Hamiltonian.

In this paper, we define, for 1 ≤ k ≤ (n− 1)/2,

Lk
n = K1 ∨ (Kk +Kn−k−1) and Nk

n = Kk ∨ (Kn−2k + kK1).

Note that L1
n = N1

n. We remark that the graph Nk
n (n ≥ 6k−2) and the graph N

⌊(n−1)/2⌋
n

(n ≤ 6k − 3) show that the condition in Theorem 1.2 is sharp.

We denote by L
¯
k
n and N

¯
k
n the graphs obtained from Lk+1

n+1 and Nk+1
n+1 , respectively, by

deleting one vertex of degree n, i.e., for 0 ≤ k ≤ n/2− 1,

L
¯
k
n = Kk+1 +Kn−k−1 and N

¯
k
n = Kk ∨ (Kn−2k−1 + (k + 1)K1).

In addition, we set

Hn = {G : K⌈n/2⌉−1,⌊n/2⌋+1 ⊆ G ⊆ K⌈n/2⌉−1 ∨ (⌊n/2⌋ + 1)K1}.

Note that all graphs in Hn have the complements with the same (signless Laplacian)

spectral radius. Also note that every graph in Hn is a subgraph of N
(n−1)/2
n for odd n,

and a subgraph of N
¯
n/2−1
n for even n.

Kn−4

L4
n

Kn−4

N4
n

Kn−4

N
¯
3

n

Fig. 1. Graphs L4
n, N

4
n and N

¯
3

n.

Fiedler and Nikiforov [15] published their important work on spectral conditions for

Hamilton cycles and Hamilton paths, which stimulated many subsequent researches on

this topic.

Theorem 1.3 (Fiedler and Nikiforov [15]). Let G be a graph of order n.

(1) If ρ(G) ≥ n− 2, then G is traceable unless G = N
¯

0
n.

(2) If ρ(G) > n− 2, then G is Hamiltonian unless G = N1
n.

Theorem 1.4 (Fiedler and Nikiforov [15]). Let G be a graph of order n.

(1) If ρ(G) ≤
√
n− 1, then G is traceable unless G = L

¯
0
n.

(2) If ρ(G) ≤
√
n− 2, then G is Hamiltonian unless G = L1

n.
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Fiedler and Nikiforov’s theorems can be seen as spectral analogues of Ore’s theorem.

Motivated by this fact, our first aim of this paper is to give spectral analogues of Erdős’

theorem, i.e., to replace the edge number condition by spectral condition (together with

minimum degree condition) to guarantee the existence of Hamilton cycles (Hamilton paths)

in graphs. Our first problem can be stated as follows.

Problem 1. Among all non-Hamiltonian graphs (non-traceable graphs) G of order n with

δ(G) ≥ k, to determine the values of max ρ(G) and min ρ(G), respectively.

The above problem follows some recent trends in extremal graph theory, and con-

tributes to a new but energetic studied area called spectral extremal graph theory. For a

comprehensive survey on this area, we refer the reader to [23] by Nikiforov.

Besides Theorems 1.3 and 1.4, there are also some other works related to Problem 1,

see [19, 20, 24]. However, a complete solution to the problem is unknown till now. Our

partial solution to Problem 1 is as follows.

Theorem 1.5. Let k be an integer, and G be a graph of order n.

(1) If δ(G) ≥ k ≥ 0 and ρ(G) ≥ ρ(N
¯

k
n), where n ≥ max{6k + 10, (k2 + 7k +8)/2}, then G

is traceable unless G = N
¯

k
n;

(2) If δ(G) ≥ k ≥ 1 and ρ(G) ≥ ρ(Nk
n), where n ≥ max{6k + 5, (k2 + 6k + 4)/2}, then G

is Hamiltonian unless G = Nk
n .

We completely determine the values of min ρ(G) in Problem 1.

Theorem 1.6. Let k be an integer, and G be a graph of order n.

(1) If δ(G) ≥ k ≥ 0, n ≥ 2k + 2 and ρ(G) ≤ ρ(L
¯
k
n), then G is traceable unless G = L

¯
k
n, or

n = 2k + 2 and G ∈ Hn;

(2) If δ(G) ≥ k ≥ 1, n ≥ 2k+1 and ρ(G) ≤ ρ(Lk
n), then G is Hamiltonian unless G = Lk

n,

or n = 2k + 1 and G ∈ Hn.

For the signless Laplacian, Zhou [28], Nikiforov [22], Yu and Fan [27] and Liu et al. [19]

gave some sufficient conditions for Hamilton cycles or Hamilton paths in terms of signless

Laplacian spectral radii of a graph and its complement. We list the following result which

is closely related to our topic.

Theorem 1.7 (Yu and Fan [27]). Let G be a graph of order n ≥ 6.

(1) If q(G) ≥ 2n − 4, then G is traceable unless G = N
¯

0
n.

(2) If q(G) > 2n − 4, then G is Hamiltonian unless G = N1
n.

In [27], the bound of n ≥ 6 is missed, and in fact there are counterexamples of small

order, namely K1,3 for traceability, and K1,1,3 for Hamiltonicity. This tiny flaw has already

been pointed out in [19] by Liu et al.
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Motivated by Problem 1 and Theorem 1.7, we have the following problem:

Problem 2. Among all non-Hamiltonian graphs (non-traceable graphs) G of order n with

δ(G) ≥ k, to determine the values of max q(G) and min q(G), respectively.

Our partial answer to Problem 2 is as follows.

Theorem 1.8. Let k be an integer, and G be a graph of order n.

(1) If δ(G) ≥ k ≥ 0 and q(G) ≥ q(N
¯

k
n), where n ≥ max{6k + 10, (3k2 + 9k + 8)/2}, then

G is traceable unless G = N
¯

k
n;

(2) If δ(G) ≥ k ≥ 1 and q(G) ≥ q(Nk
n), where n ≥ max{6k+5, (3k2 +5k +4)/2}, then G

is Hamiltonian unless G = Nk
n .

Nikiforov mentioned a result on the signless Laplacian spectral radius of the comple-

ment of a graph and Hamiltoncity, see [23, Section 3.8] for details.

1.2 Hamiltonicity of balanced bipartite graphs

Let G be a bipartite graph with partite sets {X,Y }. We use Ĝ to denote the quasi-

complement of G, i.e., the graph with vertex set V (Ĝ) = V (G) and for any x ∈ X and

y ∈ Y , xy ∈ E(Ĝ) if and only if xy /∈ E(G). The bipartite graph G is called balanced if

|X| = |Y |. Note that every Hamiltonian bipartite graph is balanced.

Our second aim of this paper is to find spectral analogues of Moon and Moser’s theorem,

which is a bipartite analogue of Erdős’ theorem and given as follows.

Theorem 1.9 (Moon and Moser [21]). Let G be a balanced bipartite graph of order 2n

with δ(G) ≥ k, where 1 ≤ k ≤ n/2. If

e(G) > max

{
n(n− k) + k2, n(n−

⌊n
2

⌋
) +

⌊n
2

⌋2}
,

then G is Hamiltonian.

Moon and Moser [21] also pointed out that a balanced bipartite graph G of order 2n

is Hamiltonian if δ(G) > n/2.

Let Bk
n (1 ≤ k ≤ n/2) be the graph obtained from Kn,n by deleting all edges in its one

subgraph Kn−k,k. Note that e(Bk
n) = n(n− k)+ k2 and Bk

n is not Hamiltonian. This type

of graphs shows the edge number condition in Theorem 1.9 is sharp. We denote by Bk
n

(1 ≤ k ≤ n/2) the set of balanced bipartite graphs in which each graph is obtained from a

bipartite graph H with two partite sets {X,Y } of size k and n−k, respectively, by adding

k additional vertices each of which is adjacent to every vertex in X, and n− k additional

vertices each of which is adjacent to every vertex in Y . Note that Bk
n is the graph in Bk

n

with the largest edge number. (In this case, H is a complete bipartite graph.)
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Fig. 2. The Graph B4
10.

We remark that all graphs in Bk
n have the quasi-complements of the same (signless

Laplacian) spectral radius, and for any (spanning) subgraph G of Bk
n, ρ(Ĝ) = ρ(B̂k

n)

(resp. q(Ĝ) = q(B̂k
n)) if and only if G ∈ Bk

n.

In this subsection, we consider a problem similar to Problems 1 and 2 for balanced

bipartite graphs.

Problem 3. Among all non-Hamiltonian balanced bipartite graphs G of order 2n with

δ(G) ≥ k, to determine the values max ρ(G),min ρ(Ĝ),max q(G) and min q(Ĝ), respec-

tively.

There are some results related to this problem, see [19, 20]. Our partial solution to

Problem 3 is given as follows. The two special graphs Γ1 and Γ2 are shown in Fig. 3 [14,

Fig.1].

Theorem 1.10. Let G be a balanced bipartite graph of order 2n and of minimum degree

δ(G) ≥ k ≥ 1.

(1) If n ≥ (k + 1)2 and ρ(G) ≥ ρ(Bk
n), then G is Hamiltonian unless G = Bk

n.

(2) If n ≥ (k + 1)2 and q(G) ≥ q(Bk
n), then G is Hamiltonian unless G = Bk

n.

(3) If n ≥ 2k and ρ(Ĝ) ≤ ρ(B̂k
n), then G is Hamiltonian unless G ∈ Bk

n, or G = Γ1 or Γ2

for n = 4 and k = 2.

Γ1 Γ2

Fig. 3. Graphs Γ1 and Γ2.

For the signless Laplacian spectral radius of the quasi-complement of a balanced bi-

partite graph, we have the following result. Note that one cannot get a better bound on

q(Ĝ) even if one adds the minimum degree condition in Theorem 1.11.

Theorem 1.11. Let G be a balanced bipartite graph of order 2n. If q(Ĝ) ≤ n, then G is

Hamiltonian unless G ∈ ⋃⌊n/2⌋
k=1 Bk

n, or G = Γ1 or Γ2 for n = 4.
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2 Preliminaries

In this section, we will list our main tools. The first two subsections contain useful struc-

tural theorems for general graphs and for balanced bipartite graphs, respectively. The last

subsection includes some lower and upper bounds involving (signless Laplacian) spectral

radii of graphs.

2.1 Structural lemmas for graphs

The closure theory introduced by Bondy and Chvátal [5] is a powerful tool for Hamil-

tonicity of graphs. Let G be a graph of order n. The closure of G, denoted by cl(G),

is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose

degree sum is at least n until no such pair remains. Bondy and Chvátal [5] proved that

the closure of G is uniquely determined.

Theorem 2.1 (Bondy and Chvátal [5]). A graph G is Hamiltonian if and only if cl(G)

is Hamiltonian.

Let G be a graph and H be a subgraph of G. For any vertex v ∈ V (G), we define

NH(v) = N(v)∩V (H) and dH(v) = |NH(v)|. A graph G is closed if G = cl(G), i.e., if any

two nonadjacent vertices of G have degree sum less than n(G). Now we prove a lemma

on the clique number of closed graphs.

Lemma 1. Let G be a closed graph of order n ≥ 6k + 5, where k ≥ 1. If

e(G) >

(
n− k − 1

2

)
+ (k + 1)2,

then ω(G) ≥ n− k.

Proof. A vertex of G is called heavy if it has degree at least n/2. Since G is closed, any

two heavy vertices are adjacent in G. Let C be the vertex set of a maximum clique of G

containing all heavy vertices and let H = G− C. Let t = |C|.
Suppose first that 1 ≤ t ≤ n/3+k+1. Then for every v ∈ V (H), we have dC(v) ≤ t−1

and d(v) ≤ (n− 1)/2. Note that

e(G[C]) =

(
t

2

)
and e(H) + e(V (H), C) =

∑
v∈V (H) d(v) +

∑
v∈V (H) dC(v)

2
.
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Thus

e(G) = e(G[C]) + e(H) + e(V (H), C)

≤
(
t

2

)
+

(t− 1 + (n− 1)/2)(n − t)

2

=
n+ 1

4
t+

n(n− 3)

4

≤ n+ 1

4

(
1

3
n+ k + 1

)
+

n(n− 3)

4

=
1

3
n2 +

(
1

4
k − 5

12

)
n+

k + 1

4

≤
(
n− k − 1

2

)
+ (k + 1)2

< e(G),

a contradiction.

Suppose now that (n + 3)/3 + k < t ≤ n − k − 1. Note that d(v) ≤ n − t for every

v ∈ V (H) (for otherwise v will be adjacent to every vertex of C). Since

e(G[C]) =

(
t

2

)
and e(H) + e(V (H), C) ≤

∑

v∈V (H)

d(v),

we have

e(G) = e(G[C]) + e(H) + e(V (H), C)

≤
(
t

2

)
+ (n− t)2

=
3

2
t2 −

(
2n +

1

2

)
t+ n2

≤
(
n− k − 1

2

)
+ (k + 1)2

< e(G),

also a contradiction.

So we conclude that t ≥ n− k and ω(G) ≥ n− k.

Armed with Lemma 1, we prove the following lemma which refines Erdős’ theorem

(Theorem 1.2) in some sense.

Lemma 2. Let G be a graph of order n ≥ 6k + 5, where k ≥ 1. If δ(G) ≥ k and

e(G) >

(
n− k − 1

2

)
+ (k + 1)2,

then G is Hamiltonian unless G ⊆ Lk
n or Nk

n .
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Proof. Let G′ = cl(G). If G′ is Hamiltonian, then so is G by Theorem 2.1. Now we assume

that G′ is not Hamiltonian. Note that δ(G′) ≥ δ(G) and e(G′) ≥ e(G). By Lemma 1,

ω(G′) ≥ n− k. Let C be a maximum clique of G′ and H = G′ − C.

We claim that ω(G′) = n − k. Suppose that ω(G′) ≥ n − k + 1. Since G′ is not a

clique, V (H) 6= ∅. Let v be a vertex in H. Note that dG′(u) ≥ n− k for every u ∈ C and

dG′(v) ≥ δ(G′) ≥ k. This implies v is adjacent to every vertex of C in G′, contradicting

that C is a maximum clique of G′. So ω(G′) = n− k, as we claimed.

Note that every vertex in C has degree at least n−k−1 in G′. We say that a vertex in

C is a frontier vertex if it has degree at least n− k in G′, i.e., it has at least one neighbor

in H. Let F = {u1, u2, . . . , us} be the set of frontier vertices. From the fact that G′ is

closed, we can see that every vertex in H has degree exactly k in G′, and every vertex in

H is adjacent to every frontier vertex in G′. Moreover, since |V (H)| = k, we can see that

1 ≤ s ≤ k.

If s = 1, then H is a clique and G′ = Lk
n; if s = k, then H is an independent set and

G′ = Nk
n . In both cases we have G ⊆ Lk

n or Nk
n . Now we assume that 2 ≤ s ≤ k − 1. Let

P be a Hamilton path of G′[(C − F ) ∪ {u1, us}] from u1 to us.

Note that every vertex in H has degree k − s in H. By Dirac’s theorem [9], H has

a path of order at least k − s + 1. First we assume that H has a path P ′ of order

k − s + 2. Let x, x′ be the two end-vertices of P ′ and V (H − P ′) = {v1, . . . , vs−2}. Then

u1v1u2v2 · · · us−2vs−2us−1xP
′x′usPu1 is a Hamilton cycle of G′, a contradiction.

Now we assume that H has no paths of order more than k − s+ 1. Let P ′ be a path

of order k− s+1 in H, and x, x′ be the two end-vertices of P ′. Clearly x has no neighbor

in V (H − P ′), which implies that xx′ ∈ E(H). Since H has no path longer than P ′,

every vertex in V (H − P ′) has no neighbor in P ′, specially, H − P ′ has an edge v1v2.

Let V (H −P ′) = {v1, v2, . . . , vs−1}. Then u1v1v2u2 · · · vs−1us−1xP
′x′usPu1 is a Hamilton

cycle of G′, also a contradiction.

We also have an analogue of Lemma 2 for traceable graphs.

Lemma 3. Let G be a graph of order n ≥ 6k + 10, where k ≥ 0. If δ(G) ≥ k and

e(G) >

(
n− k − 2

2

)
+ (k + 1)(k + 2),

then G is traceable unless G ⊆ L
¯
k
n or N

¯
k
n.

Proof. Let G′ = G ∨K1. Note that G is traceable if and only if G′ is Hamiltonian. We

have n(G′) = n+ 1 ≥ 6(k + 1) + 5, δ(G′) ≥ k + 1 ≥ 1 and

e(G′) = e(G) + n >

(
n− k − 2

2

)
+ (k + 1)(k + 2) + n =

(
n− k − 1

2

)
+ (k + 2)2.
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By Lemma 2, G′ is Hamiltonian unless G′ ⊆ Lk+1
n+1 or Nk+1

n+1 . Thus G is traceable unless

G ⊆ L
¯
k
n or N

¯
k
n.

We will also use the following result. It was originally related to [1], and was strength-

ened in [13]. For details, see Theorem 3.1 in [13].

Theorem 2.2 (Ainouche and Christofides [1]). Let G be a non-Hamiltonian graph. If

d(u) + d(v) ≥ n − 1 for every two nonadjacent vertices u, v ∈ V (G), then either G = Lk
n

for 1 ≤ k ≤ (n− 1)/2, or n is odd and G ∈ Hn.

2.2 Structural lemmas for balanced bipartite graphs

Let G be a balanced bipartite graph of order 2n. The bipartite closure (or briefly, B-

closure) of G, denoted by clB(G), is the graph obtained from G by recursively joining

pairs of nonadjacent vertices in different partite sets whose degree sum is at least n + 1

until no such pair remains.

Theorem 2.3 (Bondy and Chvátal [5]). A balanced bipartite graph G is Hamiltonian if

and only if clB(G) is Hamiltonian.

A balanced bipartite graph G of order 2n is B-closed if G = clB(G), i.e., if every two

nonadjacent vertices in distinct partite sets of G have degree sum at most n. We have the

following result on B-closed balanced bipartite graphs.

Lemma 4. Let G be a B-closed balanced bipartite graph of order 2n. If n ≥ 2k + 1 for

some k ≥ 1 and

e(G) > n(n− k − 1) + (k + 1)2,

then G contains a complete bipartite graph of order 2n − k. Furthermore, if δ(G) ≥ k,

then Kn,n−k ⊆ G.

Proof. Let X,Y be the two partite sets of G. We denote by h(X) and h(Y ) the number

of vertices in X and Y , respectively, with degree larger than n/2. Then

nh(X) +
1

2
n(n− h(X)) ≥ e(G).

Thus

h(X) ≥ 2e(G)

n
− n ≥ 2n(n− k − 1) + 2(k + 1)2 + 2

n
− n.

One can compute that h(X) > k when n ≥ 2k + 1. Similarly we have h(Y ) > k. Clearly

every vertex in X with degree more than n/2 and every vertex in Y with degree more than

n/2 are adjacent. This implies that Kk+1,k+1 ⊆ G. Now let t be the maximum integer

such that Kt,t ⊂ G. Thus t ≥ k + 1.
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Claim 1. t ≥ n− k.

Proof. Suppose not. Then k + 1 ≤ t ≤ n − k − 1. Let X ′ ⊂ X, Y ′ ⊂ Y such that

G[X ′ ∪ Y ′] = Kt,t. Recall that G is B-closed. If for any x ∈ X\X ′, there exists y ∈ Y ′

such that xy /∈ E(G), then for any x ∈ X\X ′, d(x) ≤ n− t; if there exits x ∈ X\X ′, such

that for any y ∈ Y ′, xy ∈ E(G), then for any y ∈ Y \Y ′, d(y) ≤ n − t. Without loss of

generality, assume that for any y ∈ Y \Y ′, d(y) ≤ n− t. Then

e(G) = e(X ′, Y ′) + e(X\X ′, Y ′) + e(X,Y \Y ′)

≤ t2 + t(n− t) + (n− t)2

= nt+ (n− t)2

≤ n(n− k − 1) + (k + 1)2

< e(G),

a contradiction.

Now let s be a largest integer such that Ks,t ⊂ G. Thus s ≥ t.

Claim 2. s+ t ≥ 2n − k.

Proof. Suppose not. Then n−k ≤ t ≤ n−(k+1)/2 and t ≤ s ≤ 2n−k−t−1. Without loss

of generality, let X ′ ⊂ X, Y ′ ⊂ Y , such that G[X ′, Y ′] = Ks,t. Then for any x ∈ X\X ′,

d(x) ≤ n− s; and for any y ∈ Y \Y ′, d(y) ≤ n− t. Thus

e(G) ≤ e(X ′, Y ′) + e(X\X ′, Y ) + e(X,Y \Y ′)

≤ st+ (n− s)2 + (n − t)2

= s2 − (2n − t)s+ n2 + (n− t)2

≤ (2n − k − t− 1)2 − (2n − t)(2n − k − t− 1) + n2 + (n− t)2

= t2 − (2n− k − 1)t+ n2 + (n− k − 1)2

≤ (n− k)2 − (2n − k − 1)(n − k) + n2 + (n− k − 1)2

= n(n− k − 1) + k2 + k + 1

< e(G),

a contradiction.

By Claim 2, Ks,t is a complete bipartite graph with order at least 2n − k. This

completes the proof of the first part.

Suppose that δ(G) ≥ k. If Kn,n−k 6⊆ G, then n− k+1 ≤ t ≤ s ≤ n. Let X ′ ⊂ X,Y ′ ⊂
Y , such that G[X ′, Y ′] = Ks,t. Then for any x ∈ X\X ′, x is adjacent to any vertex of Y ′,

this implies that s = n. Thus Kn,n−k+1 ⊆ G, a contradiction.
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Lemma 5. Let G be a balanced bipartite graph of order 2n. If δ(G) ≥ k ≥ 1, n ≥ 2k + 1

and

e(G) > n(n− k − 1) + (k + 1)2,

then G is Hamiltonian unless G ⊆ Bk
n.

Proof. Let G′ = clB(G). If G′ is Hamiltonian, then so is G by Theorem 2.3. Now we

assume that G′ is not Hamiltonian. Note that δ(G′) ≥ δ(G) and e(G′) ≥ e(G). By Lemma

4, Kn,n−k ⊆ G′. Let t be the largest integer such that Kn,t ⊆ G. Clearly n − k ≤ t < n.

Let X,Y be the partite sets of G, and Y ′ ⊂ Y such that G[X ∪ Y ′] = Kn,t.

We claim that t = n− k. Suppose that t ≥ n− k+1. Note that every vertex in X has

degree at least t ≥ n−k+1 in G′ and every vertex in Y has degree at least k. This implies

that G′ is a complete bipartite graph, a contradiction. Thus t = n− k, as we claimed.

Note that every vertex in X has degree at least n− k in G′. We say here that a vertex

in X is a frontier vertex if it has degree at least n − k + 1 in G′, i.e., it has at least one

neighbor in Y \Y ′. From the fact that G′ is closed, we can see that every vertex in Y \Y ′

has degree exactly k in G′, and every vertex in Y \Y ′ is adjacent to every frontier vertex

in G′. Thus there are exactly k frontier vertices in X and G′ = Bk
n. So G ⊆ Bk

n.

The following result is a balanced bipartite graph version of Theorem 2.2.

Theorem 2.4 (Ferrara, Jacobson, and Powell [14]). Let G be a non-Hamiltonian balanced

bipartite graph. If d(x)+d(y) ≥ n for every two nonadjacent vertices x, y in distinct partite

sets, then either G ∈ ⋃n/2
k=1 Bk

n, or G = Γ1 or Γ2 for n = 4.

2.3 Spectral inequalities

We will use the following spectral inequalities for graphs and bipartite graphs.

Theorem 2.5 (Nikiforov [22]). Let G be a graph of order n with δ(G) ≥ k. Then

ρ(G) ≤ k − 1

2
+

√
2e(G) − nk +

(k + 1)2

4
.

Theorem 2.6 (Feng and Yu [12]). Let G be a graph of order n. Then

q(G) ≤ 2e(G)

n− 1
+ n− 2.

Theorem 2.7 (Bhattacharya, Friedland, and Peled [4]). Let G be a bipartite graph. Then

ρ(G) ≤
√

e(G).

12



Theorem 2.8 (Feng and Yu [12], Yu and Fan [27]). Let G be a graph with non-empty

edge set. Then

q(G) ≤ max

{
d(u) +

∑
v∈N(u) d(v)

d(u)
: u ∈ V (G)

}
.

Theorem 2.9. Let G be a balanced bipartite graph of order 2n. Then

q(G) ≤ e(G)

n
+ n.

Proof. If G is an edgeless graph, then it is trivially true. Now assume G contains at least

one edge. Let x be a vertex in V (G) maximizing the right hand of the formula in Theorem

2.8. By Theorem 2.8,

n+
e(G)

n
− q(G) ≥

(
n+

∑
y∈N(x) d(y)

n

)
−
(
d(x) +

∑
y∈N(x) d(y)

d(x)

)

= (n− d(x))

(
1−

∑
y∈N(x) d(y)

nd(x)

)

≥ 0.

This completes the proof.

The following two theorems can be proved similarly as Lemma 2.1 in [3] due to Berman

and Zhang, and Theorem 2 in [2] due to Anderson and Morley (see also Proposition 3.9.1

in [6]), respectively. We omit the details of the proofs.

Theorem 2.10. Let G be a graph with non-empty edge set. Then

ρ(G) ≥ min{
√

d(u)d(v) : uv ∈ E(G)}.

Moreover, if G is connected, then equality holds if and only if G is regular or semi-regular

bipartite.

Theorem 2.11. Let G be a graph with non-empty edge set. Then

q(G) ≥ min{d(u) + d(v) : uv ∈ E(G)}.

Moreover, if G is connected, then the equality holds if and only if G is regular or semi-

regular bipartite.

Let G be a graph and u, v ∈ V (G). We construct a new graph G′ in the following

way: for every w ∈ N(u)\(N(v)∪{v}), replace the edge uw by a new edge vw. The above

operation of graphs, introduced by Kelmans [18], is called the Kelmans operation. (See

pp.44 in [6].) Wu, Xiao, and Hong [26] proved that the spectral radius of a connected

13



graph increases under the Kelmans operation. For general graphs, the similar result was

obtained by Csikvári [7] later, independently. For connected graphs, a similar observation

also holds for the signless Laplacian spectral radius under the Kelmans operation, see Feng

[11].

Theorem 2.12. Let G be a graph and G′ be a graph obtained from G by a Kelmans

operation. Then

(1) (Wu, Xiao, and Hong [26], Csikvári [7]) ρ(G′) ≥ ρ(G); and

(2) q(G′) ≥ q(G).

Proof. For the convenience of readers, we write the detailed proof of (2) here. Let A

and A′ be the adjacency matrices, and D and D′ be the degree matrices, of G and G′,

respectively. Let (A +D)x = q(G)x , where x ≥ 0 and x
T
x = 1. For two vertices u and

v corresponding to the Kelmans operation, without loss of generality, let xu ≥ xv. Set

W = N(v)\(N(u) ∪ {u}). Then

q(G′) ≥ x
T (A′ +D′)x

= x
TA′

x + x
TD′

x

= x
TAx + 2(xu − xv)

∑

w∈W

xw + x
TDx + (x2u − x2v)|W |

≥ x
T (A+D)x

= q(G).

Thus the inequality holds.

Lemma 6.

(1) ρ(L
¯

0
n) = ρ(Kn−1) = n− 2, q(L

¯
0
n) = q(Kn−1) = 2n− 4, ρ(L

¯
0
n) = ρ(K1,n−1) =

√
n− 1.

(2) ρ(L1
n) > ρ(Kn−1) = n− 2, q(L1

n) > q(Kn−1) = 2n − 4, ρ(L1
n) = ρ(K1,n−2) =

√
n− 2.

(3) For k ≥ 1, ρ(N
¯

k
n) > ρ(L

¯
k
n) = ρ(Kn−k−1) = n− k − 2,

q(N
¯

k
n) > q(L

¯
k
n) = q(Kn−k−1) = 2n− 2k − 4, and

ρ(N
¯

k
n) ≥ ρ(L

¯
k
n) = ρ(Kk+1,n−k−1) =

√
(k + 1)(n − k − 1), with equality

only if n is even and k = n/2− 1.

(4) For k ≥ 2, ρ(Nk
n) > ρ(Lk

n) > ρ(Kn−k) = n− k − 1,

q(Nk
n) > q(Lk

n) > q(Kn−k) = 2n− 2k − 2, and

ρ(Nk
n) ≥ ρ(Lk

n) = ρ(Kk,n−k−1) =
√
k(n − k − 1), with equality only if

n is odd and k = (n− 1)/2.

(5) For k ≥ 1, ρ(Bk
n) > ρ(Kn,n−k) =

√
n(n− k), q(Bk

n) > q(Kn,n−k) = 2n− k,

ρ(B̂k
n) = ρ(Kk,n−k) =

√
k(n− k), q(B̂k

n) = q(Kk,n−k) = n.
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Proof. (1)–(5) other than (4) can be deduced by the fact that the (signless Laplacian)

spectral radius decreases after deleting an edge in connected graphs.

Now we prove (4). It is not difficult to see that if we do k−1 Kelmans operations on Lk
n

(k ≥ 2), then we can obtain a proper subgraph of Nk
n . By Theorem 2.12, ρ(Nk

n) > ρ(Lk
n)

and q(Nk
n) > q(Lk

n). In the following we will prove ρ(Nk
n) ≥ ρ(Lk

n) =
√

k(n− k − 1) for

k ≥ 2, with equality only if n is odd and k = (n− 1)/2.

Note that Nk
n = Kk ∨ (n− 2k)K1. From Theorem 2.8 in [8], we have the formula

ρ(Kk ∨ (n− 2k)K1) =
k − 1 +

√
4k(n − k)− (3k − 1)(k + 1)

2
.

Thus

(
2ρ(Lk

n)− (k − 1)
)2

= 4k(n − k − 1) + (k − 1)2 − 4(k − 1)
√

k(n− k − 1)

≤ 4k(n − k − 1) + (k − 1)2 − 4k(k − 1)

= 4k(n − k)− (3k − 1)(k + 1)

=
(
2ρ(Nk

n)− (k − 1)
)2

.

Since ρ(Nk
n) ≥ (k−1)/2, ρ(Nk

n) ≥ ρ(Lk
n). Note that the equality holds only if either k = 1

(which is not in our assumption) or n is odd and k = (n− 1)/2.

The proof is complete.

3 Proofs of the theorems

Proof of Theorem 1.5.

(1) By Lemma 6 and Theorem 2.5,

n− k − 2 < ρ(G) ≤ k − 1

2
+

√
2e(G) − nk +

(k + 1)2

4
.

Thus, when n ≥ (k2 + 7k + 8)/2, we have

e(G) >
n2 − (2k + 3)n+ 2(k + 1)2

2
≥
(
n− k − 2

2

)
+ (k + 1)(k + 2).

By Lemma 3, G is traceable or G ⊆ L
¯
k
n or N

¯
k
n. But if G ⊆ L

¯
k
n for k ≥ 1 or G ⊂ N

¯
k
n, then

ρ(G) < ρ(N
¯
k
n), a contradiction. Thus G = N

¯
k
n.

(2) By Lemma 6 and Theorem 2.5,

n− k − 1 < ρ(G) ≤ k − 1

2
+

√
2e(G) − nk +

(k + 1)2

4
.

Thus, when n ≥ (k2 + 6k + 4)/2, we have

e(G) >
n2 − (2k + 1)n + k(2k + 1)

2
≥
(
n− k − 1

2

)
+ (k + 1)2.
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By Lemma 2, G is Hamiltonian or G ⊆ Lk
n or Nk

n . But if G ⊆ Lk
n for k ≥ 2 or G ⊂ Nk

n ,

then ρ(G) < ρ(Nk
n), a contradiction. Thus G = Nk

n . The proof is complete. �

Proof of Theorem 1.6.

(1) The proof is based on the assertion (2), which will be proved later. Let G′ = G∨K1.

Then n(G′) = n+ 1, δ(G′) = δ(G) + 1 ≥ k + 1 and

ρ(G′) = ρ(G) ≤ ρ(L
¯
k
n) =

√
(k + 1)(n − k − 1) = ρ(Lk+1

n+1).

By (2), G′ is Hamiltonian unless G′ = Lk+1
n+1, or n+1 = 2(k+1)+ 1 and G ∈ Hn+1. Thus

G is traceable unless G = L
¯
k
n, or n = 2k + 2 and G ∈ Hn.

(2) Let G′ = cl(G). If G′ is Hamiltonian, then so is G by Theorem 2.1. Now we assume

that G′ is not Hamiltonian. Note that G′ is closed. Thus every two nonadjacent vertices

u, v have degree sum at most n− 1, i.e.,

dG′(u) + dG′(v) ≥ 2(n − 1)− (n− 1) = n− 1.

Note that every non-trivial component of G′ has a vertex of degree at least (n− 1)/2 and

hence of order at least (n+1)/2. This implies that G′ has exactly one nontrivial component.

Since d(u) ≥ k and d(v) ≥ k, we have dG′(u) ≤ n − k − 1 and dG′(v) ≤ n − k − 1. Thus

dG′(u) ≥ k and dG′(v) ≥ k. This implies that

dG′(u)dG′(v) ≥ dG′(u)(n − 1− dG′(u)) ≥ k(n − k − 1),

with equality if and only if (up to symmetry), dG′(u) = k and dG′(v) = n− k − 1.

By Lemma 6 and Theorem 2.10,

√
k(n − k − 1) ≥ ρ(G) ≥ ρ(G′) ≥ min

uv∈E(G′)

√
dG′(u)dG′(v) ≥

√
k(n− k − 1).

This implies that ρ(G′) =
√

k(n− k − 1) and there is an edge uv ∈ E(G′) such that

dG′(u) = k and dG′(v) = n − k − 1. Let H be the component of G′ containing uv.

By Theorem 2.10, H is regular or semi-regular bipartite. This implies that every two

nonadjacent vertices in G′ have degree sum n−1. By Theorem 2.2, G′ = Lk
n or n = 2k+1

and G′ ∈ Hn. It is easy to find that for any (spanning) subgraph of Lk
n or any (spanning)

subgraph of a graph in Hn (when n = 2k + 1), if it is not Lk
n or is not in Hn, then it has

the complement with spectral radius greater than ρ(Lk
n). Thus G = Lk

n or n = 2k+1 and

G ∈ Hn. The proof is complete. �

Proof of Theorem 1.8.
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(1) By Lemma 6 and Theorem 2.6,

2n − 2k − 4 < q(G) ≤ 2e(G)

n− 1
+ n− 2.

Thus, when n ≥ (3k2 + 9k + 8)/2, we have

e(G) >
(n− 1)(n − 2k − 2)

2

=
n2 − (2k + 3)n + 2(k + 1)

2

≥
(
n− k − 2

2

)
+ (k + 1)(k + 2).

By Lemma 3, G is traceable or G ⊆ L
¯
k
n or N

¯
k
n. But if G ⊆ L

¯
k
n for k ≥ 1 or G ⊂ N

¯
k
n, then

q(G) < q(N
¯
k
n), a contradiction. Thus G = N

¯
k
n.

(2) By Lemma 6 and Theorem 2.6,

2n − 2k − 2 < q(G) ≤ 2e(G)

n− 1
+ n− 2.

Thus, when n ≥ (3k2 + 5k + 4)/2, we have

e(G) >
(n− 1)(n − 2k)

2

=
n2 − (2k + 1)n + 2k

2

≥
(
n− k − 1

2

)
+ (k + 1)2.

By Lemma 2, G is Hamiltonian or G ⊆ Lk
n or Nk

n . But if G ⊆ Lk
n for k ≥ 2 or G ⊂ Nk

n ,

then q(G) < q(Nk
n), a contradiction. Thus G = Nk

n . The proof is complete. �

Proof of Theorem 1.10.

(1) By Lemma 6 and Theorem 2.7,

√
n(n− k) < ρ(G) ≤

√
e(G).

Thus, we obtain

e(G) > n(n− k) ≥ n(n− k − 1) + (k + 1)2

when n ≥ (k + 1)2. By Lemma 5, G is Hamiltonian or G ⊆ Bk
n. But if G ⊂ Bk

n, then

ρ(G) < ρ(Bk
n), a contradiction. Thus G = Bk

n.

(2) By Lemma 6 and Theorem 2.9,

2n − k < q(G) ≤ e(G)

n
+ n.
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Thus, there holds

e(G) > n(n− k) ≥ n(n− k − 1) + (k + 1)2

when n ≥ (k + 1)2. By Lemma 5, G is Hamiltonian or G ⊆ Bk
n. But if G ⊂ Bk

n, then

q(G) < q(Bk
n), a contradiction. Thus G = Bk

n.

(3) Let G′ = clB(G). If G′ is Hamiltonian, then so is G by Theorem 2.3. Now we

assume that G′ is not Hamiltonian. Note that G′ is B-closed. Thus every two nonadjacent

vertices x ∈ X, y ∈ Y in distinct partite sets X,Y have degree sum at most n, i.e.,

d
Ĝ′(x) + d

Ĝ′(y) ≥ 2n− n = n.

Since δ(G′) ≥ δ(G) ≥ k, we can see that d
Ĝ′(x) ≤ n − k and d

Ĝ′(y) ≤ n − k. Thus

d
Ĝ′(x) ≥ k and d

Ĝ′(y) ≥ k. This implies that

d
Ĝ′(x)dĜ′(y) ≥ d

Ĝ′(x)(n− d
Ĝ′(x)) ≥ k(n − k),

with equality if and only if (up to symmetry) d
Ĝ′(x) = k and d

Ĝ′(y) = n−k. By Theorem

2.10,
√

k(n− k) ≥ ρ(Ĝ) ≥ ρ(Ĝ′) ≥ min
xy∈E(Ĝ′)

√
d
Ĝ′(x)dĜ′(y) ≥

√
k(n− k).

This implies that ρ(Ĝ′) =
√

k(n − k) and there is an edge xy ∈ E(Ĝ′) such that d
Ĝ′(x) = k

and d
Ĝ′(y) = n − k. Let H be the component of Ĝ′ containing xy. By Theorem 2.10, H

is a semi-regular bipartite graph, say, with partite sets X ′ ⊆ X and Y ′ ⊆ Y , and for every

vertex x′ ∈ X ′, d(x′) = d(x) = k, and for every vertex y′ ∈ Y ′, d(y′) = d(y) = n − k. If

H = Kk,n−k, then G′ ⊆ Bk
n. If H 6= Kk,n−k, then n(H) > n. Note that every nontrivial

component of Ĝ′ has order at least (n + 1). Thus H is the unique non-trivial component

of Ĝ′. This implies that every two nonadjacent vertices in distinct partite sets in G′ have

degree sum at least n. By Theorem 2.4, G′ ∈ Bk
n or G′ = Γ1 or Γ2 for n = 4 and k = 2.

In any case, we can see that G ⊆ Bk
n or G ⊆ Γ1 or Γ2 for n = 4 and k = 2. Note that for

any (spanning) subgraph of Γ1, Γ2 or Bk
n, if is not Γ1, or Γ2, or a graph in Bk

n, then it has

the quasi-complement with spectral radius greater than ρ(B̂k
n). Thus G ∈ Bk

n or G = Γ1

or Γ2 for n = 4 and k = 2. The proof is complete. �

Proof of Theorem 1.11.

Let G′ = clB(G). If G′ is Hamiltonian, then so is G by Theorem 2.3. Now assume that

G′ is not Hamiltonian. Similarly as the proof of Theorem 1.10, for every two nonadjacent

vertices x ∈ X, y ∈ Y in distinct partite sets X,Y of G′, we get

d
Ĝ′(x) + d

Ĝ′(y) ≥ n.
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By Theorem 2.11, we have

n ≥ q(Ĝ) ≥ q(Ĝ′) ≥ min
xy∈E(Ĝ′)

(d(x) + d(y)) ≥ n,

This implies that q(Ĝ′) = n and there is an edge xy ∈ E(Ĝ′) such that d
Ĝ′(x)+d

Ĝ′(y) = n.

Let H be the component of Ĝ′ containing xy. By Theorem 2.11, H is a semi-regular

bipartite graph, say, with partite sets X ′ ⊆ X and Y ′ ⊆ Y . If H is a complete bipartite

graph Kk,n−k for some k, then G′ ⊆ Bk
n. Otherwise, n(H) > n. Note that every nontrivial

component of Ĝ′ has order at least n. Thus H is the unique non-trivial component of Ĝ′.

This implies that every two nonadjacent vertices in distinct partite sets in G have degree

sum at least n. By Theorem 2.4, G′ ∈ ⋃n/2
k=1 Bk

n, or G′ = Γ1 or Γ2 for n = 4. In any

case, we can see that G ⊆ Bk
n for 1 ≤ k ≤ n/2, or G ⊆ Γ1 or Γ2 for n = 4. Note that

every (spanning) subgraph of Γ1, Γ2 or Bk
n, 1 ≤ k ≤ n/2, if is not Γ1 or Γ2, or a graph in

Bk
n, then has the quasi-complement with signless Laplacian spectral radius greater than

n. Thus G ∈ ⋃n/2
k=1 Bk

n, or G = Γ1 or Γ2 for n = 4. The proof is complete. �
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